
CCO
Commun. Comb. Optim.

c© 2024 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. xx, No. x (xxxx), pp. 1-17

https://doi.org/10.22049/cco.2024.29895.2211

Research Article

Weighted topological index of graphs

Zahid Raza1, Bilal Ahmad Rather1,2, Modjtaba Ghorbani3,∗

1
Department of Mathematics, College of Sciences, University of Sharjah, UAE

zraza@sharjah.ac.ae

2
Department of Applied Mathematics, School of Engineering,

Samarkand International University of Technology, Samarkand 140100, Uzbekistan
bilalahmadrr@gmail.com

3
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University,

Tehran, 16785-163, I. R. Iran
∗mghorbani@sru.ac.ir

Received: 18 July 2024; Accepted: 7 November 2024
Published Online: 25 November 2024

Abstract: The definition of the weighted topological index associated with a degree

function φ is Φ(G) =
∑
uv∈E(G) φ(du, dv), where du denotes the degree of node u and

φ satisfies symmetric property φ(du, dv) = φ(dv , du). In this paper, we characterized
extremal graphs and presented several results concerning the function Φ(G) in terms

of various graph invariants. Additionally, we characterize the graphs that achieve these

bounds and present multiple bounds for Φ(G) for the class of cozero divisor graphs
defined on commutative rings.
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1. Introduction

All graphs are simple and without any direction. A graph G = G(V,E) consists of

a node (vertex) set V = {ξ1, ξ2, . . . , ξn} and an edge E consisting of unordered pairs

of ξi’s. The cardinality |V | = n is order and the cardinality |E| = m is size of G.

The degree of ξ ∈ V , denoted by dξ, is the number of edges adjacent with v. The

neighbourhood (open neighbourhood) of ξ ∈ V, denoted by N(ξ), is the set of nodes

of G incident to ξ. We note that dξ = |N(ξ)|. A graph is called r-regular, if d(ξ) = r

∗ Corresponding Author



2 Weighted topological index of graphs

each node ξ ∈ V . An independent set I of G is a subset of V such that no two

nodes in I are adjacent and the cardinality of such a maximal set is known as the

independence number of G. A graph is said to be complete if every two distinct nodes

are adjacent. A clique is a complete subgraph of a graph. A graph G is complete

bipartite if V = V1 ∪ V2 with V1 ∩ V2 = ∅ such that each node of V1 is adjacent to

every node of V2 and there are no edges among nodes of Vi’s. A node of degree one is

known as the pendent node and its adjacent node is a quasi pendent node. The join

of graphs G1 and G2, denoted by G1 + G2 consists of G1 ∪ G2 and all edges joining

a node of G1 and a node of G2. For other undefined notations, we follow [8].

A general node-degree-based topological index (or weighted topological index) Φ of a

graph G [14] is defined as

Φ(G) =
∑

uv∈E(G)

Φ(du, dv),

where Φ(du, dv) is a symmetric function of node degrees, that is, Φ(du, dv) =

Φ(dv, du). The function Φ(du, dv) is an edge weight between nodes u and v. For

particular values of Φ(du, dv), we obtain well studied topological indices like the gen-

eral Randić index [25] Φ(du, dv) = (dudv)
η, for η = − 1

2 , we get Randić index [26]

R =
∑

uv∈E(G)

1√
dudv

(also see [22, 27]). For Φ(du, dv) = du+dv
2
√
dudv

, we get arithmetic-

geometric index [31], for Φ(du, dv) =
(
d2
u + d2

v

)η
, we obtain the general Sombor index,

for η = 1
2 , we obtain Sombor index SO(G) =

∑
uv∈E(G)

√
d2
u + d2

v [13], and for η = − 1
2 ,

we obtain mSO(G) =
∑

uv∈E(G)

1√
d2
u + d2

v

, a modified Sombor index [16]. Similarly, for

particular values of function Φ(du, dv), we obtain several other indices. More about

the weighted topological indices can be seen in [11, 14]. The spectral analysis of the

weighted function Φ(du, dv) is very well studied, see [9, 10, 12, 14, 15, 17–21, 28, 33].

In Section 2, we present several results related to the weighted topological index

Φ(G) and characterize the corresponding extremal graphs for such results. Section 3

gives the results related to weighted topological index Φ for the cozero divisor graphs

of commutative rings. We give complete formula for Φ(Γ′(Zn)) for n = pn1
1 p2 and

n = pqr, where pi’s and p, q, r are primes. Several other inequalities are given for the

function Φ(Γ′(Zn)) along with the classification of graphs attaining them.

2. Some inequalities for the topological index Φ

In this section we will obtain some bounds for the weighted function Φ of a graph G.

The first very results establishes bounds for the function Φ of G in terms of indepen-

dence number.
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Theorem 1. If G is a graph with independence number ` such that each node of the
independence set share the same neighbourhood. Then

Φ(G) ≥ `
∑
i=1

φ(d0, dui),

with equality if and only if G is the complete bipartite graph.

Proof. Let I = {v1, v2, . . . , v`} such that N(v1) = · · · = N(v`). Then it is clear that

dv1 = · · · = dv` and equals some constant say d0. Let L be the neighbour set of I with

cardinality . Thus, V (G) = I ∪ L ∪
(
V (G) \

(
I ∪ L

))
. Using the information of the

edge weights form a node say v1 to the nodes of , we have

w(v1) = φ(dv1 , du1
) + φ(dv1 , du2

), . . . , φ(dv1 , du) =

∑
i=1

φ(d0, dui),

where ui, i = 1, . . . ,  are the nodes of L. Repeating the similar with the other nodes

of I and summing their weights, we obtain

Φ(G) =
∑̀
i=1

w(vi) +W (L) +W (V (G) \
(
I ∪ L

)
)

= `

∑
i=1

φ(d0, dui) +W (L) +W (V (G) \
(
I ∪ L

)
)

≥ `
∑
i=1

φ(d0, dui), (2.1)

where W (L) is edge weight among the nodes of L and W (V (G) \
(
I ∪L

)
) is the edge

weight from the nodes of L to the nodes of (V (G) \
(
I ∪L

)
), which includes the edge

weights between nodes of V (G) \
(
I ∪ L

)
.

Now, equality occurs in (2.1) if and only if W (L) = W (V (G) \
(
I ∪L

)
) = 0. Thus, we

see that the node sets L and V (G) \
(
I ∪L

)
contributes nothing to Φ(G). From this,

it follows that V (G) \
(
I ∪ L

)
= ∅ and L induces a graph isomorphic to complement

of clique. This happens if G is the complete bipartite graph with partite sets I and

L and in this case du1
= · · · = duj = do. So, Φ(G) = `φ(d0, do). Conversely, assume

that G ∼= K`,, then G is biregular graph with nodes of degree ` and  with edges

weights only between nodes of I and L. Hence, its topological index is given as

Φ(G) = `φ(d`, d).
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The following corollary is a consequence of Theorem 1.

Corollary 1. With notations and conditions as in above theorem, the topological index
Φ satisfies the following inequalities

(i)

Φ(G) ≥ `
∑
i=1

φ(d0, dui) +
∑

uiuj∈E(L\V (I∪(V (G)\(I∪L))))

φ(dui , duj ),

with equality holding if and only if V (G) \ (I ∪ L) = ∅.

(ii)

Φ(G) ≥ `
∑
i=1

φ(d0, dui) +
(− 1)

2
φ(dui , duj ),

with equality holding if and only if the induced subgraph of L is a clique and V (G) \
(I ∪ L) = ∅.

The following results gives another lower bound for Φ(G) in terms of various param-

eters of G.

Theorem 2. If I is an independence set of G of cardinality `, J is a neighbour set of I
with cardinality  and Z is the neighbour set of J of cardinality k, such that I share J and
J share Z. Then

Φ(G) ≥ `φ(d0, d00) +m′φ(d00, d00) + 

k∑
i=1

φ(d00, dui),

where d0 is the common degree of nodes of I, d00 is the common degree of nodes of W, ui’s
are the nodes of Z and m′ = |E(J \ (I ∪ (V (G) \ (I ∪ J)))|. Equality holds if and only if
G ∼= H + (K` ∪K), where H is induced subgraph of J.

Proof. Let u1, u2, . . . , uk be the nodes of Z. Clearly V (G) is partitioned into mutu-

ally disjoint subsets, that is, V (G) = I ∪ J ∪ Z ∪ (V (G) \ (I ∪ J ∪ Z)). Since each

node of sets I and J share the same neighborhood, their nodes have common degrees,

namely d0 and d00, respectively. Also, dui denotes the degrees of the nodes of Z. One

node of I have  neighbours in J , so its edge weight is jφ(d0, d00). Adding all such

edge weights between I and J, we obtain `φ(d0, d00). The edge weights within the

nodes of W, contribute m′φ(d00, d00) to Φ(G), where m′ is the size of the induced

subgraph of J. Similarly, calculating the edge weights between the nodes of J and Z,

we have
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Φ(G) ≥ jφ(d0, d00) +m′φ(d00, d00) + j
k∑
i=1

φ(d00, dui) +W (Z) +W (V (G) \ (I ∪ J ∪ Z))

≥ jφ(d0, d00) +m′φ(d00, d00) + j

k∑
i=1

φ(d00, dui),

where W (Z) and W (V (G)\(I∪J∪Z)) are the edge weight of Z and V (G)\(I∪J∪Z)

nodes. The equality holds if and only ifW (V (G)\(I∪J∪Z)) = 0 andW (Z) = 0, which

is so if and only if the induced subgraph of Z is totally disconnect graph (without

edges) and V (G) \ (I ∪ J ∪ Z) = ∅. Thus G must be isomorphic to H + (K` ∪K),

where H is an induced subgraph of J. Conversely, if G ∼= H + (K` ∪K), then it is

easy to verify the equality case.

The following result concerns the lower bound for Φ(G) in terms of pendent and quasi

pendent nodes.

Theorem 3. Let G be a graph with p pendent nodes. Then

Φ(G) ≥
p∑
i=1

φ(1, dui)

where di is the degree of quasi pendent nodes. Equality holding if and only if G ∼= n
2
K2.

Proof. Let u1, . . . , up be the nodes adjacent to nodes of degree 1. Then correspond-

ing to each such edge, the edge weight function is φ(1, dui), for i = 1, 2, . . . , p. Thus,

by definition, we have

Φ(G) =

p∑
i=1

φ(1, dui) + Φ(G)′ ≥
p∑
i=1

φ(1, dui),

where Φ(G)′ is the edge weight of the remaining edges. Clearly, equality holds if and

only if Φ(G)′ = 0, which is possible if and only if G is isomorphic to n
2 disjoint union

of K2 copies.

Theorem 3 can be generalized as follows.

Theorem 4. Let G be a graph with p nodes of degree r ≥ 1. Then

Φ(G) ≥
r∑
i=1

φ(r, du1i
) +

r∑
i=1

φ(r, du2i
) + · · ·+

r∑
i=1

φ(r, dupi )

where duij is the degree of the nodes uij for i = 1, 2, . . . , p and j = 1, 2, . . . , r. Equality

holding if and only if G ∼= n
r+1

K1,r.
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Next, we have a consequence of the above result.

Corollary 2. Let G be a graph with p nodes of degree r ≥ 1. Then

Φ(G) ≥ prφ(r, 1),

with equality holding if and only if G ∼= n
r+1

K1,r.

The following result considers graphs with given number of nodes of some degrees.

Theorem 5. Let G be a graph with p nodes of degree r and q ≥ p nodes of degree
s ≥ r ≥ 1. Then

Φ(G) ≥
r∑
i=1

φ(r, du1i
) +

r∑
i=1

φ(r, du2i
) + · · ·+

r∑
i=1

φ(r, dupi )

+

s∑
i=1

φ(s, dv1i ) +

s∑
i=1

φ(r, dv2i ) + · · ·+
s∑
i=1

φ(s, dvqi ).

where duij is the degree of the nodes uij for i = 1, 2, . . . , p and j = 1, 2, . . . , r and dvij is the

degree of the nodes vij for i = 1, 2, . . . , q and j = 1, 2, . . . , s. Equality holding if and only if
G ∼= n

2(r+1)
K1,r ∪ n

2(s+1)
K1,s.

The next corollary is a consequence of above result.

Corollary 3. Let G be a graph with p nodes of degree r and q ≥ p nodes of degree
s ≥ r ≥ 1. Then

Φ(G) ≥ prφ(r, 1) + qsφ(s, 1),

with equality holding if and only if G ∼= n
2(r+1)

K1,r ∪ n
2(s+1)

K1,s.

Remark 1. If q = s = 0 in Theorem 5, we get Theorem 4 and if q = s = 0 and r = 1
in Theorem 5 we get Theorem 3. Also, note that for r = 1 in Theorem 4 we get Theorem
3. Therefore, Theorem 4 is generalization of Theorem 3 and Theorem 5 is generalization of
both Theorems 3 and 4.

We will prove Theorem 5 and Theorem 4 can be similarly proved.

Proof of Theorem 5. As G has p nodes of degree r and q nodes of degree s with s ≥ r
and p ≤ q. Labelling these p nodes by w1, . . . , wp and their neighbours by uij for

i = 1, 2, . . . , p and j = 1, 2, . . . , r. Also, let x1, . . . , xq be the nodes of degree s and

let vij for i = 1, 2, . . . , q and j = 1, 2, . . . , s be their neighbours. Calculating the edge

weights for w1, we get

W (w1) = φ(r, du11
) + φ(r, du12

) + · · ·+ φ(r, du1r
).
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Similarly, calculating the weight of other wi’s and summing them, we have

p∑
i=1

W (wi) =

r∑
i=1

φ(r, du1i
) +

r∑
i=1

φ(r, du2i
) + · · ·+

r∑
i=1

φ(r, dupi ).

Also, calculating the weight of xi’s, we obtain

p∑
i=1

W (xi) =

s∑
i=1

φ(s, dv1i ) +

s∑
i=1

φ(s, dv2i ) + · · ·+
s∑
i=1

φ(s, dvqi ).

By definition of Φ(G), we have

Φ(G) =

p∑
i=1

W (wi) +

p∑
i=1

W (xi) + Θ(G)

≥
r∑
i=1

φ(r, du1i
) +

r∑
i=1

φ(r, du2i
) + · · ·+

r∑
i=1

φ(r, dupi ) +

s∑
i=1

φ(s, dv1i )

+

s∑
i=1

φ(s, dv2i ) + · · ·+
s∑
i=1

φ(s, dvqi ),

where Θ(G) is the edge weight of remaining nodes.

Equality holds if and only if Θ(G) = 0, that is, true if and only if there are no edges

among wi’s, among xi’s, between wi’s and xi’s, among uij ’s, among vij ’s, between

uij ’s and vij ’s and no edges between and among remaining nodes of G. Thus, it follows

that G union of n
2(r+1)K1,r and n

2(s+1)K1,s.

The following result concerns the topological index of G1 +G2 in terms of the degree

sequences of G1 and G2.

Theorem 6. Let G1 and G2 be two graphs of order n1 and n2, respectively. Then

Φ(G1 +G2) ≥
n1∑
i=1

n2∑
i=1

φ(dui+n2 , dvi+n1),

where dui and dvi are the degrees of G1 and G2 in G1 +G2, respectively. The equality holds
if and only if G1 +G2 is a complete bipartite graph.

Proof. Let u1, . . . , un1
be the node labelling of G1 and v1, . . . , vn2

be labelling of

G1. Then the degree sequence of G1 +G2 is d′u1
, . . . , d′un1

, d′v1 , . . . , d
′
vn2

, where d′uj =
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n2 + duj and d′vi = n1 + dvi , for i = 1, . . . , n1 and j = 1, . . . , n2. Thus with this

labelling of the nodes, we have

Φ(G1 +G2) = φ1 + φ2 +

n1∑
i=1

n2∑
i=1

φ(d′u, d
′
v)

≥
n1∑
i=1

n2∑
i=1

φ(d′ui , d
′
vi) =

n1∑
i=1

n2∑
i=1

φ(dui+n2 , dvi+n1),

where φ1 =
∑
uiuj∈E(G1) φ(dui+n2 , duj+n2) and φ2 =

∑
vivj∈E(G1) φ(dvi+n1 , dvj+n1).

The equality holds if φ1 = φ2 = 0, that is, there are no edges in G1 and no edges

in G2. Which is possible if du1 = · · · = dun1
= n2 and dv1 = · · · = dvn2

= n1. This

implies that the equality holds for a complete bipartite graph. Conversely it is easy

to see that if G1 +G2 is complete bipartite graph, then equality holds.

3. Weighted topological indices of cozero divisor graphs of
rings

Let R be a commutative ring with unity 1 6= 0, the cozero divisor graph associated

to R is denoted by Γ′(R), and is defined as a simple graph with node set as non-

zero non-unit elements of R such that two nodes a and b with (a 6= b) are adjacent

if and only if a /∈ Rb and b /∈ Ra, where aR is the ideal generated by a. These

graphs are motivated by zero divisor graphs, defined as the graph Γ(R) with node

set as non-zero zero divisors of R such that two distinct nodes are adjacent if and

only if their product is zero. Afkhami and Khashyarmanesh [1–4] in a collection

of papers studied the properties of Γ′(R) like their graph complements, planarity,

identification of commutative rings with forest, star or unicyclic graphs, their relations

with comaximal graphs of rings and zero divisor graphs. The cozero divisor graphs

of polynomial rings were carried in [5], the spectral analysis of cozero divisor graphs

were carried in [23]. Bakhtyiari, Nikandish and Nikmehr [7] obtained results related

to coloring of cozero-divisor graphs of commutative von Neumann regular rings. For

some other recent progress of cozero divisor, see [6, 24, 29].

It seems very hard to determine structure of Γ′(R), but for some special cases we

may find get some information about Γ′(R). We consider cozero divisor graphs of the

integral modulo ring Zn. The cozero divisor Γ′(Zn) can be partitioned into various

mutually independent sets (cells). Consider the proper divisors τi, i /∈ {1, n} of n, and

consider cells:

Cτi = {x ∈ Zn : (x, n) = τi},

where (x, n) is the GCD (greatest common divisor) of a and n. Clearly V (Γ′(Zn)) =⋃t
i=1 Cτi , where t = |{τi : i /∈ {1, n}}|. Furthermore, for x, y ∈ Cτi , we have

〈x〉 = 〈y〉. From Young [32], |Cτj | = φ
(
n
τi

)
, for j = 1, . . . , t, where φ(n) is the
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number of positive integers less than n and relatively prime to it (Euler’s totient

function). Also, if x ∈ Cτi and y ∈ Cτj then x and y are adjacent in Γ′(Zn) if and

only τi - τj and τj - τi, for i, j ∈ {1, 2, . . . , τ(n) − 2}, where τ(n) is divisor function.

From [23], the induced subgraph of Cτj is K
φ
(
n
τj

), for each i ∈ {1, 2, . . . , τ(n) − 2}.

The number of nodes of Γ′(Zn) is N = n− φ(n)− 1. More about Γ′(Zn) can be seen

in [23].

The very first result of this section gives the weighted topological index of Γ′(Zn)

when n is product of three distinct primes.

Theorem 7. The general topological index of Γ′(Zn) for n = pqr with primes p < q < pis

Φ(Γ′(Zn)) = φ(n)
(
φ(q)φ(dφ(p)(q+r−1), dφ(p)(q+r−1)) + φ(r)φ(dφ(p)(q+r−1), dφ(q)(p+r−1))

+ φ(dφ(p)(q+r−1), dqr−1) + φ(p)φ(dφ(r)(p+q−1), dφ(q)(p+r−1))

+ φ(dφ(q)(p+r−1), dpr−1) + φ(dφ(r)(p+q−1), dpq−1)
)

+ φ(qr)φ(dpq−1, dpr−1)

+ φ(pr)φ(dpq−1, dqr−1) + φ(pq)φ(dpr−1, dqr−1).

Proof. We divide the node set of Γ′(Zn) for n = pqr as

C1 = {kp | k = 1, . . . , qr − 1, q - k, r - k}, C2 = {kq | k = 1, . . . , pr − 1, p - k, r - k},
C3 = {kr | k = 1, . . . , pq − 1, p - k, q - k}, C4 = {kpq | k = 1, . . . , r − 1},
C5 = {kpr | k = 1, . . . , q − 1}, C6 = {kqr | k = 1, . . . , p− 1}.

(3.1)

We note that a ∈ 〈b〉 if and only if b divides a and in this case a and b are not adjacent

in Γ′(Zn). Consider two arbitrary elements a and b of C1, we observe that either a

divides b or b divides a, since C1 contains some multiples of p. Thus, we see that no

node in C1 is adjacent to any other node of C1. Thereby, the induced subgraph of C1

is isomorphic to K |C1|. In a similar manner we can show that the induced subgraphs

of other Ci’s are isomorphic to the complements of cliques. From Expression (3.1),

the cardinalities of other Ci’s are |C2| = (p − 1)(r − 1), |C3| = (p − 1)(q − 1), |C4| =
r − 1, |C5| = q − 1 and |C6| = p − 1. Now, we need to find the adjacency relations

among Ci’s. Let a be a node of C1 and b be a node either in C4 or in C5, then it is

clear that a may be in 〈b〉 or b may be in 〈a〉, since either a divides b or vice versa.

So, the nodes of C1 cannot be adjacent to the nodes of Ci, for i = 4, 5. Next, consider

a ∈ C2 and b ∈ C4 ∪ C6, then as before a may divide b and vice versa. So, no node

of C2 is adjacent to any node of C4 or C6. Similarly for a ∈ C3 and b ∈ C5 ∪ C6, it

is clear that a ∈ 〈b〉 or b ∈ 〈a〉. Again for a ∈ C4 and b ∈ C3 ∪ C5 ∪ C6, by (3.1), it

follows that a does not divide b, that is a /∈ 〈b〉 and b /∈ 〈a〉. Thereby, we see that each

node of C4 is adjacent to each node of C3, C5 and C6. Thus, with the construction

of Γ′(Zn), the adjacency relations between the nodes of Ci’s are completely known.

The nodes of Ci’s have the common degree div1 = · · · = div|V |i = di for i = 1, . . . , 6.

More precisely, d1 = φ(pq) +φ(pr) +φ(p) = φ(p)(q+ r− 1), d2 = φ(q)(p+ r− 1), d3 =
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φ(r)(p+q−1), d4 = pq−1, d5 = pr−1 and d6 = qr−1. Therefore, with the information

and the definition of Φ(Γ′(Zn)), we have

Φ(Γ′(Zn)) =
∑

uv∈E(C1∪C2)

φ(d1, d2) +
∑

uv∈E(C1∪C3)

φ(d1, d3) +
∑

uv∈E(C1∪C6)

φ(d1, d6)

+
∑

uv∈E(C2∪C3)

φ(d2, d3) +
∑

uv∈E(C2∪C5)

φ(d2, d5) +
∑

uv∈E(C3∪C4)

φ(d3, d4)

+
∑

uv∈E(C4∪C5)

φ(d4, d5) +
∑

uv∈E(C4∪C6)

φ(d4, d6) +
∑

uv∈E(C5∪C6)

φ(d5, d6).

Now making the necessary calculations, we get the required result.

Lemma 1 ([30]). Let n = pn1
1 p2 (or n = p1p

n2
2 , n2 is a positive integer) where p1, p2

are primes and n1 is a positive integer. Then Γ′(Zn) is a bipartite graph.

Theorem 8. If n = pn1
1 p2, then

Φ(Γ′(Zn)) =

n1∑
i=1

φ(pi−1
1 p2)

n1+1−i∑
j=1

φ(pn1+1−j
1 )φ(dui , dvj ),

where dui = pn1
1 − p

i−1
1 and dvj = φ(p2)pn1−j

1 , for i = 1, . . . , n1 and j = 1, . . . , n1.

Proof. By Lemma 1, the cozero divisor graph Γ′(Zn) is bipartite for n = pn1
1 p2. So

its node set can be divided into two subsets. Let Ci’s be the small subsets in one

set and Bj ’s subsets in other set. So there will be edges between Ci’s and Bj ’s for

some i and j. Also, Ci’s correspond to the divisors pi1, for i = 1, . . . , n1 and Bj ’s

correspond to the divisors pn1−j
1 p2, for j = 1, . . . , n1. The divisor pn1

1 is not multiple

of any pn1−i
1 p2, for i = 1, 2, . . . , n1. By definition each node in cells Ci (or Bi) share

the same neighbourhood, so the degree sequence of Γ′(Zn) can be determined. Let ui
be common degree of Ci and vj be the common degree of Bj . Thus, we get

du1
= φ(p1) + · · ·+ φ(pn1

1 ) = pn1
1 − 1,

since each node of C1 is adjacent to every node of Bj and we note the number theoretic

fact
∑t
i=1 φ(pi) = pt − 1, for prime p and positive integer t ≥ 2. Also degree of each

node of C2 is φ(p2
1) + · · ·+ φ(pn1

1 ) = pn1
1 − p1 as each node of C2 is adjacent to each

node of B1 ∪Bn1−1. Similarly, degrees of other ui’s is given by

du3
= φ(p3

1) + · · ·+ φ(pn1
1 ) = pn1

1 − p2
1, . . . , dun1−2

= +φ(pn1−2
1 ) + φ(pn1

1 ) = pn1
1 − p

n1−3
1 ,

dun1−1
= φ(pn1

1 ) + φ(pn1−1
1 ) = pn1

1 − p
n1−2
1 , dun1

= φ(pn1
1 ) = pn1

1 − p
n1−1
1 .

Also, each node of B1 is adjacent to each node of Ci for all i. So, the degree of each

node in B1 is
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dv1 = φ(p2)+φ(p1p2)+· · ·+φ(pn1−1
1 p2) = φ(p2)

(
1+φ(p1)+· · ·+φ(pn1−1

1 )
)

= φ(p2)pn1
1 −1.

Likewise, the common degree of other nodes in Bj is given by

dv2 = φ(p2) + φ(p1p2) + · · ·+ φ(pn1−2
1 p2) = φ(p2)pn1−2

1 , dv3 = φ(p2) + φ(p1p2)

+ · · ·+ φ(pn1−3
1 p2) = φ(p2)(pn1−3

1 ), . . . , dvn1−2
= φ(p2) + φ(p1p2) + φ(p2

1p2)

= φ(p1)p2
1

dvn1−1 = φ(p2) + φ(p1p2) = φ(p2)p1, dv1 = φ(p2).

Thus, by the definition of the topological index φ, we have

Φ(Γ
′
(Zn)) = φ(p2)

(
φ(p

n1
1 )φ(du1 , dv1 ) + φ(p

n1−1
1 )φ(du1 , dv2 ) + φ(p

n1−2
1 )φ(du1 , dv3 )

+ · · ·+ φ(p
3
1)φ(du1 , dvn1−2

) + φ(p
2
1)φ(du1 , dvn1−1

) + φ(p1)φ(du1 , dvn1
)
)

+ φ(p1p2)
(
φ(p

n1
1 )φ(du2 , dv1 ) + φ(p

n1−1
1 )φ(du2 , dv2 ) + φ(p

n1−2
1 )φ(du2 , dv3 ) + . . .

+ φ(p
3
1)φ(du2 , dvn1−2

) + φ(p
2
1)φ(du2 , dvn1−1

)
)

+ φ(p2p1)
(
φ(p

n1
1 )φ(du3 , dv1 )

+ φ(p
n1−1
1 )φ(du3 , dv2 ) + φ(p

n1−2
1 )φ(du3 , dv3 ) + φ(p

3
1)φ(du3 , dvn1−2

)
)

.

.

.

+ φ(p2p
n1−3
1 )

(
φ(p

n1
1 )φ(dun1−2

, dv1 ) + φ(p
n1−1
1 )φ(dun1−2

, dv2 ) + φ(p
n1−2
1 )φ(dun1−2

, dv3 )
)

+ φ(p2p
n1−2
1 )

(
φ(p

n1
1 )φ(dun1−1

, dv1 ) + φ(p
n1−1
1 )φ(dun1−1

, dv2 )
)

+ φ(p2p
n1−1
1 )φ(p

n1
1 )φ(dun1

, dv1 )

= φ(p2)

n1∑
j=1

φ(p
n1+1−j
1 )φ(du1 , dvj ) + φ(p1p2)

n1−1∑
j=1

φ(p
n1+1−j
1 )φ(du2 , dvj ) + φ(p2p

2
1)

n1−2∑
j=1

φ(p
n1+1−j
1 )φ(du3 , dvj ) + · · ·+ φ(p2pn1−3)

n1−(n1−3)∑
j=1

φ(p
n1+1−j
1 )φ(dun1−2

, dvj )

+ φ(p2pn1−2)

n1−(n1−2)∑
j=1

φ(p
n1+1−j
1 )φ(dun1−1

, dvj ) + φ(p2pn1−1)φ(p
n1
1 )φ(dun1

, dv1 )

=

n1∑
i=1

φ(p2p
i−1
1 )

n1+1−i∑
j=1

φ(p
n1+1−j
1 )φ(dui , dvj ),

dui = pn1
1 − p

i−1
1 and dvj = φ(p2)pn1−j

1 , for i = 1, . . . , n1 and j = 1, . . . , n1. This

completes the proof.

Theorem 9. Let n =
∏t
i=1 pi be the product of t ≥ 3 primes. Then

Φ(Γ′(Zn)) ≥
t−1∑
j=1

Dj

t∑
i=j+1

Diφ(duj , dui) +

t∑
i=1

DiEiφ(dui , dvi) +

t−1∑
j=1

Ej

t∑
i=j+1

Eiφ(dvj , dvi),

where Di = φ
(∏t

j=1
i 6=j

pj
)
, Ei = φ(pi), dui =

∑t
j=1
i6=j

Di +Ei + α and dvi =
∑t
j=1
i 6=j

Ei +Di + β,

for i = 1, . . . , t with α, β ≥ 0. Equality holds if and only if t = 3.
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Proof. Let n =
∏t
i=1 pi be the product of t ≥ primes with p1 < · · · < pt and let

G ∼= Γ′(Zn) be the corresponding cozero divisor graphs. The structure of Γ′(Zn)

depends upon the proper divisors of n. We investigate the cells Cpi and Cei with

ei =
∏t
j=1
i 6=j

pj , for i = 1, . . . , t. The cardinalities of Cpi are Di = φ
(∏t

j=1
i 6=j

pj

)
and that

of Cei ’s are Ei = φ(pi), for i = 1, . . . , t. Now, we see that each a ∈ Cpi is adjacent to

every b ∈ Cbj , since pi doest not divide pj with i < j. Also, each a ∈ Cei is adjacent

to every b ∈ Cej , since ei doest not divide ej with i < j. Furthermore, each node

in Cpi is adjacent to each node in Cei as pi does not divide ei =
∏t
j=1
i 6=j

pj . Thus we

know adjacency relation among Cpi ’s, Cei ’s and between them. Certainly there are

more cells Cdi for some proper divisors of n other than pi’s and ei’s along with new

adjacency relation, since G is connected. As cells Ci’s share neighbourhood in terms

of other cells, so degree of each node in each cell is common. Let dvi be the common

degree of Cpi and dui be the common degree of each node in Cdei for i = 1, . . . , t.

Thus, we have

dui =

t∑
j=1
i 6=j

Di + Ei + α dvi =

t∑
j=1
i 6=j

Ei +Di + β,

for i = 1, . . . , t with α, β ≥ 0. Therefore, by the definition of φ, we have

Φ(G) = D1

(
D2φ(du1

, du2
) + · · ·+Dtφ(du1

, dut)
)

+D2

(
D3φ(du2

, du3
) + · · ·+Dtφ(du2

, dut)
)

+ · · ·+Dt−2

(
Dt−1φ(dut−2

, dut−1
) +Dtφ(dut−2

, dut)
)

+DtDt−1φ(dut−1
, dut)

+D1E1φ(du1
, dv1) + · · ·+DtEtφ(dut , dvt) + E1

(
E2φ(dv1 , dv2) + · · ·+ Etφ(dv1 , dvt)

)
+ E2

(
E3φ(dv2 , dv3) + · · ·+ Etφ(dv2 , dvt)

)
+ · · ·+ Et−2

(
Et−1φ(dvt−2

, dvt−1
)

+ Etφ(dvt−2
, dvt)

)
+ EtEt−1φ(dvt−1

, dvt) + Θ

= D1

t∑
i=2

Diφ(du1
, dui) +D2

t∑
i=3

Diφ(du2
, dui) + · · ·+Dt−2

t∑
i=t−1

Diφ(dut−2
, dui)

+DtDt−1φ(dut−1
, dut) +

t∑
i=1

DiEiφ(dui , dvi) + E1

t∑
i=2

Eiφ(dv1 , dvi) + E2

t∑
i=3

Eiφ(dv2 , dvi)

+ · · ·+ Et−2

t∑
i=t−1

Eiφ(dvt−2
, dvi) + EtEt−1φ(dvt−1

, dvt) + Θ

=
t−1∑
j=1

Dj

t∑
i=j+1

Diφ(duj , dui) +
t∑
i=1

DiEiφ(dui , dvi) +
t−1∑
j=1

Ej

t∑
i=j+1

Eiφ(dvj , dvi) + Θ

≥
t−1∑
j=1

Dj

t∑
i=j+1

Diφ(duj , dui) +
t∑
i=1

DiEiφ(dui , dvi) +
t−1∑
j=1

Ej

t∑
i=j+1

Eiφ(dvj , dvi),

where Di = φ
(∏t

j=1
i6=j

pj

)
, Ei = φ(pi), dui =

∑t
j=1
i 6=j

Di + Ei + α and dvi =
∑t
j=1
i 6=j

Ei +
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Di+β, for i = 1, . . . , t with Θ ≥ 0, (a weight quantity corresponding to the remaining

nodes of G.) Next, we consider the equality case. Suppose equality holds, then we

must have Θ = 0. We need to verify that there are not edges present in G other than

the edges among Cpi , Cei and between Cpi to Cei for each i. If we take t = 3, then we

have edges among Cpi , i = 1, 2, 3, edges among Cei where e1 = p1p2, e2 = p1p3 and

e3 = p2p3 and edges between each node of Cpi to Cei and equality holds in this case,

since Θ = 0 (see Theorem 7). For t ≥ 4, there are cells from Cp1p2p3 (for some i, j, k)

to Cp1...pt−2
which contribute the non zero quantity to Φ(G), since there are edges

with non-trivial edge weights from each node of Cpipjpk to each node of Cprpspl and

there are also edges from each node of Cpz to every node of Cpipjpk for z /∈ {i, j, k}.
In general there are

(
n
2

)
+ · · ·+

(
n
n−2

)
cells and each node of each cell in

(
n
i

)
is adjacent

to each node of remaining
(
n
i

)
− 1 cells, for i = 2, . . . , n− 2. Besides, there are more

edge weights among all cells. Thus equality cannot hold when t is at least 4.

Conversely assume that n = p1p2p3, then from Theorem 7, there are edges among

nodes of Cpi , among nodes of Cei and between each node of Cpi to every edges of Cei
for each i. Thus, equality holds with D1 = φ(p2p3), D2 = φ(p1p3), D3 = φ(p1p2), E1 =

φ(p1), E2 = φ(p2) and E3 = φ(P3). Therefore, we have

Φ(G) = D1D2φ(du1,du2
) +D1D3φ(du1,du3

) +D2D3φ(du2,du3
) +D1E1φ(du1 , dv1 ) +D2E2φ(du2 , dv2 )

+D3E3φ(du3 , dv3 )D1D2φ(du1,du2
) +D1D3φ(du1,du3

) +D2D3φ(du2,du3
).

Now, the other steps are same as in Theorem 7.

Theorem 10. Let n = pn1
1 pn2

2 . Then

Φ(Γ
′
(Zn)) ≥ φ(p

n1−1
1 p

n2
2 )φ(p

n1
1 p

n2−1
2 )Φ(p

n2−1
2 φ(p

n1
1 ), p

n1−1
1 φ(p

n2
2 )) + φ(p

n1−1
1 p

n2
2 )φ(p

n1
1 p

n2−2
2 )

Φ(p
n2−1
2 φ(p

n1
1 ), p

n1−1
1 (p

n2
2 − pn2−2

2 )) + φ(p
n1
1 p

n2−1
2 )φ(p

n1−2
1 p

n2
2 )Φ(p

n1−1
1 φ(p

n2
2 ),

p
n2−1
2 (p

n1
1 − pn1−2

1 )) + φ(p
n1−2
1 p

n2
2 )φ(p

n1
1 p

n2−2
2 )Φ(p

n2−1
2 (p

n1
1 − pn1−2

1 ), p
n1−1
1 (p

n2
2 − pn2−2

2 )).

Proof. Let n = pn1
1 pn2

2 , where p1, p2 are primes and n1, n2 are positive integers and

G ∼= Γ′(Zn) be its cozero divisor graph. From the structural properties of G, each

node of Ap1 is adjacent to each node of Api2 , since p1 does not divide any pi2 for

i = 1, . . . , n2. Similarly, each node of Ap2 is adjacent to every node of cells Api1 , for

i = 1, . . . , n1. Also cardinalities of Api1 is φ(pn1−i
1 pn2

2 ) and that of Apj2
is φ(pn1

1 pn2−j
2 ),

for i = 1, . . . , n1 and j = 1, . . . , n2. Thus the common degree of each node of Ap1 is

d1 = φ(pn1
1 pn2−1

2 ) + φ(pn1
1 pn2−2

2 ) + · · ·+ φ(pn1
1 ) = φ(pn1

1 )pn2−1
2 .

The common degree of each node of Ap2 is

d′1 = φ(pn2
2 pn1−1

1 ) + φ(pn2
2 pn1−2

1 ) + · · ·+ φ(pn2
2 ) = φ(pn2

2 )pn1−1
1 .
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Also, each node of Ap21 is adjacent to every node of Api2 and Ap1pi2 for i = 1, . . . , n2.

With this information, the degree of each node in Ap21 is

d2 = φ(pn1
1 pn2−1

2 ) + φ(pn1
1 pn2−2

2 ) + · · ·+ φ(pn1
1 ) + φ(pn1−1

1 pn2−1
2 ) + φ(pn1−1

1 pn2−2
2 )

+ · · ·+ φ(pn1−1
1 ) = pn2−1

2 φ(pn1
1 ) + φ(pn1−1

1 )pn2−1
2 = pn2−1

2 (pn1
1 − p

n1−2
1 ).

In a similar way Ap22 is adjacent to every node of Api1 and Api1p2 for i = 1, . . . , n1. So,

the degree of each node in Ap22 is

d′2 = φ(pn2
2 pn1−1

1 ) + φ(pn2
2 pn1−2

1 ) + · · ·+ φ(pn2
2 ) + φ(pn1−1

1 pn2−1
2 ) + φ(pn1−2

1 pn2−1
2 )

+ · · ·+ φ(pn2−1
2 ) = φ(pn2

2 )pn1−1
1 + φ(pn2−1

2 )pn1−1
1 = pn1−1

1 (pn2
2 − p

n2−2
2 ).

There are other adjacency relations between cells between Api1 and Ajp2 and between

Api1 and Ajp2 with Api1p
j
2

for i = 1, . . . , n1 and j = 1, . . . , n2. Thus by the definition of

function Φ, we have

Φ(G) =
∑

uv∈E(Ap1∪Ap2 )

φ(du, dv) +
∑

uv∈E(Ap1∪Ap22
)

φ(du, dv) +
∑

uv∈E(A
p21
∪Ap2 )

φ(du, dv)

+
∑

uv∈E(A
p21
∪A

p22
)

φ(du, dv) + Θ

where θ ≥ 0 is the contribution of other edges weights among the nodes of Adi ’s for
the function Φ of G. Thus, with the above information, we have

Φ(G) ≥ φ(p
n1−1
1 p

n2
2 )φ(p

n1
1 p

n2−1
2 )Φ(d1, d

′
1) + φ(p

n1−1
1 p

n2
2 )φ(p

n1
1 p

n2−2
2 )Φ(d1, d

′
2)

+ φ(p
n1
1 p

n2−1
2 )φ(p

n1−2
1 p

n2
2 )Φ(d

′
1, d2) + φ(p

n1−2
1 p

n2
2 )φ(p

n1
1 p

n2−2
2 )Φ(d2, d

′
2)

= φ(p
n1−1
1 p

n2
2 )φ(p

n1
1 p

n2−1
2 )Φ(p

n2−1
2 φ(p

n1
1 ), p

n1−1
1 φ(p

n2
2 )) + φ(p

n1−1
1 p

n2
2 )φ(p

n1
1 p

n2−2
2 )

Φ(p
n2−1
2 φ(p

n1
1 ), p

n1−1
1 (p

n2
2 − pn2−2

2 )) + φ(p
n1
1 p

n2−1
2 )φ(p

n1−2
1 p

n2
2 )Φ(p

n1−1
1 φ(p

n2
2 ),

p
n2−1
2 (p

n1
1 − pn1−2

1 )) + φ(p
n1−2
1 p

n2
2 )φ(p

n1
1 p

n2−2
2 )Φ(p

n2−1
2 (p

n1
1 − pn1−2

1 ), p
n1−1
1 (p

n2
2 − pn2−2

2 )).

That proves the result.

4. Conclusion

Several results for the general topological index of graphs, and specifically for

algebraic graphs of comaximal graphs of commutative rings, are presented in the

manuscript. For weighted topological index, it is generally very difficult to character-

ize extremal graphs because, aside from symmetric property, not enough information

is available. Nonetheless, the findings hold true for every kind of topological index

currently in use. It appears that it is preferable to take specific values of the function
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Φ(du, dv) into account and perform a more thorough analysis for such a function for

applications to specific classes of graphs as well as for general graphs.
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