تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,247 |
تعداد مشاهده مقاله | 1,199,877 |
تعداد دریافت فایل اصل مقاله | 1,060,649 |
Edge graceful labeling on neutrosophic graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 30 آبان 1403 اصل مقاله (2.01 M) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2024.28826.1740 | ||
نویسندگان | ||
G. Vetrivel؛ M. Mullai* | ||
Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India | ||
چکیده | ||
In this article, the edge graceful labeling concept has been expanded from conventional fuzzy graphs to intuitionistic and neutrosophic graphs. There has been much discussion of the edge graceful labeling in intuitionistic and neutrosophic graphs with certain sequence of edge labels(for each membership) in clockwise or anticlockwise direction and the resultant vertices. Also, various irregular properties and application of neutrosophic edge graceful labeling graphs have been discussed in detail. | ||
کلیدواژهها | ||
Fuzzy labeling graph؛ Intuitionistic fuzzy labeling graph؛ Neutrosophic labeling graph؛ Irregular property | ||
مراجع | ||
[1] D. Ajay and P. Chellamani, Fuzzy magic labelling of neutrosophic path and star graph, Adv. Math., Sci. J. 9 (2022), no. 8, 6059–6070. https://doi.org/10.37418/amsj.9.8.74
[2] D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, and P. Hammachukiattikul, Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM, AIMS Math. 7 (2022), no. 5, 9424–9442. https://doi.org/10.3934/math.2022523
[3] M. Akram and R. Akmal, Operations on intuitionistic fuzzy graph structures, Fuzzy Inf. Eng. 8 (2016), no. 4, 389–410. https://doi.org/10.1016/j.fiae.2017.01.001
[4] M. Akram and R. Akmal, Intuitionistic fuzzy graph structures, Kragujevac J. Math. 41 (2017), no. 2, 219–237.
[5] M. Akram and M. Nasir, Certain bipolar neutrsophic competition graphs, J. Indones. Math. Soc. 24 (2018), no. 1, 1–25. https://doi.org/10.22342/jims.24.1.455.1-25
[6] M. Akram and G. Shahzadi, Operations on single-valued neutrosophic graphs, J. Uncertain Syst. 11 (2017), no. 1, 1–26.
[7] K.T. Atanassov, Intuitionistic fuzzy sets atanassov, k.t., Fuzzy Sets Syst. 20 (1986), no. 1, 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
[8] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognit. Lett. 6 (1987), no. 5, 297–302. https://doi.org/10.1016/0167-8655(87)90012-2
[9] K.R. Bhuttani and A. Battou, On M-strong fuzzy graphs, Inf. Sci. 155 (2003), no. 1–2, 103–109. https://doi.org/10.1016/S0020-0255(03)00157-9
[10] S. Broumi, S. Krishna Prabha, and V. Ulu¸cay, Interval-valued fermatean neutrosophic shortest path problem via score function, Neutrosophic Systems with Applications 11 (2023), 1–10. https://doi.org/10.61356/j.nswa.2023.83
[11] S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, and F. Smarandache, Complex fermatean neutrosophic graph and application to decision making, Decis. Mak. Appl. Manag. Eng. 6 (2023), no. 1, 474–501. https://doi.org/10.31181/dmame24022023b
[12] S. Broumi, P. K. Raut, and S. P. Behera, Solving shortest path problems using an ant colony algorithm with triangular neutrosophic arc weights, Int. J. Neutrosophic Sci. 20 (2023), no. 4, 128–28. https://doi.org/10.54216/IJNS.200410
[13] S. Broumi, F. Smarandache, M. Talea, and A. Bakali, Single valued neutrosophic graphs: degree, order and size, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2016, pp. 2444–2451. https://doi.org/10.1109/FUZZ-IEEE.2016.7738000
[14] S. Broumi, R. Sundareswaran, M. Shanmugapriya, A. Bakali, and M. Talea, Theory and applications of fermatean neutrosophic graphs, Neutrosophic Sets Syst. 50 (2022), 248–286. https://doi.org/10.5281/zenodo.6774802
[15] S. Broumi, R. Sundareswaran, M. Shanmugapriya, P. K. Singh, M. Voskoglou, and M. Talea, Faculty performance evaluation through multi-criteria decision analysis using interval-valued fermatean neutrosophic sets, Mathematics 11 (2023), no. 18, Article ID: 3817. https://doi.org/10.3390/math11183817 [16] R. Dhavaseelan, S. Jafari, M. R. Farahani, and S. Broumi, On single-valued coneutrosophic graphs, Neutrosophic Sets Syst. 22 (2018), 180–187. https://doi.org/10.5281/zenodo.2159886
[17] R. Dhavaseelan, R. Vikramaprasad, and V. Krishnaraj, Certain types of neutrosophic graphs, Int. J. Math. Sci. Appl. 15 (2015), no. 2, 333–339.
[18] M. Gomathi and V. Keerthika, Neutrosophic labeling graph, Neutrosophic Sets Syst. 30 (2019), 261–272. https://doi.org/10.5281/zenodo.3569706
[19] R. Jahir Hussain and R. M. Karthikkeyan, Fuzzy graceful graphs, Adv. Fuzzy Syst. 12 (2017), 309–317.
[20] R. Jebesty Shajila and S. Vimala, Fuzzy vertex graceful labeling on wheel and fan graph, IOSR J. Math. 12 (2016), no. 2, 45–49.
[21] R. Jebesty Shajila and S. Vimala, Graceful labeling for complete bipartite fuzzy graphs, British J. Math. comput. Sci. 22 (2017), 1–9. https://doi.org/10.9734/BJMCS/2017/32242
[22] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets: Fundamental theoretical elements, Academic Press, 1975. [23] S.P. Lo, On edge graceful labeling of graphs, Congr. Numer. 50 (1985), 231–241. [24] M. Mullai, Dominations in neutrosophic graphs, Neutrosophic Graph Theory and Algorithms (M. Mullai, ed.), IGI Global Publications, USA, 2019, pp. 131–147.
[25] M. Mullai and S. Broumi, Dominating energy in neutrosophic graphs, Int. J. Neutrosophic Sci. 5 (2020), no. 1, 38–58. https://doi.org/10.54216/IJNS.050104
[26] M. Mullai, S. Broumi, R. Jeyabalan, and R. Meenakshi, Split domination in neutrosophic graphs, Neutrosophic Sets Syst. 47 (2021), no. 1, 240–249. https://doi.org/10.5281/zenodo.5775126
[27] A. Nagoor Gani, B. B. Fathima Kani, and M.S. Afya Farhana, Fuzzy edge graceful labeling on wheel graph,fan graph and friendship graph, American International Journal of Research in Science, Technology, Engineering & Mathematics, Special Issue of 5th International Conference on Mathematical Methods and Computation (ICOMAC-2019) (2019), 324–329.
[28] A. Nagoor Gani and M. Basheer Ahamed, Order and size in fuzzy graphs, Bull. Pure Appl. Sci. 22E (2003), no. 1, 145–148.
[29] A. Nagoor Gani and S.S. Begum, Degree, order and size in intuitionistic fuzzy graphs, Int. J. Comput. Algorithm. Math. 3 (2010), no. 3, 11–16.
[30] A. Nagoor Gani and S.R. Latha, On irregular fuzzy graphs, Appl. Math. Sci. 6 (2012), no. 11, 517–523.
[31] A. Nagoor Gani and K. Radha, On regular fuzzy graphs, J. Phys. Sci. 12 (2008), 33–40.
[32] A. Nagoor Gani and D. R. Subahashini, Fuzzy labeling tree, Int. J. Pure Appl. Math. 90 (2014), no. 2, 131–141. http://dx.doi.org/10.12732/ijpam.v90i2.3
[33] A. Nagoor Gani and D.R. Subahashini, Properties of fuzzy labeling graph, Appl. Math. Sci. 6 (2012), no. 70, 3461–3466.
[34] R. Parvathi and M.G. Karunambigai, Intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications: International Conference 9th Fuzzy Days in Dortmund, Germany, Sept. 18–20, 2006 Proceedings, Springer, 2006, pp. 139–150.
[35] R. Parvathi, M.G. Karunambigai, and K.T. Atanassov, Operations on intuitionistic fuzzy graphs, 2009 IEEE international conference on fuzzy systems, IEEE, 2009, pp. 1396–1401. https://doi.org/10.1109/FUZZY.2009.5277067
[36] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, 1966, pp. 349–355.
[37] A. Rosenfeld, Fuzzy graphs, In Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Elsevier, 1975, pp. 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6
[38] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, 2006 IEEE International Conference on Granular Computing, 2006, pp. 38–42. https://doi.org/10.1109/GRC.2006.1635754
[39] F. Smarandache, A geometric interpretation of the neutrosophic set - a generalization of the intuitionistic fuzzy set, 2011 IEEE International Conference on Granular Computing, 2011, pp. 602–606. https://doi.org/10.1109/GRC.2011.6122665
[40] F. Smarandache, New types of soft sets” hypersoft set, indetermsoft set, indetermhypersoft set, and treesoft set”: An improved version, Neutrosophic Syst. Appl. 8 (2023), 35–41. https://doi.org/10.61356/j.nswa.2023.41
[41] G. Vetrivel and R. Nishanthini, Evenly divisible composite pseudo intrinsic vertex-magic graphs with factorizable property, International Journal of Science and Research 10 (2021), no. 1, 551–560.
[42] H.D. Wahyuna and D. Indriati, On the total edge irregularity strength of generalized butterfly graph, J. Phys. Conf. Ser. 1008 (2018), no. 12027, 1–6. https://doi.org/10.1088/1742-6596/1008/1/012027
[43] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 2010, pp. 410–413.
[44] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X | ||
آمار تعداد مشاهده مقاله: 145 تعداد دریافت فایل اصل مقاله: 100 |