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Abstract: In this paper we introduce a new domination problem strongly related

to the following one recently proposed by Broe, Chartrand and Zhang. One says
that a vertex v of a graph Γ labeled with an integer ` dominates the vertices of Γ

having distance ` from v. An irregular dominating set of a given graph Γ is a set S of
vertices of Γ, having distinct positive labels, whose elements dominate every vertex of Γ.

Since it has been proven that no connected vertex-transitive graph admits an irregular

dominating set, here we introduce the concept of an extended irregular dominating set,
where we admit that precisely one vertex, labeled with 0, dominates itself. Then we

present existence or non existence results of an extended irregular dominating set S for

several classes of graphs, focusing in particular on the case in which S is as small as
possible. We also propose two conjectures.
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1. Introduction

The concept of domination plays an important role in graph theory, having a large

variety of applications and being closely related to other topics in graphs, such as,

just to make an example, independent sets. This area began with the work of Berge

[2] and Ore [19], but it became active only 15 years later thanks to the survey by

Cockayne and Hedetniemi [8].

In the following, by Γ we denote an undirected simple graph with vertex set V and

edge set E. A set S ⊆ V is said to be a dominating set if for every u ∈ V there exists
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2 The extended irregular domination problem

a vertex v ∈ S such that {u, v} ∈ E. Over the course of the years, various kinds of

domination have been introduced and investigated, see [12]. In this work, we propose

a new variation of a domination problem first considered in [5] and further studied in

[1, 4, 6, 16, 17], that we report in what follows.

A vertex v of Γ, labeled with a positive integer `, is said to dominate, or cover, the

vertices of Γ having distance ` from v. Similarly, a set S ⊆ V of labeled vertices is said

to dominate (or cover) a vertex u ∈ V if there exists a vertex v ∈ S covering u. Then,

an irregular dominating set of Γ is a set S of vertices of Γ having distinct positive

labels that covers every vertex of V . Note that the definition does not require that

the labelings are consecutive integers. As it is standard in the topic of domination, it

is interesting to determine the minimum value of k such that an irregular dominating

set of cardinality k exists, such a value is denoted by γi(Γ) and it is called the irregular

domination number of Γ.

By a counting argument, in [6] it has been proven that no connected vertex-transitive

graph admits an irregular dominating set. However, due to the many symmetries and

desirable properties of vertex-transitive graphs, it is natural to wonder if there exists

a labeling of the vertices of such a graph, different from the standard one, so that

it is possible to obtain something similar to an irregular dominating set. Here, we

propose the concept of an extended irregular dominating set of a graph, where we

admit that precisely one vertex, labeled with 0, dominates itself. More formally, we

give the following new definition.

Definition 1. Let Γ = (V,E) be an undirected graph and let k ≥ 0. A k-extended
irregular dominating set S ⊆ V is a set of k vertices having distinct non-negative labelings
that covers every vertex of V . A labeling λ realizing the covering property for S is said to
be a k-extended irregular dominating labeling.

Clearly, if λ(v) 6= 0 for every v ∈ S then we find again the concept of an irregular

dominating set/labeling, hence in the following we always assume that there exists a

vertex v ∈ S labeled by 0 which dominates itself.

We have chosen the term “extended irregular dominating labeling”, since the connec-

tion between these and classical irregular dominating labelings is very similar to the

one between extended and classical Skolem sequences, see [20] for further details.

We call the minimum cardinality of an extended irregular dominating set of Γ, denoted

by γe(Γ), the extended irregular domination number of Γ.

Example 1. Here we show an extended irregular dominating labeling inducing an ex-
tended irregular dominating set for the cycle of length 6 and for the cube:



L. Mella, A. Pasotti 3

We underline that a graph does not necessarily admit an extended irregular domi-

nating labeling, take for example the cycle of length three. Clearly, if such a labeling

exists, the most interesting problem is that of determining a k-extended irregular

dominating labeling for a given graph Γ with k as small as possible, or in other words

that of determining γe(Γ). We say that a k-extended irregular dominating set (label-

ing, respectively) is optimal if k = γe(Γ), that is if there is no k′-extended irregular

dominating set (labeling, respectively) with k′ < k. One can easily check that the

labelings of Example 1 are optimal.

The paper is organized as follows. In Section 2 we determine γe(Γ) for every vertex-

transitive graph Γ. This allows us to show that, for this class of graphs, an extended

irregular dominating set is necessarily optimal. Then, in Section 3, we prove the

existence or non existence of an optimal extended irregular dominating set for several

classes of vertex-transitive graphs. In Section 4 we show that the existence of an

optimal extended irregular dominating labeling of a cycle of odd length n is equivalent

to the existence of a strong starter of Zn. Then we present some results for an optimal

extended irregular dominating labeling of odd cycles obtained as a consequence of

known results on strong starters, as well as some new results in the case of cycles of

single even length. In Section 5 we focus on a class of non vertex-transitive graphs:

the paths. We point out that, in general, it is not easy to establish the value of γe(Γ)

if Γ is a non vertex-transitive graph. Here we firstly present a complete answer to the

existence problem for an extended irregular dominating set for this class of graphs,

then we give a lower bound for γe(Γ), Γ being a path, and then we establish when this

bound is reached. To conclude, in the last section, we propose two conjectures: the

first one about the existence of an optimal extended irregular dominating labeling of

cycles of length divisible by 4, while the second regards the value of γe(Γ) when Γ is

a path.

2. Preliminary results

In this section, we show that an extended irregular dominating set of a vertex-

transitive graph, if it exists, is necessarily optimal.

Firstly we need to introduce some notation and to recall some basic concepts of graph

theory. Given two integers a, b with a ≤ b, by [a, b] we mean the set {a, a+ 1, . . . , b}.
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The degree of a vertex v of Γ, denoted by deg(v), is the number of neighbours of v in

Γ. A graph is said to be regular if all its vertices have the same degree. We also recall

that the diameter of a graph Γ, denoted by diam(Γ), is the largest distance between

any pair of vertices of Γ.

Remark 1. The labels of an extended irregular dominating set of a graph Γ, if it exists,
can assume value in [0, diam(Γ)] and hence γe(Γ) ≤ diam(Γ)+1.

Proposition 1. A k-extended irregular dominating set cannot exist for k = 2, 3.

Proof. When k = 2, if the label different from 0 is assigned to a vertex v, then it is

not possible to dominate v with the remaining label 0.

Suppose now k = 3 and let v and w be the vertices with a non-zero label. It is easy

to see that necessarily w has to be dominated by v and vice versa, but this is not

possible since we use distinct labelings.

Corollary 1. The complete graph Kn, with n > 1, and the complete bipartite graph Km,n

do not admit an extended irregular dominating set.

Clearly, a graph has a 1-extended irregular dominating set if and only if it is an isolated

vertex. Hence, if a non trivial graph Γ admits a 4-extended irregular dominating set

S, then S is optimal and γe(Γ) = 4.

With the following lemma we show an interesting property of vertex-transitive graphs,

that implies the well-known result that these graphs are regular.

Lemma 1. Let Γ = (V,E) be a vertex-transitive graph. For every vertex v ∈ V and for
every i ∈ [0, diam(Γ)] let si(v) be the number of vertices having distance i from v. Then, the
sequence (s0(v), . . . , sdiam(Γ)(v)) is invariant on the choice of v, and

∑
si(v) = |V |.

Theorem 1. Let Γ = (V,E) be a vertex-transitive graph admitting an extended irregular
dominating set S. Then, for every vertex u ∈ V there exists a unique vertex v ∈ S covering
u.

Proof. From Remark 1 we have that an extended irregular dominating labeling of

Γ takes values in [0,diam(Γ)]. Let S be an extended irregular dominating set and

W = {w1, . . . , wa} be the set of vertices that are covered by at least two vertices of

S. We have to prove that W = ∅. For every j ∈ [1, a], let mj ≥ 2 be the number of

vertices of S covering wj . Then, by Lemma 1, the number of vertices covered by S is

given by:

|V | −
a∑

j=1

(mj − 1) ≤ |V | − a.

Since S is an extended irregular dominating set, we deduce that necessarily a = 0,

hence every vertex of Γ is covered by precisely one vertex of S.
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As a consequence, we have that if there exists a k-extended irregular dominating set of

a vertex-transitive graph Γ, then Γ cannot admit a k′-extended irregular dominating

set with k′ 6= k, otherwise at least one vertex should be dominated more than once.

By the above arguments and by Lemma 1 we have the following.

Corollary 2. A k-extended irregular dominating set S of a vertex-transitive graph Γ, if
it exists, is optimal and k = γe(Γ) = diam(Γ) + 1. Moreover, the k vertices of S are labeled
with all the elements in [0,diam(Γ)].

3. Some results obtained using the diameter of the graph

In what follows, we show some existence and non-existence results of extended irreg-

ular dominating sets for vertex-transitive graphs in which the diameter of the graph

plays a crucial role.

First note that as a consequence of Proposition 1, we have the following.

Proposition 2. Let Γ be a vertex-transitive graph such that diam(Γ) ∈ {1, 2}. Then,
there does not exist an extended irregular dominating set in Γ.

We consider now graphs with diameter equal to three. Firstly, we recall the definition

of the crown graph. Let Kn,n be the complete regular bipartite graph on 2n vertices,

and denote by A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} the two parts of Kn,n.

Note that M = {{ai, bi} : i ∈ [1, n]} is a perfect matching of Kn,n. Given an integer

n ≥ 3, the crown graph of order 2n is the graph Γ = Kn,n \ M . We recall that

these graphs are vertex-transitive, and have diameter equal to three. We are going to

prove that this is the unique class of bipartite vertex-transitive graphs with diameter

3 admitting an extended irregular dominating set.

Proposition 3. The crown graph admits an optimal extended irregular dominating set.

Proof. Let Γ be a crown graph, and pick any two pairs of non-adjacent vertices

(ai, bi) and (aj , bj), and let λ : {ai, aj , bi, bj} → [0, 3] be the following labeling:

λ(ai) = 0, λ(aj) = 3, λ(bi) = 1, λ(bj) = 2.

We have that bi dominates A \ {ai}, while bj dominates B \ {bj}. Trivially, ai and aj
dominate itself and bj , respectively, thus concluding the proof.

Theorem 2. Let Γ be a vertex-transitive bipartite graph with diam(Γ) = 3. Then, Γ
admits an optimal extended irregular dominating set if and only if it is a crown graph.
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Proof. Let Γ be a vertex-transitive bipartite graph with diam(Γ) = 3, and assume

that it admits a k-extended irregular dominating labeling. Recall that, by Corollary

2, we have k = 4. Let u be the vertex having label 1, and partition the vertex set of

Γ into the sets S0, S1, S2, S3, where v ∈ Si if and only if d(u, v) = i (in particular,

S0 = {u}). Clearly, all the vertices in S1 are dominated by u. We split the proof into

two cases.

Case 1. u is dominated by a vertex v in S2 having label 2.

By vertex-transitivity, v dominates |S2| vertices, hence, since Γ is bipartite, by a

counting reasoning it dominates S0 ∪ S2 \ {v}. Clearly v must be dominated by

the vertex having label 3, and since every other vertex in S0 ∪ S2 \ {v} is already

covered, by vertex-transitivity we have |S3| = 1. Call then w the vertex having label

3. Clearly, w 6∈ S3, otherwise it would dominate u, hence w ∈ S1. Since diam(Γ) = 3,

every vertex in S2 has either distance 1 or 3 from w, and from |S3| = 1 and vertex-

transitivity we deduce that v is the unique vertex having distance 3 from w. Thus, w

is adjacent to every vertex of S2 \{v}. We then have deg(w) = |S0|+ |S2 \{v}| = |S2|,
and since Γ is regular and bipartite deg(w) = |S2| = |S1| = deg(u). It then follows

that Γ is a regular bipartite graph on 2(|S1| + 1) vertices, having degree |S1|, hence

Γ is a crown graph.

Case 2. u is dominated by a vertex v in S3 having label 3.

Since Γ is bipartite, v dominates u and |S3| − 1 vertices of S2, hence to dominate the

vertices in S3 (in particular v) we use the remaining labels 0 and 2. Let w be the

vertex having label 2.

• If w ∈ S1, then w must be adjacent to every vertex in S1, otherwise there would

be a vertex that is dominated by both u and w. If |S1| > 1, the graph Γ would

not be bipartite, while if |S1| = 1, that is if S1 = {w}, then Γ would be a regular

graph of degree 1, that is the path of length 1, and diam(Γ) = 1 6= 3. In any

case, we reach a contradiction.

• If w ∈ S3, then there exists a path P realizing the minimum distance between

u and w, namely P = [u, s1, s2, w], with s1 ∈ S1 and s2 ∈ S2. We have then

that u and w dominate s1, hence by Theorem 1 it is not an extended irregular

dominating labeling.

Hence, Case 2 cannot occur.

In the remaining part of this section we present a complete solution for the existence

problem of an optimal extended irregular dominating set in the case of hypercubes

and Möbius ladders.

We recall that given a positive integer n, the hypercube of dimension n, that we denote

here by Qn, is the graph whose vertex set is identified by the sequences in {0, 1}n,

and whose edges connect vertices having Hamming distance equal to 1. Clearly, Qn

is a bipartite graph with diameter n.

Theorem 3. The n-dimensional hypercube admits an optimal extended irregular domi-
nating set if and only if n = 0, 3.
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Figure 1. The hypercube Q4.

Proof. The existence of an extended irregular dominating set is trivial for Q0, which

consists of a single vertex, and Example 1 shows the case Q3. Also, the non existence

for Q1 and Q2 follows from Corollary 1.

Consider now Q4 shown in Figure 1. It is not restrictive to assume that the vertex

v = (0, 0, 0, 0) has label 2. A direct check shows that v cannot be covered by a vertex

having labels 1 or 3, otherwise there should be some vertex covered twice. Hence it

must be covered by a vertex having label 4, that has to be w = (1, 1, 1, 1). It is then

easy to see that this cannot be completed to an extended irregular dominating set.

Assume now that there exists an irregular dominating set inQn for some integer n > 4.

For any fixed vertex v of Qn, and for every d ∈ [0, n] let Sd denote the set of vertices

in Qn having distance d from v, where it is understood that S0 = {v}. It is easy to

see that |Sd| =
(
n
d

)
, and that if u ∈ Sd for some d ∈ [1, n], then NQn(u) ⊆ Sd−1∪Sd+1

where NQn
(u) denotes the set of vertices of Qn adjacent to u.

Without loss of generality assume that v = (0, 0, . . . , 0) is the vertex having label 4.

We then have that Qn \ S4 has two connected components, and in particular the one

containing v, say C, has 1 + n+
(
n
2

)
+
(
n
3

)
vertices. If A is the part of the bipartition

of Qn containing v, then |A ∩ C| = 1 +
(
n
2

)
.

Assume that the vertex v is dominated by a vertex w = (w1, . . . , wn) having label d:

this implies that w ∈ Sd, thus there is a d-set I = {i1, . . . , id} such that wi = 1 if and

only if i ∈ I. Now, if 2 ≤ d ≤ n − 2, let i1, i2, j1, j2 be four distinct indexes, with

i1, i2 ∈ I and j1, j2 6∈ I; let z = (z1, . . . , zn) be the vertex having coordinates:

zi =

{
1 if i ∈ {i1, i2, j1, j2},
0 otherwise.

It is easy to see that z ∈ S4, and that the Hamming distance between z and w is
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d, hence z is dominated by v and w, and the labeling does not induce an extended

dominating set.

We now show that it is not possible to dominate v using the labels d = 1 or d = n−1.

Let then w in S1 be the vertex that dominates v, having label 1 (it is easy to see

that the case where the label is n − 1 is analogous to this one). If, without loss of

generality, w = (w1, w2, . . . , wn) = (1, 0, . . . , 0), then w covers the n− 1 vertices of S2

having the first coordinate equal to 1. We show that it is not possible to cover the

remaining vertices of S2, with a vertex u having label `. As a first remark, the label

` = 2 cannot be used to cover the remaining vertices of S2; indeed, it is easy to see

that this implies u = (u1, . . . , un) ∈ S4, hence, since n > 4, then there exists at least

one component ui = 0. If uj = 1 for some j ∈ [1, n], then the vertex z = (z1, . . . , zn)

having zm = um for each m ∈ [1, n] \ {i, j}, zi = 1 and zj = 0 has distance 2 from u,

but belongs to S4, thus it is dominated twice.

Let then u be labeled with ` > 2. Clearly, u 6∈ S`, otherwise it would dominate v

another time, and if u ∈ Sm, with m ≤ `− 4 or m ≥ `+ 4, then u does not dominate

any vertex of S2. Then:

• if u ∈ S`−2, then there are precisely ` − 2 ≥ 1 indexes i1, . . . , i`−2 such that

uij = 1 for j ∈ [1, `− 2], and 0 otherwise. In particular, if n− 1 > `, then there

are at least three zero entries ua, ub, uc (indeed, two of them are required to

dominate vertices of S2, while the third one is ensured by n− 1 > `). Let then

z = (z1, . . . , zn) be the vertex such that zm = 1 if and only if m ∈ {a, b, c, i1}:
z belongs to S4 and has distance ` from u, thus it is dominated twice. Now, if

` = n, then u would dominate precisely one vertex of S2, but the vertices of S2

that are not dominated by w are:(
n

2

)
− (n− 1) =

n(n− 3)

2
+ 1.

It would be then necessary to use other labels to cover the remaining vertices

of S2, thus returning in one of the other cases.

• if u ∈ S`+2, then there are precisely ` + 2 ≥ 3 indexes i1, . . . , i`+2 such that

uij = 1 for j ∈ [1, `− 2], and 0 otherwise. If ` ≤ n− 3, then there is at least one

zero entry ua: if z = (z1, . . . , zn) is the vertex such that zm = 1 if and only if

m ∈ {a, i1, i2, i3}, then z ∈ S4 and is dominated twice. If ` = n− 2, necessarily

u ∈ Sn, but then u would dominate the whole set S2, that is already partially

covered by w.

To conclude, assume that v is dominated by the vertex w = (1, . . . , 1) ∈ Sn having

label n. Assume now that some of the vertices of S2 are dominated by a vertex

u = (u1, . . . , un) having label `. Clearly, ` 6= 1, otherwise u would cover either v or

vertices of S4. If ` = 2, since n > 4 there are vertices in S4 that are dominated by u

(see above). If ` > 2, then the reasoning explained above can be applied for almost

all the cases: the only exceptions are for ` = n − 2, that in this case would imply

u = w, and for ` = n, that it is not possible as that label is already used.
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It then follows that it is not possible to cover the vertices in S0 ∪ S2 with a labeling

that induces an extended irregular dominating set, hence the statement follows.

We recall now the definition of a Mobius ladder. For every positive integer n ≥ 2, the

Mobius ladder on 2n vertices, denoted by M2n, is the graph having {x1, x2, . . . , x2n}
as vertex set, and such that E(M2n) = {{xi, xi+1} | 1 ≤ i ≤ 2n} ∪ {{xi, xi+n} |
1 ≤ i ≤ n}, where the subscripts have to be considered modulo 2n. Note that M4 is

nothing but the complete graph on 4 vertices.

Lemma 2. Let n ≥ 3 and let x be a vertex of M2n. Assign a label ` ∈ [1, dn
2
e] to x. Then,

for every vertex v covered by x there exists a vertex u, dominated by x, such that d(u, v) = 2.

Proof. Clearly, by vertex-transitivity, we can assume that x = x1. The vertices

dominated by x1 are x1+`, x2n−`+1, xn+` and xn−`+2 (note that for n odd and ` = n+1
2

we have x1+` = xn−`+2 = xn+3
2

and x2n−`+1 = xn+` = x 3n+1
2

). Since {xi, xi+n} is an

edge of M2n for every i ∈ [1, n], we have d(x1+`, xn+`) = d(xn−`+2, x2n−`+1) = 2.

Theorem 4. For every n ≥ 2, the Mobius ladder M2n does not admit an extended
irregular dominating set.

Proof. Since M4 is the complete graph of order 4 and M6 is the complete bipartite

graph K3,3, for n = 2, 3, the result follows from Corollary 1.

Suppose now n ≥ 4. Assume by contradiction that there exists an extended ir-

regular dominating set of M2n. By vertex-transitivity, we can suppose, without

loss of generality, that x1 is the vertex that receives label 2, hence dominating

X = {x3, xn, xn+2, x2n−1}.
If n is even, from Lemma 2, it can be seen that it is not possible to cover x1
with a vertex having label in [1, n2 − 1]: indeed, there would be a vertex between

x3, xn, xn+2, xn−1 covered twice. Hence, x1 has to be covered with a vertex having

label n
2 . It can be seen that the graph induced by the vertices dominated by a vertex

having label n/2 is a path P on 4 vertices. However, M2n \X is a disconnected graph,

where the connected component containing x1 is isomorphic to the complete bipartite

graph K1,3: since P is not a subgraph of K1,3, it follows that x1 cannot be covered.

Hence an extended irregular dominating set of M2n does not exist.

Suppose now n odd. By Lemma 2 it can be seen that if a label in ` ∈ [1, n+1
2 ] is

assigned to a vertex w, and d(w, x1) = `, then there exists a vertex x ∈ X such that

d(w, x) = `, that is then covered twice. Hence, there does not exist an extended

irregular dominating set.

4. Results for cycles via strong starters

In this section, we show that optimal extended irregular dominating labelings of cycles

are equivalent to a combinatorial structure that has been thoroughly studied over the
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course of the years, that is strong starters in a cyclic group, see [9].

Definition 2. Let G be an additive abelian group of odd order g, where the neutral
element is denoted by 0. A starter L in G is a set of unordered pairs {{xi, yi} | 1 ≤ i ≤
(g − 1)/2} such that:

(1) {xi, yi | 1 ≤ i ≤ (g − 1)/2} = G \ {0};

(2) {±(xi − yi) | 1 ≤ i ≤ (g − 1)/2} = G \ {0}.

A starter L = {{xi, yi}} in G is called a strong starter if the additional property:

(3) xi + yi = xj + yj implies i = j and for any i, xi + yi 6= 0

is satisfied. In other words a starter is called strong if {(xi + yi) | 1 ≤ i ≤ (g − 1)/2}
comprises of distinct elements in G \ {0}.
A starter L = {{xi, yi}} in G is said to be skew if the following additional property holds:

(4) xi + yi = ±(xj + yj) implies i = j and for any i, xi + yi 6= 0.

or equivalently if:

(4) {±(xi + yi) | 1 ≤ i ≤ (g − 1)/2} = G \ {0}.

It is clear that a skew starter is also a strong starter. Both strong and skew starters

have been studied in many groups, achieving various existence results. Here, we

are interested in the case of the cyclic group Zn for some positive integer n. An

hill-climbing algorithm to find strong starters in cyclic groups has been developed in

[10]. In [22], Stinson presented several results for strong starters in view of which he

proposed the following conjecture.

Conjecture 4. Let n ≥ 5 be an odd integer. There exists a strong starter in Zn if and
only if n 6= 5, 9.

It is easy to see that a starter of Z5 does not exist. Also, the non existence of a

strong starter of Z9 is well-known. In the same paper Stinson proved the existence

of a strong starter in Zn for every odd n 6= 9, with 7 ≤ n ≤ 99. We point out that

the conjecture proposed in [22] has a more general statement that Conjecture 4, but

for the purpose of this paper it is sufficient to focus on this special case. We also

underline that this special case is contained in the following conjecture [13] proposed

by Horton in 1990, which is not restricted to cyclic groups and which is still far from

being solved.

Conjecture 5. Suppose that G is an abelian group of odd order g ≥ 3. Then there is a
strong starter in G if and only if G 6= Z3,Z5,Z9 or Z3 × Z3.

Now we summarize the main results for skew starters in a cyclic group, obtained in

[7, 14, 15, 18].
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Theorem 5. Let n be a positive integer. Then, there exists a skew starter in Zn in the
following cases:

• n = 2kt+ 1 is a prime power, where t > 1 is an odd integer (Mullin-Nemeth starters);

• n = 16t2 + 1 (Chong-Chang-Dinitz starters);

• gcd(n, 6) = 1 and either n 6= 0 (mod 5) or n = 0 (mod 125).

As remarked by Stinson in [21], the parameters for the Mullin-Nemeth and Chong-

Chang-Dinitz starters allow to construct skew starters in the notable class of cyclic

groups whose order is a prime number larger than 5.

We now establish the following equivalence, where by Cn we denote the cycle of length

n.

Proposition 6. Let n be an odd integer. Then, an optimal extended irregular dominating
set over Cn is equivalent to a strong starter in Zn.

Proof. Let S be an extended irregular dominating set over Cn = (v0, v1, . . . , vn−1),

with labeling function λ : S → [0, n−12 ]. Recall that, by Corollary 2, |S| = n+1
2 , that

is, λ is a bijection. Observe that, since n is odd, 2 admits a multiplicative inverse in

Zn, that we denote by 2−1 for the sake of brevity. Assume without loss of generality

that v0 ∈ S and λ(v0) = 0, and construct the following set L ⊂ Zn × Zn:

L = {{i, j} | vi, vj are dominated by v ∈ S \ {v0} }.

We prove that L is a strong starter in Zn. Since every vertex of Cn is dominated

exactly once, it is immediate to verify that property (1) of Definition 2 holds. More-

over, let {i, j} ∈ L, with i > j, and let vk be the vertex that dominates vi and vj ,

receiving label `. It can be immediately seen that precisely one between i − j and

n + j − i is even. In the first case, we necessarily have vk = v(i+j)/2 and ` = i−j
2 ,

while in the second case vk = v(n+i+j)/2 and ` = n+j−i
2 . Suppose now that property

(2) of Definition 2 does not hold, and let {x, y} and {r, s} be two pairs such that

{±(x − y)} = {±(r − s)}, with x > y and r > s. Note that it is not restrictive to

assume that x− y = r − s is an even number (otherwise, consider y + n and s+ n).

Then, the labels assigned to the vertices v x+y
2

and v r+s
2

are not distinct, hence λ is not

a bijection and S is not an extended irregular dominating set, that is a contradiction.

Thus property (2) of Definition 2 holds. Hence we have proved that L is a starter.

Finally, it is easy to see that if property (3) of Definition 2 does not hold, there exist

{x, y} and {r, s} in L such that x+ y = r+ s, then the vertices dominating vx, vy and

vr, vs must coincide. It would follow that S is not an extended irregular dominating

set, hence also property (3) of Definition 2 holds, and L is a strong starter in Zn.

Let now L = {{xi, yi} | 1 ≤ i ≤ (n − 1)/2} be a strong starter in Zn with xi > yi
for each 1 ≤ i ≤ (n − 1)/2. Let V = {v0, v1, . . . , vn−1} be the vertex set of Cn and

E(Cn) = {{vi, vi+1} | i ∈ [0, n − 1]} where the indexes are understood modulo n.
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Consider the following set
{
v xi+yi

2
| {xi, yi} ∈ S

}
⊆ V , where if xi + yi < n is odd,

by v xi+yi
2

we mean vn+xi+yi
2

. Take now the labeling so defined:

λ
(
v xi+yi

2

)
=


xi − yi

2
if xi − yi (mod n) is even,

n− (xi − yi)
2

otherwise.

One can easily check that λ is an optimal extended irregular dominating labeling of

Cn.

Since every skew starter is a strong starter, the existence of an optimal extended

irregular dominating set is granted for cycles of length n, for every n belonging to one

of the cases of Theorem 5 and for every n for which Conjecture 4 holds. In particular,

we have.

Corollary 3. The cycle Cn admits an optimal extended irregular dominating set for
every odd integer n 6= 9, such that 7 ≤ n ≤ 99 and for every prime n > 5.

Example 2. Starting from the following strong starter of Z17

{{9, 10}, {3, 5}, {13, 16}, {11, 15}, {1, 6}, {2, 8}, {7, 14}, {4, 12}}

one can construct the optimal extended irregular dominating labeling of C17 below.

In what follows, we show that there exists an optimal extended irregular dominating

set for many cycles, having singly even length.

Proposition 7. Let n be an odd integer. If Cn admits an optimal extended irregular
dominating set, then C2n admits an optimal extended irregular dominating set too.

Proof. Since n is an odd integer, for every x ∈ Z∗n precisely one element between x

and n−x is odd. Let C2n = (v0, v1, . . . , v2n−1), and for any vertex vi by −vi we mean
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vi+n, where indexes are read modulo 2n. Let now λ and λ′ be two labelings on C2n

such that λ(v) = x and λ′(−v) = n− x for some vertex v, where x, n− x ∈ Z∗n. Then

v through λ and −v through λ′ dominate the same set of vertices. Set A = {v2i : i ∈
[0, n− 1]} and B = {v2i+1 : i ∈ [0, n− 1]}.
Let V (Cn) = (x0, . . . , xn−1), and set λ1 : X ⊂ V (Cn) → [0, n−12 ] be an optimal

extended irregular dominating labeling of Cn which exists by hypothesis. Let ψ be

the natural bijection ψ : V (Cn) → A ⊂ V (C2n), where xi 7→ ψ(xi) = v2i. Construct

the labeling λ2 : ψ(X) ⊂ V (C2n)→ [0, n], where λ2(v2i) = λ2ψ(xi) = 2λ1(xi). Since

the vertices in ψ(X) are contained in A and have even labels, from the fact that λ1
induces an optimal extended irregular dominating set it follows that the vertices of

ψ(X) dominate A.

Let now v2i ∈ A be any vertex that is not labeled by λ2, that is v2i ∈ A \ ψ(X).

Let Y = {v2i,−v2i} be a cut of C2n, and let C1 and C2 be the vertex set of the

two connected components of C2n \ Y . For the sake of brevity, denote by Z the set

(ψ(X) ∩ C1) ∪ (−(ψ(X) ∩ C2)), and let λ3 : Z ⊂ C1 → [0, n] be the following labeling:

λ3(v) =


λ2(v) if v ∈ ψ(X) ∩ C1,

− λ2(v) (mod n) if λ2(v) 6= 0 and v ∈ −(ψ(X) ∩ C2),

n if λ2(v) = 0 (and v ∈ −(ψ(X) ∩ C2)).

As previously remarked, it follows that λ3 induces a set of labeled vertices dominating

A. Let now η : C1 → C2, v 7→ η(v) = w, where w is the vertex of C2 such that the

distance between w and v2i is equal to the distance between v and v2i. We conclude

the proof by constructing the labeling λ : Z ∪ η(Z)→ [0, n], where:

λ(v) =


λ3(v) if v ∈ Z,

− λ3(v) if λ3(v) 6= n and v ∈ −Z,

0 if λ3(v) = n (and v ∈ −Z).

Since Z ⊂ C1, it follows that λ is well-defined, and as the dominated set induced by

λ3 is A, λ is an optimal extended irregular dominating labeling inducing an optimal

extended irregular dominating set on C2n.

It is easy to see that the converse of the previous result does not hold. For example,

even if C3 and C5 do not admit an extended irregular dominating set, C6 and C10

have such a set as shown below:

C6 : (3, 1,�, 2, 0,�), C10 : (1, 4, 2,�,�, 3, 0,�, 5,�),

where � denotes a vertex with no label.

Corollary 4. Let p be a prime with p ≥ 7. Then, there exists an optimal extended
irregular dominating set of C2p.
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Corollary 5. Let n be an odd integer with n 6= 9 and 7 ≤ n ≤ 99. Then, there exists an
optimal extended irregular dominating set of C2n.

Example 3. We show the construction provided in Proposition 7 for n = 7. Consider the
following optimal extended irregular dominating labeling of C7:

We now consider the cycle C14 = (v0, v1, . . . , v13), and a possible choice for the labeling
obtained by doubling the labels of C7:

It can be seen that the labeled vertices cover all the vertices of the form {v2i : i ∈ [0, 6]}.
Consider now the cut Y = {v1, v8}, and the vertex sets C1 = {vi : i ∈ [2, 7]} and C2 = {vi : i ∈
{0}∪ [9, 13]} of the connected components of C14\Y . We then have Z = {v4}∪{v3, v5, v7} ⊂
C1, and we construct the labeling λ3 : Z → [0, 7]:

λ3(v4) = 4, λ3(v3) = 7,

λ3(v5) = 1, λ3(v7) = 5,

that we show below:
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We then conclude the example by showing the labeling λ. Since λ can also be obtained by
reflecting the labeled vertices along the line joining the vertices of the cut Y , we have added
the dashed line between v1 and v8:

It can then be seen that the labeling λ so defined induces an optimal extended irregular
dominating set.

We then summarize these results:

Corollary 6. Let n be a positive integer, where either

• n ≥ 7 is a prime,

• n is an odd integer with n 6= 9 and 7 ≤ n ≤ 99,

• n = 2kt+ 1 is a prime power, where t > 1 is an odd integer,

• n = 16t2 + 1, or

• gcd(n, 6) = 1 and either n 6= 0 (mod 5) or n = 0 (mod 125).

Then, there exists an optimal extended irregular dominating set of Cn and C2n.
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5. A class of non vertex-transitive graphs: the paths

Obviously it makes sense to consider the irregular extended domination problem also

for non vertex-transitive graphs. In this section we focus on paths. By Pn we denote

the path on n vertices, that we also write as its list of vertices [x1, x2, . . . , xn], where

the edges are {xi, xi+1} for every i ∈ [1, n − 1]. First of all we completely solve

the existence problem of an extended irregular dominating set for a path, then we

establish γe(Pn) for several values of n. To do this, let us see some connection between

irregular dominating sets and extended irregular dominating sets for paths.

Remark 2. Let S be a k-irregular dominating set of Pn. If there exists a vertex v
dominating a unique vertex u of Pn and u 6∈ S, then there also exists a k-extended irregular
dominating set of Pn. In fact it is sufficient to remove the label from v and to label u by 0.

Remark 3. If there exists a k-irregular dominating labeling, say λ, of the path Pn =
[x1, x2, . . . , xn], then there exists a (k+ 1)-extended irregular dominating labeling, say λ′, of
Pn+1 = [x1, x2, . . . , xn, xn+1]. In fact it is sufficient to extend λ by labeling the vertex xn+1

by 0. Unfortunately, if λ is optimal, this does not necessarily imply that λ′ is optimal too.

Clearly, the same reasoning can be applied also to other classes of graphs.

Example 4. In [4] the following 6-irregular dominating labeling of P8 is presented

[�, 5, 3, 1, 4, 2,�, 6],

where � denotes a vertex with no label, and it is proved that it is optimal, that is γi(P8) = 6.
Such a labeling can be extended to the following 7-extended irregular dominating labeling
of P9:

[�, 5, 3, 1, 4, 2,�, 6, 0]

which is not optimal; in fact there exists a 6-extended irregular dominating labeling of P9:

[�,�, 2,�, 3, 0, 4, 1, 5].

The existence problem for an irregular dominating set of a path has been completely

solved in [4], where the authors proved the following.

Proposition 8. The path Pn has an irregular dominating labeling if and only if n ≥ 4
except for n = 6.

We point out that the proof is constructive, but the resulting labeling is not necessarily

optimal. Actually, the problem of establishing the exact value of γi(Pn) is still open.

The previous proposition allows us to prove the following.
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Proposition 9. Given n ≥ 1, the path Pn admits an extended irregular dominating
labeling if and only if n 6= 2, 3.

Proof. Since P2 and P3 do not have an extended irregular dominating labeling by

Proposition 1, it remains to verify the converse. For n = 1 the existence is trivial. An

extended irregular dominating labeling for the paths P4 and P7 is given by:

P4 : [3, 1, 0, 2],

P7 : [�, 0, 2, 3, 1,�, 4],

where � denotes a vertex with no label. The other cases follow from the Remark 3

and Proposition 8.

By Remark 3 the extended irregular dominating labelings of previous proposition are,

in general, not optimal. In particular, in [4], a k-irregular dominating labeling of Pn

is constructed with k = n−2 for n = 7, 8, with k = n−3 for n = 9, and with k = n−4

for every n ≥ 10. Starting for these labelings, we immediately have a k′-extended

irregular dominating labeling of Pn+1 with k′ = k+ 1. On the other hand, we believe

that this result can be improved, that is that there exists a k′′-extended irregular

dominating labeling of Pn+1 for k′′ < k′.

In the remaining part of this section, we make some consideration on γe(Pn), we start

with a lemma whose proof is trivial.

Lemma 3. For every n ≥ 1, γe(Pn) ≥ dn+1
2
e.

In the following result we establish when the equality holds in Lemma 3.

Theorem 6. Let n ≥ 1, γe(Pn) = dn+1
2
e if and only if n = 1, 6, 10.

Proof. Suppose firstly n odd, and set n = 2m+ 1 for some integer m. If m = 0 the

result is trivial, so assume that m ≥ 1. Note that γe(P2m+1) = m+ 1 implies that we

have to use the labels from the set [0,m], where every vertex labeled with an integer

different from 0 has to cover 2 vertices. For this reason, the label m has to be given

to the vertex xm+1, covering x1 and x2m+1. However, it is not possible to assign the

label m−1 and cover two vertices, hence an extended irregular dominating set of size

m+ 1 cannot exist. In other words, γe(Pn) > dn+1
2 e.

Let now n = 2m for some integer m. By Corollary 1, P2 and P4 do not admit

an extended irregular dominating set, while for P6 and P10 we have the following

labelings:

P6 : [3, 1,�, 2, 0,�],

P10 : [�, 6, 0, 2, 4, 1, 3,�,�,�].
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Hence γe(P6) = 4 and γe(P10) = 6 hold.

Assume now that m ≥ 8. Also here, γe(P2m) = m+ 1 implies we have to use labels in

the set [0,m− 1]∪ λ̄, where λ̄ ∈ [m, 2m− 1] in such a way that the vertices receiving

labels 0 and λ̄ cover exactly one vertex, and the vertices receiving labels from [1,m−1]

have to cover two vertices. To this aim, it is easy to see that the label m − 1 has

to be assigned either to xm or to xm+1. By symmetry we can assume without loss

of generality that this label is assigned to xm, thus covering x1 and x2m−1. This

assignment forces the following labeling:

(1) the label m− 2 has to be assigned to xm+2, covering x4 and x2m;

(2) the label m− 3 has to be assigned to xm−1, dominating x2 and x2m−4;

(3) the label m− 4 has to be assigned to xm+1, covering x5 and x2m−3.

To summarize, up to this point, the vertices labeled are {xm−1, xm, xm+1, xm+2},
and they dominate the set of vertices {x1, x2, x4, x5} ∪ {x2m−4, x2m−3, x2m−1, x2m},
as shown in the following:

It can then be seen that the label m−5 has to be assigned either to xm−2 or xm+3; by

symmetry, it is not again restrictive to assume that this label is given to xm−2, thus

dominating x3 and x2m−7. Then, the label m− 6 has to be given to xm+4, covering

x10 and x2m−2. However, it can be seen that now there is no possible assignment of

the label m− 7 to cover two of the remaining vertices, hence proving that for m ≥ 8

there is no k-extended irregular dominating labeling of the path of even order with

k = dn+1
2 e.

To conclude, for m = 4, 6, 7 repeat then the procedure shown before until the label

2 is assigned. It can then be seen that it is not possible to assign the label 1 to any

vertex of the path.

Corollary 7. Let n ≥ 4 with n 6= 6, 10, then γe(Pn) ≥ dn+3
2
e.

The next natural question is the following: when does the equality hold in Corollary

7?

Clearly it holds for n = 4, see the labeling of P4 given in the proof of Proposition 9.

Below we show that the equality holds for every n ∈ [5, 26] \ {6, 10}. Some of these

optimal extended irregular dominating labeling of Pn have been obtained thanks to

Remarks 2 and 3 starting from an irregular dominating labeling of Pn constructed in

[3].
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P5 : [3, 1,�, 2, 0],

P7 : [6, 0, 2,�, 1, 3,�]

P8 : [�,�, 3, 1, 4, 2, 0, 6]

P9 : [3, 6, 0, 2, 4, 1,�,�,�]

P11 : [�,�, 5, 3, 1, 4, 2,�,�, 7, 0],

P12 : [0, 10,�, 5, 3, 1, 4, 2,�,�, 7,�],

P13 : [�, 5,�,�, 1, 4, 6, 3, 0, 2,�, 9,�],

P14 : [7,�,�,�, 2, 4, 6, 3, 5, 1,�, 0,�, 8],

P15 : [�,�,�,�, 1, 3, 5, 7, 4,�, 0, 2,�, 6, 8],

P16 : [�, 9,�,�, 1, 3, 5, 7, 4,�,�, 2,�, 6, 8, 0],

P17 : [8,�,�,�, 2, 5, 3,�, 7, 4, 6, 0,�, 1,�,�, 9],

P18 : [8, 10,�,�, 2, 5, 3,�, 7, 4, 6,�,�, 1,�,�, 9, 0],

P19 : [�,�,�, 13,�, 3, 6, 4, 1, 8, 5, 7, 2, 0,�,�, 10,�,�],

P20 : [�,�,�, 13, 9, 3, 6, 4, 1, 8, 5, 7, 2,�,�,�, 10,�,�, 0],

P21 : [�, 10,�,�,�, 1,�, 5, 7, 9, 3, 8, 2, 4, 6,�, 0, 12,�,�,�]

P22 : [�,�,�,�,�,�, 4, 7, 5, 3, 9, 6, 8, 2,�,�,�, 1, 11, 10, 12, 0],

P23 : [12,�,�,�,�, 3, 0, 4, 8, 10, 5, 7, 9, 1, 6, 2,�,�,�,�, 11,�],

P24 : [12,�,�,�,�, 3,�, 4, 8, 10, 5, 7, 9, 1, 6, 2,�,�,�, 13, 11,�, 0],

P25 : [�, 12,�,�,�,�, 3,�, 4, 8, 10, 5, 7, 9, 1, 6, 2,�,�,�, 13, 11,�, 0],

P26 : [14, 12,�,�,�,�, 4, 1,�, 6, 9, 11, 5, 8, 10, 3, 7,�, 2,�,�,�,�,�, 13, 0],

where � denotes a vertex with no label.

6. Conclusions

In this paper we have introduced the concept of an extended irregular dominating

set focusing, in particular, on the optimal case. In some cases we presented complete

solution to existence problem of an optimal extended irregular dominating set for

some classes of graphs, while for other ones we have only some partial results.

For example note that in Section 4 about cycles, we have not considered the class of

cycles Cn, with n ≡ 0 (mod 4). A direct check shows that there exists no extended

irregular dominating set of Cn for n = 4, 8, while here we report an optimal extended

irregular dominating labeling for the cycles C4n with n ∈ [3, 6]:

C12 : (6, 3,�,�, 1, 4,�, 5, 0, 2,�,�),

C16 : (0,�,�,�,�, 7, 4, 1,�,�, 3, 6, 8, 2, 5,�),

C20 : (10, 8,�, 3,�, 9, 1,�, 0, 6,�, 7,�,�,�, 4,�, 5,�, 2),

C24 : (0, 11, 8, 2, 12, 1,�,�, 9, 6,�,�,�,�, 5, 7,�, 4,�,�,�, 10,�, 3),

where the examples for C16 and C24 have been found with the aid of a computer by

Falcón [11]. At the moment we have no further results for this class of graphs, on the
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other hand for n ∈ [3, 6] we obtain really many labelings of C4n satisfying the required

properties, hence we believe that n = 1, 2 are the only exception and we propose the

following.

Conjecture 10. There exists an optimal extended irregular dominating labeling for C4n

for every n ≥ 3.

About paths we established that γe(Pn) = dn+1
2 e if and only if n = 1, 6, 10, and hence

that γe(Pn) ≥ dn+3
2 e for n ≥ 4 with n 6= 6, 10. Also we proved that the equality holds

for every n ∈ [4, 26] \ {6, 10}. This leads us to propose another conjecture.

Conjecture 11. Let n ≥ 4.

γe(Pn) =


⌈
n+ 1

2

⌉
if n = 6, 10,⌈

n+ 3

2

⌉
otherwise.
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