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Abstract: A weak signed double Roman dominating function (WSDRDF) of a graph

G with vertex set V (G) is defined as a function f : V (G) → {−1, 1, 2, 3} having

the property that
∑

x∈N [v] f(x) ≥ 1 for each v ∈ V (G), where N [v] is the closed
neighborhood of v. The weight of a WSDRDF is the sum of its function values over

all vertices. The weak signed double Roman domination number of G, denoted by

γwsdR(G), is the minimum weight of a WSDRDF in G. We initiate the study of the
weak signed double Roman domination number, and we present different sharp bounds

on γwsdR(G). In addition, we determine the weak signed double Roman domination
number of some classes of graphs.

Keywords: domination, signed double Roman domination, weak signed double Ro-

man domination.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [9]. Specifically, let G be a graph with vertex set V (G) = V and edge

set E(G) = E. The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the

order and the size of the graph G, respectively. The open neighborhood of vertex v

is NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)}, and the closed neighborhood of v is

NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex v is dG(v) = d(v) = |N(v)|. The

minimum and maximum degree of a graph G are denoted by δ(G) = δ and ∆(G) = ∆,

respectively. A graph G is regular or r-regular if δ(G) = ∆(G) = r. The complement

of a graph G is denoted by G. Let Kn be the complete graph of order n, Cn the cycle

of order n and Pn the path of order n. In addition, let Kn1,n2,...,np
be the complete

p-partite graph with the partite sets X1, X2, . . . , Xp such that |Xi| = ni for 1 ≤ i ≤ p.
Also let S(r, s) be the double star with exactly two adjacent vertices u and v that are

not leaves such that u is adjacent to r ≥ 1 leaves and v is adjacent to s ≥ 1 leaves.
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A set S of vertices of G is called a dominating set if N [S] =
⋃

v∈S N [v] = V (G).

The domination number γ(G) equals the minimum cardinality of a dominating set

in G. Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [7] introduced the

concept of Roman domination in graphs, and since then a lot of related variations

and generalizations has been studied (see, for example, the survey articles [5]-[6]).

In this paper we continue the study of signed Roman domination in graphs (see, for

example, [3]-[4],[8],[10]-[11]).

A signed double Roman dominating function (SDRDF) on a graph G is defined in

[1, 2] as a function f : V (G) → {−1, 1, 2, 3} having the property that f(N [v]) =∑
x∈N [v] f(x) ≥ 1 for each v ∈ V (G) and if f(u) = −1, then the vertex u must have a

neighbor w with f(w) = 3 or two neighbors assigned 2 under f , and if f(v) = 1, then

v must have at least one neighbor w with f(w) ≥ 2. The weight of an SDRDF f is

the value f(V (G)) =
∑

u∈V (G) f(u). The signed double Roman domination number

γsdR(G) is the minimum weight of a signed double Roman dominating function on

G. A γsdR(G)-function is an SDRDF of weight γsdR(G).

A weak signed double Roman dominating function (WSDRDF) of a graph G is defined

as a function f : V (G)→ {−1, 1, 2, 3} having the property that f(N [v]) ≥ 1 for each

v ∈ V (G). The weight of a WSDRDF is the value ω(f) = f(V (G)). The weak signed

double Roman domination number of G, denoted by γwsdR(G), is the minimum weight

of a WSDRDF in G. A γwsdR(G)-function is a WSDRDF of weight γwsdR(G). For a

WSDRDF f on G, let Vi = {v ∈ V (G) | f(v) = i} for i = −1, 1, 2, 3. A WSDRDF f

can be represented by the ordered partition f = (V−1, V1, V2, V3).

The definitions lead to γwsdR(G) ≤ γsdR(G). Therefore each lower bound of γwsdR(G)

is also a lower bound of γsdR(G), and each upper bound of γsdR(G) is an upper bound

of γwsdR(G).

Our purpose in this work is to initiate the study of the weak signed double Roman

domination number. We present basic properties and sharp bounds for the (weak)

signed double Roman domination number of a graph. In particular, we show

that many lower bounds on γsdR(G) are also valid for γwsdR(G). In addition, we

show that the difference γsdR(G) − γwsdR(G) can be arbitrarily large, and we de-

termine the weak signed double Roman domination number of some classes of graphs.

We make use of the following known results.

Proposition 1. [2] For n ≥ 5 or n = 3, we have γsdR(Kn) = 1 and γsdR(Kn) = 2 for
n = 1, 2, 4.

Proposition 2. [1] If n ≥ 1, then γsdR(K1,n) = 1, unless n = 1, 3, in which cases
γsdR(K1,1) = γsdR(K1,3) = 2.

Proposition 3. [1] Let Pn be a path of order n ≥ 2. Then γsdR(Pn) = n/3 when
n ≡ 0 (mod 3) and γsdR(Pn) = dn/3e+ 1 when n ≡ 1, 2 (mod 3).
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Proposition 4. [2] Let Cn be a cycle of length n ≥ 3. Then γsdR(Cn) = n/3 when
n ≡ 0 (mod 3), γsdR(Cn) = dn/3e + 2 when n ≡ 1 (mod 3) and γsdR(Cn) = dn/3e + 1 when
n ≡ 2 (mod 3).

Proposition 5. [2] If 2 ≤ p ≤ q are integers, then γsdR(K2,q) = 3 when q ≥ 3,
γsdR(K3,q) = 5 and γsdR(Kp,q) = 4 for p ≥ 4 or p = q = 2.

2. Preliminary results and first bounds

In this section we present basic properties and some first bounds on the weak signed

double Roman domination number. The definitions lead to the first observation

immediately.

Observation 1. If f = (V−1, V1, V2, V3) is a WSDRDF of a graph G of order n, then the
following holds.

(a) |V−1|+ |V1|+ |V2|+ |V3| = n.

(b) ω(f) = |V1|+ 2|V2|+ 3|V3| − |V−1|.

(c) Every vertex of V−1 is dominated by one vertex of V2 ∪ V3 or two vertices of V1.

(d) V1 ∪ V2 ∪ V3 is a dominating set of G.

The proof of the next proposition is identically with the proof of Proposition 2.2 in

[2] and is therefore omitted.

Proposition 6. Let f = (V−1, V1, V2, V3) be a WSDRDF of a graph G of order n,
∆ = ∆(G) and δ = δ(G). Then the following holds.

(a) (3∆ + 2)|V3|+ (2∆ + 1)|V2|+ ∆|V1| ≥ (δ + 2)|V−1|.

(b) (3∆ + δ + 4)|V3|+ (2∆ + δ + 3)|V2|+ (∆ + δ + 2)|V1| ≥ (δ + 2)n.

(c) (∆ + δ + 2)ω(f) ≥ (δ −∆ + 2)n+ (δ −∆)|V2|+ 2(δ −∆)|V3|.

(d) ω(f) ≥ (δ − 3∆)n/(3∆ + δ + 4) + |V2|+ 2|V3|.

As an immediate consequence of Proposition 6 (c), we obtain a lower bound on the

weak signed double Roman domination number of regular graphs.

Corollary 1. If G is an r-regular graph of order n, then γwsdR(G) ≥ dn/(r + 1)e.

Proposition 7. If n ≥ 1, then γwsdR(Kn) = 1.
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Proof. According to Corollary 1, we have γwsdR(Kn) ≥ 1. If n is even, then assign

to one vertex the weight 2, to n/2 vertices the weight -1 and to the remaining (n−2)/2

vertices the weight 1. On the other hand, if n is odd, then assign to (n+1)/2 vertices

the weight 1 and to the remaining (n− 1)/2 vertices the weight -1. In both cases, we

produce a WSDRDF of weight 1, and thus γwsdR(Kn) ≤ 1 and so γwsdR(Kn) = 1.

Proposition 8. If G is an (n− 2)-regular graph of order n ≥ 4, then γwsdR(G) = 2.

Proof. Since G is (n− 2)-regular, the graph is isomorphic to the complete r-partite

graph Kn1,n2,...,nr
with r ≥ 2 and n1 = n2 = . . . = nr = 2. Corollary 1 implies

γwsdR(G) ≥ dn/(n− 1)e = 2.

Now let Xi = {xi, yi} be the partite sets of G for 1 ≤ i ≤ r. Define f(xi) = f(y1) = 1

for 1 ≤ i ≤ r and f(yi) = −1 for 2 ≤ i ≤ r. Then f is a WSDRDF on G of weight 2

and thus γwsdR(G) ≤ 2. Therefore γwsdR(G) = 2.

Example 1. Let H be the complete r-partite graph with r ≥ 2 and the partite sets
X1, X2, . . . , Xr such that |X1| = |{a, b, u, v}| = 4 and |Xi| = 3 for 2 ≤ i ≤ r. Now let G
consisting of H with the additional edges ab and uv. Then G is an (n− 3)-regular graph of
order n = 3r + 1. Corollary 1 implies γsdR(G) ≥ γwsdR(G) ≥ dn/(n− 2)e = 2.
Now let Xi = {xi, yi, zi} be the partite sets of G for 2 ≤ i ≤ r. Define f(xi) = f(a) =
f(u) = 2 for 2 ≤ i ≤ r and f(b) = f(v) = f(yi) = f(zi) = −1 for 2 ≤ i ≤ r. Then f is a
WSDRDF (even an SDRDF) on G of weight 2 and thus γwsdR(G) ≤ γsdR(G) ≤ 2. Therefore
γsdR(G) = γwsdR(G) = 2.

Propositions 7, 8 and Example 1 show that Corollary 1 is sharp. If G is an r-regular

graph of order n, then Corollay 1 implies the known bound γsdR(G) ≥ dn/(r + 1)e
(see [2]). Example 1 demonstrates that this bound is sharp too.

In the case that G is not regular, Proposition 6 (c) and (d) lead to the following lower

bound.

Corollary 2. Let G be a graph of order n, maximum degree ∆ and minimum degree δ.
If δ < ∆, then

γwsdR(G) ≥ −3∆ + 3δ + 4

3∆ + δ + 4
n.

Proof. Multiplying both sides of the inequality in Proposition 6 (d) by ∆ − δ and

adding the resulting inequality to the inequality in Proposition 6 (c), we yield the

desired lower bound.

Example 2. Let p ≥ 2 be an integer, and let v1, v2, . . . , vp be the vertex set of the complete
graph Kp. Let H1 be the graph consisting of Kp such that each vertex vi is adjacent to 3p−1
leaves for 1 ≤ i ≤ p. Then H1 has (3p − 1)p leaves b1, b2, . . . , b(3p−1)p. Now let H be
the graph consisting of H1 together with the edges b1b2, b3b4, . . . , b(3p−1)p−1b(3p−1)p. Then
n(H) = p + p(3p − 1) = 3p2, ∆(H) = 3p − 1 + p − 1 = 4p − 2 and δ(H) = 2. Define the
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function f : V (H) → {−1, 1, 2, 3} by f(vi) = 3 for 1 ≤ i ≤ p and f(x) = −1 otherwise.
Then f is a WSDRDF on H of weight

3p− (3p− 1)p = 4p− 3p2 =
−3∆(H) + 3δ(H) + 4

3∆(H) + δ(H) + 4
n(H).

Therefore Corollary 2 shows that γwsdR(H) = 4p− 3p2 and thus Corollary 2 is sharp.

Since f is also a signed double Roman dominating function on H, Example 2 also

shows that the inequality

γsdR(G) ≥ −3∆ + 3δ + 4

3∆ + δ + 4
n,

which can be found in [2], and which follows from Corollary 2, is sharp too.

The next example will demonstrate that the difference γsdR(G) − γwsdR(G) can be

arbitrarily large.

Example 3. Let p ≥ 2 be an integer, and let v1, v2, . . . , vp be the vertex set of the
complete graph Kp. Let H be the graph consisting of Kp such that each vertex vi is adjacent
to 2p − 1 leaves for 1 ≤ i ≤ p. Then n(H) = p + p(2p − 1) = 2p2. Define the function
f : V (H) → {−1, 1, 2, 3} by f(vi) = 2 for 1 ≤ i ≤ p and f(x) = −1 otherwise. Then f is a
WSDRDF on H of weight 2p−(2p−1)p = 3p−2p2 and thus γwsdR(H) ≤ 3p−2p2. In fact we
have γwsdR(H) = 3p−2p2. On the other hand, let a1i , a

2
i , . . . , a

2p−1
i be the leaves of vi, and let

g be a γsdR(H)-function. If g(vi) = −1, then g(aji ) ≥ 2 for 1 ≤ j ≤ 2p− 1, if g(vi) = 1, then
g(aji ) ≥ 1 for 1 ≤ j ≤ 2p−1, if g(vi) = 2, then g(aji ) ≥ 1 for 1 ≤ j ≤ 2p−1, and if g(vi) = 3,
then g(aji ) ≥ −1 for 1 ≤ j ≤ 2p− 1. This leads to γsdR(H) = ω(g) ≥ p(4− 2p) = 4p− 2p2,
even γsdR(H) = 4p− 2p2.
Consequently, we deduce that γsdR(H)− γwsdR(H) ≥ p.

Proposition 9. If G is a graph of order n, then γwsdR(G) ≤ n, with equality if and only
if G = Kn.

Proof. Define the function f : V (G)→ {−1, 1, 2, 3} by f(v) = 1 for each v ∈ V (G).

Then f is a WSDRDF on G of weight n and thus γwsdR(G) ≤ n. If G = Kn, then

γwsdR(G) = n is obviously.

Conversely, assume that ∆(G) ≥ 1. Then G contains a component H with δ(H) ≥ 1.

If δ(H) = 1, then there exists a vertex v ∈ V (H) with d(v) = 1. If u is a neighbor

of v, then define the function f : V (G) → {−1, 1, 2, 3} by f(v) = −1, f(u) = 2 and

f(x) = 1 for x ∈ V (G) \ {u, v}. It is straightforward to verify that f is a WSDRDF

on G of weight n− 1 and thus γwsdR(G) ≤ n− 1. If δ(H) ≥ 2, then define f(w) = −1

for an arbitrary vertex w ∈ V (H) and f(x) = 1 for x ∈ V (G) \ {w}. Then f is a

WSDRDF on G of weight n− 2 and thus γwsdR(G) ≤ n− 2.

Theorem 2. If G is a connected graph of order n ≥ 2, then γwsdR(G) = n − 1 if and
only if G = K2.
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Proof. If G = K2, then Proposition 7 implies γwsdR(G) = 1 = n− 1.

Conversely, assume that γwsdR(G) = n− 1. If n = 2, then G = K2 and we are done.

Assume next that n ≥ 3. If δ(G) ≥ 2, then, as in the proof of Proposition 9, we

have γwsdR(G) ≤ n − 2, a contradiction with γwsdR(G) = n − 1. Let now δ(G) = 1.

If G has a strong support vertex v with leaf neighbors u1, u2, then the function g

defined on G by g(v) = 3, g(u1) = g(u2) = −1 and g(x) = 1 for the remaining

vertices, is a WSDRDF on G of weight n− 2, a contradiction. Thus G has no strong

support vertex. Let u be a vertex of degree 1 in G and u′ be the neighbor of u in

G. Assume that T is a spanning tree of G. Then T has at least two leaves. Let v

be a leaf of T different from u and v′ the support vertex of v in T . If u′ = v′, then

the function g defined on G by g(u′) = 3, g(u) = g(v) = −1 and g(x) = 1 for the

remaining vertices, is a WSDRDF on G and so γwsdR(G) ≤ n − 2, a contradiction

with γwsdR(G) = n − 1. Hence u′ 6= v′. In this case define the function g on G by

g(u′) = g(v′) = 2, g(u) = g(v) = −1 and g(x) = 1 for the remaining vertices. It is

not hard to see that g is a WSDRDF on G and so γwsdR(G) ≤ n− 2, a contradiction.

This completes the proof.

Corollary 3. Let G be a graph of order n ≥ 2. Then γwsdR(G) = n − 1 if and only if
G = K2 ∪ (n− 2)K1.

Proof. If G = K2 ∪ (n− 2)K1, then we deduce from Propositions 7 and 9 that

γwsdR(G) = γwsdR(K2) +
∑

v∈V (G)−V (K2)

γwsdR(K1) = n− 1,

as desired.

Conversely, assume that γwsdR(G) = n−1. If n = 2, then G = K2 and γwsdR(G) = 1,

as desired. Let n ≥ 3. Theorem 2 implies that G is disconnected. If G has two

components of order at least two, say G1, G2, then Proposition 9 and Theorem 2 lead

to

γwsdR(G) = γwsdR(G1) + γwsdR(G2) + γwsdR(G− (G1 ∪G2))

≤ (n(G1)− 1) + (n(G2)− 1) + n(G− (G1 ∪G2))

≤ n− 2,

a contradiction with γwsdR(G) = n− 1. If G has a component of order at least three,

say G1, then it follows from Proposition 9 and Theorem 2 that

γwsdR(G) = γwsdR(G1) + γwsdR(G−G1)

≤ (n(G1)− 2) + n(G−G1)

≤ n− 2,

a contradiction with γwsdR(G) = n− 1. This completes the proof.
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Theorem 3. If G is a graph of order n, then γwsdR(G) ≥ 2γ(G) − n, with equality if
and only if G = Kn.

Proof. Let f = (V−1, V1, V2, V3) be a γwsdR(G)-function. Then it follows from Ob-

servation 1 that

γwsdR(G) = |V1|+ 2|V2|+ 3|V3| − |V−1| = 2|V1|+ 3|V2|+ 4|V3| − n
≥ 2|V1 ∪ V2 ∪ V3| − n ≥ 2γ(G)− n, (2.1)

and the desired inequality is proved. Clearly, if G = Kn, then γwsdR(G) = n =

2γ(G) − n. Now assume that G contains at least one edge. Using Proposition 9, we

observe that γwsdR(G) ≤ n − 1 and therefore |V−1| ≥ 1. If |V2 ∪ V3| ≥ 1, then it

follows from (2.1) that

γwsdR(G) = 2|V1|+ 3|V2|+ 4|V3| − n > 2|V1 ∪ V2 ∪ V3| − n ≥ 2γ(G)− n.

Therefore assume now that |V2 ∪ V3| = 0. Let u ∈ V−1, and let x, y ∈ V1 be two

neighbors of u. The condition f(N [x]) ≥ 1 shows that x has a neighbor in V1 \ {x}.
Furthermore, since every vertex of V−1 has at least two neighbors in V1, we conclude

that V1 \ {x} is a dominating set of G. Hence we deduce from (2.1) that

γwsdR(G) = 2|V1| − n > 2γ(G)− n.

Proposition 10. If G is a graph of order n with minimum degree δ ≥ 2, then γwsdR(G) ≤
n− 2bδ/2c.

Proof. Let t = bδ/2c, and let A = {v1, v2, . . . , vt} be a set of t vertices of G. Define

the function f : V (G) → {−1, 1, 2, 3} by f(x) = −1 for x ∈ A and f(x) = 1 for

x ∈ V (G) \A. Then

f(N [w]) ≥ −t+ (δ + 1− t) = δ + 1− 2t = δ + 1− 2bδ/2c ≥ 1

for each w ∈ V (G). Therefore f is a WSDRDF on G of weight n − 2t and thus

γwsdR(G) ≤ n− 2t.

For odd n ≥ 3, Proposition 7 shows that Proposition 10 is sharp, and for even n ≥ 4,

Proposition 8 shows that Proposition 10 is sharp.

Proposition 11. If G is a graph of order n, then γwsdR(G) ≥ ∆(G) + 2− n.
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Proof. Let w be a vertex of maximum degree, and let f be a γwsdR(G)-function.

Then the definitions imply the desired bound as follows:

γwsdR(G) =
∑

x∈V (G)

f(x) =
∑

x∈N [w]

f(x) +
∑

x∈V (G)\N [w]

f(x)

≥ 1 +
∑

x∈V (G)\N [w]

f(x) ≥ 1− (n− (∆(G) + 1)) = ∆(G) + 2− n.

Corollary 4. [2] If G is a graph of order n, then γsdR(G) ≥ ∆(G) + 2− n.

Example 2 shows that Proposition 11 and Corollary 4 are sharp.

3. Bounds on γsdR(G)

In this section we present more bounds on the signed double Roman domination

number.

Theorem 4. If G 6= K4 is a connected graph of order n and minimum degree δ ≥ 3, then

γsdR(G) ≤ 2n− 2δ − 1.

Proof. We proceed with three cases.

Case 1. Assume that δ = 3p with an integer p ≥ 1. Let q = 2p, and let A =

{v1, v2. . . . , vq} be a set of q vertices of G. Define the function f : V (G)→ {−1, 1, 2, 3}
by f(x) = −1 for x ∈ A, f(u) = 1 for a vertex u ∈ V (G) \ A and f(x) = 2 for

x ∈ V (G) \ (A ∪ {u}). Then

f(N [w]) ≥ −q + 1 + 2(δ − q) = 2δ − 3q + 1 = 6p− 6p+ 1 = 1

for each w ∈ V (G). In addition, the vertex u has at least δ − q = 3p − 2p = p ≥ 1

neighbors of weight 2, and each vi has at least δ − q = p neighbors of weight 2.

Therefore f is an SDRDF on G of weight 2(n−q−1)+1−q = 2n−3q−1 = 2n−2δ−1

when p ≥ 2.

Let now p = 1, that means δ = 3. Since G 6= K4, we observe that we can choose

A = {v1, v2} as an independent set. If we define f as above, then we observe that

each vi has at least two neighbors of weight 2. Thus f is also an SDRDF on G of

weight 2n − 7 = 2n − 2δ − 1. Altogether we see that γsdR(G) ≤ 2n − 2δ − 1 in the

first case.
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Case 2. Assume that δ = 3p + 1 with an integer p ≥ 1. Let q = 2p + 1, and let

A = {v1, v2. . . . , vq} be a set of q vertices of G. Define the function f : V (G) →
{−1, 1, 2, 3} by f(x) = −1 for x ∈ A and f(x) = 2 for x ∈ V (G) \A. Then

f(N [w]) ≥ −q + 2(δ + 1− q) = 2δ − 3q + 2 = 6p+ 4− 6p− 3 = 1

for each w ∈ V (G), and each vi has at least δ−(q−1) = 3p+1−2p = p+1 ≥ 2 neighbors

of weight 2. Thus f is an SDRDF on G of weight 2(n−q)−q = 2n−3q = 2n−2δ−1,

and so γsdR(G) ≤ 2n− 2δ − 1 in the second case too.

Case 3. Assume that δ = 3p + 2 with an integer p ≥ 1. Let q = 2p + 1, and let

A = {v1, v2. . . . , vq} be a set of q vertices of G. Define the function f : V (G) →
{−1, 1, 2, 3} by f(x) = −1 for x ∈ A, f(u) = f(z) = 1 for two different vertices

u, z ∈ V (G) \A and f(x) = 2 for x ∈ V (G) \ (A ∪ {u, z}). Then

f(N [w]) ≥ −q + 2 + 2(δ − q − 1) = 2δ − 3q = 6p+ 4− 6p− 3 = 1

for each w ∈ V (G). In addition, the vertices u and z have at least δ − q − 1 =

3p+2−2p−1−1 = p ≥ 1 neighbors of weight 2, and each vi has at least δ−q−1 = p

neighbors of weight 2. Therefore f is an SDRDF on G of weight 2(n−q−2)+2−q =

2n− 3q − 2 = 2n− 2δ − 1 when p ≥ 2.

Let now p = 1, that means δ = 5. If G is complete, then Proposition 1 implies

γsdR(K6) = 1 = 2n − 2δ − 1. If G is not complete, then let v1 and v2 be two non-

adjacent vertices. Now let A = {v1, v2, v3} be a set of 3 vertices with an arbitary

vertex v3 ∈ V (G) \ {v1, v2}. Since δ = 5 and v1 and v2 are not adjacent, the vertex

v3 has at least three neighbors a1, a2, a3 ∈ V (G) \ A, and v1 has a neighbor b /∈
{a1, a2, a3, v2, v3}. Define the function f : V (G) → {−1, 1, 2, 3} by f(x) = −1 for

x ∈ A, f(b) = 1 and f(c) = 1 for a further vertex c ∈ V (G) \ (A ∪ {b}) and f(x) = 2

for x ∈ V (G) \ (A ∪ {b, c}). Then each vertex vi has at least two neighbors of weight

2, and as above, we observe that f is an SDRDF on G of weight 2n − 2δ − 1. This

completes the proof.

If n ≥ 5, then Proposition 1 shows that Theorem 4 is sharp. If n ≥ 6 and δ ≥ n−1
2 ,

then Theorem 4 shows that γsdR(G) ≤ n. I think that this is valid for all connected

graphs.

Conjecture 1. If G is a connected graph of order n ≥ 2, then γsdR(G) ≤ n.

Proposition 12. If G is an (n− 2)-regular graph of order n ≥ 6, then γsdR(G) = 3.

Proof. Since G is (n− 2)-regular, the graph is isomorphic to the complete r-partite

graph Kn1,n2,...,nr
with r ≥ 3 and n1 = n2 = . . . = nr = 2. Let Xi = {ui, vi} be

the partite sets of G for 1 ≤ i ≤ r. Define the function f : V (G) → {−1, 1, 2, 3} by
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f(ui) = −1 for 1 ≤ i ≤ r, f(v1) = f(v2) = f(v3) = 2 and f(vi) = 1 for 4 ≤ i ≤ r.

Then f is an SDRDF on G of weight 3 and thus γsdR(G) ≤ 3.

Suppose on the contrary that γsdR(G) ≤ 2. Let f be a γsdR(G)-function. Assume

that there exists a vertex, say u1, with f(u1) = 3. If f(v1) = a for a ∈ {−1, 1, 2, 3},
then the condition f(N [v1]) ≥ 1 implies f(V (G) \ {u1, v1}) ≥ 1−a. This leads to the

contradiction 2 ≥ γsdR(G) = f(V (G)) ≥ 1−a+ f(u1) + f(v1) = 4. Next assume that

there exists a vertex, say u1, with f(u1) = 2. If f(v1) = a for a ∈ {−1, 1, 2, 3}, then

f(V (G)\{u1, v1}) ≥ 1−a. Thus 2 ≥ γsdR(G) = f(V (G)) ≥ 1−a+f(u1)+f(v1) = 3, a

contradiction. Consequently, f(ui), f(vi) ≤ 1 for all 1 ≤ i ≤ r, but this is impossible.

Hence γsdR(G) ≥ 3 and so γsdR(G) = 3.

For n = 2p with p ≥ 3, the (n − 2)-regular graphs in Proposition 12 are further

examples which demonstrate the sharpness of Theorem 4. Next we improve Theorem

4 for small δ, more precisely for δ < n+2
2 .

Theorem 5. If G is a connected graph of order n ≥ 3, then γsdR(G) ≤
⌊
3n
2

⌋
− 2.

Proof. Assume that T is a spanning tree of G. Let X,Y be the bipartite sets of T

with |Y | ≤ |X|. We proceed with two cases.

Case 1. Assume that |Y | = 1 with Y = {y}. If X = {x1, x2, . . . , xn−1}, then define

the function f by f(y) = 3, f(x1) = f(x2) = −1 and f(xi) = 1 for 3 ≤ i ≤ n − 1.

Then f is an SDRDF on T of weight n − 2. Since f is also an SDRDF on G, we

deduce that

γsdR(G) ≤ n− 2 ≤
⌊

3n

2

⌋
− 2.

Case 2. Assume that |Y | ≥ 2 with Y = {y1, y2, . . . , yt} and X = {x1, x2, . . . , xn−t}.
Since T is connected, we observe that there exists a vertex, say x1, with dT (x1) ≥ 2.

Now define the function f by f(x1) = −1, f(xi) = 1 for 2 ≤ i ≤ n− t and f(yj) = 2

for 1 ≤ j ≤ t. Then f is an SDRDF on T of weight 2t+ n− t− 2 = n+ t− 2. Since

f is also an SDRDF on G, we deduce that

γsdR(G) ≤ n+ t− 2 ≤ 3n

2
− 2,

and since γsdR(G) is an integer, we obtain the desired bound.

A set S ⊆ V (G) is a 2-packing of the graph G if N [u]∩N [v] = ∅ for any two distinct

vertices u, v ∈ S. The maximum cardinality of a 2-packing in G is the 2-packing

number, denoted by ρ(G) = ρ.

Proposition 13. [2] If G is a graph of order n, minimum degree δ and packing number
ρ, then γsdR(G) ≥ ρ(δ + 2)− n.

The proof of the next result is identically with the proof of Proposition 3.8 in [2] and

is therefore omitted.
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Proposition 14. If G is a graph of order n, minimum degree δ and packing number ρ,
then γwsdR(G) ≥ ρ(δ + 2)− n.

The next example will demonstrate that the bounds in Propositions 13 and 14 are

sharp.

Example 4. Let F be an arbitrary graph of order t ≥ 1, and for each vertex v ∈ V (F )
add a vertex-disjoint copy of a complete graph Ks (s ≥ 5) and identify the vertex v with
one vertex of the added complete graph. Let H denote the resulting graph. Furthermore, let
H1, H2, . . . , Ht be the added copies of Ks. For i = 1, 2, . . . , t, let vi be the vertex of Hi that
is identified with a vertex of F . We now construct an SDRDF on H as follows. For each
i = 1, 2, . . . , t, let fi : V (Hi) → {−1, 1, 2, 3} be the SDRDF on the complete graph defined
as in the proof of Proposition 4.1 in [2] such that fi(vi) ≥ 1. As shown in Proposition
4.1 in [2], we have ω(fi) = 1. Now let f : V (H) → {−1, 1, 2, 3} be the function defined
by f(v) = fi(v) for each v ∈ V (Hi). Then f is an SDRDF of H of weight t and hence
γwsdR(H) ≤ γsdR(H) ≤ t. Since n(H) = ts, δ(H) = s − 1 and ρ(H) = t, Proposition 14
implies that γsdR(H) ≥ γwsRd(H) ≥ ρ(H)(δ(H)+2)−n(H) = t. Consequently, γwsdR(H) =
γsdR(H) = ρ(H)(δ(H) + 2)− n(H) = t.

4. Special classes of graphs

In this section, we determine the weak signed double Roman domination number for

special classes of graphs.

Proposition 15. If n ≥ 1, then γwsdR(K1,n) = 1.

Proof. Let w be the central vertex of G = K1,n, and let f be a γwsdR(G)-function.

The definitions imply γwsdR(G) =
∑

x∈N [w] f(x) ≥ 1. For n 6= 1, 3 it follows from

Proposition 2 that γwsdR(G) ≤ γsdR(G) = 1. Therefore γwsdR(G) = 1 for n 6= 1, 3.

Since it is straightforward to verify that γwsdR(K1,1) = γwsdR(K1,3) = 1, the proof is

complete.

Proposition 16. If Cn is a cycle of length n ≥ 3, then γwsdR(Cn) = dn/3e when
n ≡ 0, 1 (mod 3) and γwsdR(Cn) = dn/3e+ 1 when n ≡ 2 (mod 3).

Proof. Let Cn = v1v2 . . . vnv1. Applying Corollary 1, we observe that γwsdR(Cn) ≥
dn/3e.
Let first n = 3p for an integer p ≥ 1. Define f(v3i) = −1 and f(v3i−2) = f(v3i−1) = 1

for 1 ≤ i ≤ p. Then f is a WSDRDF on Cn of weight p = n/3 and thus γwsdR(Cn) ≤ p.
Therefore γwsdR(Cn) = dn/3e in this case.

Let second n = 3p+1 for an integer p ≥ 1. Define f(v3i) = −1, f(v3i−2) = f(v3i−1) =

1 for 1 ≤ i ≤ p and f(v3p+1) = 1. Then f is a WSDRDF on Cn of weight p+1 = dn/3e
and thus γwsdR(Cn) ≤ dn/3e. Therefore γwsdR(Cn) = dn/3e in this case.
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Finally, let n = 3p + 2 for an integer p ≥ 1, and let f be a γwsdR(Cn)-function. If

f(x) ≥ 1 for each x ∈ V (Cn), then γwsdR(Cn) ≥ n ≥ dn/3e+1. Let next, without loss

of generality, f(v1) = −1. Then v1 has a positive neighbor, say v2. If f(v2) = 3, then

f(v1)+f(v2) = 2. If f(v2) = 2 or f(v2) = 1, then f(v3) ≥ 1 and thus f(v2)+f(v3) ≥ 2.

Hence we have found two adjacent vertices vj and vj+1 such that f(vj)+f(vj+1) ≥ 2.

If we assume, without loss of gerality, that f(v3p+1) + f(v3p+2) ≥ 2, then we obtain

γwsdR(Cn) = f(V (Cn)) = f(v3p+1) + f(v3p+2) +

p∑
i=1

f(N [v3i−1]) ≥ p+ 2 =
⌈n

3

⌉
+ 1.

Otherwise, define g(v3i) = −1, g(v3i−2) = g(v3i−1) = 1 for 1 ≤ i ≤ p and g(v3p+1) =

g(v3p+2) = 1. Then g is a WSDRDF on Cn of weight p + 2 = dn/3e + 1 and thus

γwsdR(Cn) ≤ dn/3e+ 1. Therefore, γwsdR(Cn) = dn/3e+ 1 in this case.

Proposition 17. Let Pn be a path of order n ≥ 1. Then γwsdR(P2) = 1, γwsdR(Pn) =
dn/3e when n ≡ 0, 1 (mod 3) and γwsdR(Pn) = dn/3e+ 1 when n ≡ 2 (mod 3) and n ≥ 3.

Proof. Let Pn = v1v2 . . . vn, and let f be a γwsdR(Pn)-function.

First assume that n = 3p+ 1 for an integer p ≥ 0. If p = 0, then the result is trivial.

If p ≥ 1, then we observe that f(v1) + f(v2) ≥ 1 and f(v3p) + f(v3p+1) ≥ 1. This

leads to

γwsdR(Pn) = f(V (Pn)) = f(v1) + f(v2) + f(v3p) + f(v3p+1) +

p−1∑
i=1

f(N [v3i+1])

≥ 2 + p− 1 = p+ 1 =
⌈n

3

⌉
.

Next define g(v3i+1) = −1 for 0 ≤ i ≤ p, g(v2) = g(v3p) = 2 and g(v3i) = g(v3i+2) = 1

for 1 ≤ i ≤ p − 1. Then g is a WSDRDF on Pn of weight p + 1 = dn/3e and thus

γwsdR(Pn) ≤ dn/3e. Therefore γwsdR(Pn) = dn/3e in this case.

Next let n = 3p for an integer p ≥ 1. According to Propostion 3, we note that

γwsdR(Pn) ≤ γsdR(Pn) = n/3. Furthermore, we observe that

γwsdR(Pn) = f(V (Pn)) =

p−1∑
i=0

f(N [v3i+2]) ≥ p = n/3

and thus γwsdR(Pn) = n/3 in this case.

Finally, asume that n = 3p+ 2 for an integer p ≥ 0. Clearly, γwsdR(P2) = 1. Let now

p ≥ 1. If f(v1) + f(v2) ≥ 2, then we have

γwsdR(Pn) = f(V (Pn)) = f(v1) + f(v2) +

p∑
i=1

f(N [v3i+1]) ≥ 2 + p = p+ 2 =
⌈n

3

⌉
+ 1.



L. Volkmann 13

Next assume that f(v1)+f(v2) = 1. Then f(v1) = −1 and f(v2) = 2 or f(v1) = 2 and

f(v2) = −1. In both cases we observe that f(v3) ≥ 1 and so f(v1)+f(v2)+f(v3) ≥ 2.

This leads to

γwsdR(Pn) = f(V (Pn))

= f(v1) + f(v2) + f(v3) +

p−1∑
i=1

f(N [v3i+2]) + f(v3p+1) + f(v3p+2)

≥ 2 + p− 1 + 1 = p+ 2 =
⌈n

3

⌉
+ 1.

Conversely, Proposition 3 yields γwsdR(Pn) ≤ γsdR(Pn) = dn/3e + 1 and thus

γwsdR(Pn) = dn/3e+ 1 in the last case.

Proposition 18. Let S(r, s) be a double star with 1 ≤ r ≤ s.

(a) If 7 ≤ r, then γwsdR(S(r, s)) = −4.

(b) γwsdR(S(6, s)) = −3.

(c) γwsdR(S(5, s)) = −4 for s 6= 6 and γwsdR(S(5, 6)) = −3.

(d) γwsdR(S(4, s)) = −3.

(e) γwsdR(S(3, s)) = −2.

(f) γwsdR(S(2, s)) = −1 for s ≥ 3 and γwsdR(S(2, 2)) = 0.

(g) γwsdR(S(1, s)) = 0 for s ≥ 3, γwsdR(S(1, 1)) = 2 and γwsdR(S(1, 2)) = 1.

Proof. Let u and v be two adjacent vertices of S(r, s) such that u is adjacent to

r ≥ 1 leaves and v is adjacent to s ≥ 1 leaves. If f is a γwsdR(S(r, s))-function, then

the definition implies

ω(f) = f(N [u]) + f(N [v])− f(u)− f(v) ≥ 1 + 1− 3− 3 = −4

and so γwsdR(S(r, s)) ≥ −4.

Let u1, u2, . . . , ur be the leaves adjacent to u and v1, v2, . . . , us be the leaves adjacent

to v.

(a) Let r ≥ 7. Define the function g : V (G) → {−1, 1, 2, 3} by g(u) = g(v) = 3.

Furthermore, if r = 2t even for an integer t ≥ 4, then let g(u1) = 2,

g(u2) = g(u3) = . . . = g(ut−3) = 1 and g(ut−2) = g(ut−1) = . . . = g(u2t) = −1 and if

r = 2t+ 1 ≥ 7 is odd for an integer t ≥ 3, then let g(u1) = g(u2) = . . . = g(ut−2) = 1

and g(ut−1) = g(ut) = . . . = g(u2t+1) = −1. In addition, if s = 2t is even

for an integer t ≥ 4, then let g(v1) = 2, g(v2) = g(v3) = . . . = g(vt−3) = 1 and

g(vt−2) = g(vt−1) = . . . = g(v2t) = −1 and if s = 2t+1 is odd for an integer t ≥ 3, then

let g(v1) = g(v2) = . . . = g(vt−2) = 1 and g(vt−1) = g(vt) = . . . = g(v2t+1) = −1.
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Then g is a WSDRDF on S(r, s) of weight -4 and therefore γwsdR(S(r, s)) = −4 in

this case.

(b) Let r = 6. Let f be a γwsdR(S(6, s))-function. If f(u) + f(v) ≤ 5, then ω(f) =

f(N [u]) + f(N [v])− f(u)− f(v) ≥ 1 + 1− 5 = −3. However, if f(u) + f(v) = 6, then

f(N [u]) ≥ 7−5 = 2 and so ω(f) = f(N [u])+f(N [v])−f(u)−f(v) ≥ 2+1−6 = −3.

Conversely, define the function g : V (G)→ {−1, 1, 2, 3} by g(u1) = 1 and g(ui) = −1

for 2 ≤ i ≤ 6.

Futhermore, if s = 2t + 1 is odd for an integer t ≥ 3, then let g(u) = g(v) = 3,

g(v1) = g(v2) = . . . = g(vt−2) = 1 and g(vt−1) = g(vt) = . . . = g(v2t+1) = −1. Then

g is a WSDRDF on S(r, s) of weight -3 and therefore γwsdR(S(r, s)) = −3 in this

case.

If s = 2t is even for an integer t ≥ 3, then let g(u) = 2, g(v) = 3,

g(v1) = g(v2) = . . . = g(vt−2) = 1 and g(vt−1) = g(vt) = . . . = g(v2t) = −1.

Again g is a WSDRDF on S(r, s) of weight -3 and therefore γwsdR(S(r, s)) = −3 also

in this case.

(c) r = 5. If s 6= 6, then define the function g : V (G) → {−1, 1, 2, 3} by g(u) =

g(v) = 3 and g(ui) = −1 for 1 ≤ i ≤ 5. In addition, if s = 5, then define g(vi) = −1

for 1 ≤ i ≤ 5. If s = 2t + 1 odd for an integer t ≥ 3, then define g(v1) = g(v2) =

. . . = g(vt−2) = 1 and g(vt−1) = g(vt) = . . . = g(v2t+1) = −1. If s = 2t is even for

an integer t ≥ 4, then define g(v1) = 2, g(v2) = . . . = g(vt−3) = 1 and g(vt−2) =

g(vt−1) = . . . = g(v2t) = −1. In all these cases, we observe that g is a WSDRDF on

S(5, s) of weight -4 and therefore γwsdR(S(r, s)) = −4 in these cases.

It is straightforward to verify that γwsdR(S(5, 6)) = −3.

(d) Let r = 4. If f is a γwsdR(S(4, s))-function, then we observe as in Case (b) that

γwsdR(S(4, s)) ≥ −3.

Conversely, define the function g : V (G) → {−1, 1, 2, 3} by g(ui) = −1 for

1 ≤ i ≤ 4. If s = 2t is even for an integer t ≥ 2, then define g(u) = 2, g(v) = 3,

g(v1) = g(v2) = . . . = g(vt+2) = −1 and g(vt+3) = g(vt+4) = . . . = g(v2t) = 1.

If s = 2t + 1 is odd for an integer t ≥ 2, then define g(u) = g(v) = 3,

g(v1) = g(v2) = . . . = g(vt+3) = −1 and g(vt+4) = g(vt+5) = . . . = g(v2t+1) = 1. In

both cases, g is a WSDRDF on S(4, s) of weight -3 and therefore γwsdR(S(4, s)) = −3.

(e) Let r = 3. Let f be a γwsdR(S(3, s))-function. If f(u) + f(v) ≤ 4, then ω(f) =

f(N [u]) + f(N [v]) − f(u) − f(v) ≥ 1 + 1 − 4 = −2. If f(u) + f(v) = 5, then

f(N [u]) ≥ 5−3 = 2 and so ω(f) = f(N [u])+f(N [v])−f(u)−f(v) ≥ 2+1−5 = −2.

If f(u) + f(v) = 6, then f(N [u]) ≥ 6 − 3 = 3 and so ω(f) = f(N [u]) + f(N [v]) −
f(u)− f(v) ≥ 3 + 1− 6 = −2.

Conversely, define the function g : V (G)→ {−1, 1, 2, 3} by g(ui) = −1 for 1 ≤ i ≤ 3.

If s = 3, then define g(u) = g(v) = 2 and g(vi) = −1 for 1 ≤ i ≤ 3. Then g is a

WSDRDF on S(3, 3) of weight -2 and thus γwsdR(S(3, 3)) = −2.

If s = 2t is even for an integer t ≥ 2, then define g(u) = 2, g(v) = 3,
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g(v1) = g(v2) = . . . = g(vt+2) = −1 and g(vt+3) = g(vt+4) = . . . = g(v2t) = 1.

If s = 2t + 1 is odd for an integer t ≥ 2, then define g(u) = g(v) = 3,

g(v1) = g(v2) = . . . = g(vt+3) = −1 and g(vt+4) = g(vt+5) = . . . = g(v2t+1) = 1. In

both cases, g is a WSDRDF on S(3, s) of weight -2 and therefore γwsdR(S(3, s)) = −2.

(f) Let r = 2. Let f be a γwsdR(S(2, s))-function. If f(u) + f(v) ≤ 3, then ω(f) =

f(N [u])+f(N [v])−f(u)−f(v) ≥ 1+1−3 = −1. If f(u)+f(v) = 4, then f(N [u]) ≥ 2

and so ω(f) = f(N [u])+f(N [v])−f(u)−f(v) ≥ 2+1−4 = −1. If f(u)+f(v) = 5, then

f(N [u]) ≥ 5−2 = 3 and so ω(f) = f(N [u])+f(N [v])−f(u)−f(v) ≥ 3+1−5 = −1.

If f(u) + f(v) = 6, then f(N [u]) ≥ 6 − 2 = 4 and so ω(f) = f(N [u]) + f(N [v]) −
f(u)− f(v) ≥ 4 + 1− 6 = −1.

Conversely, define the function g : V (G)→ {−1, 1, 2, 3} by g(ui) = −1 for 1 ≤ i ≤ 2.

It is straightforward to verify that γwsdR(S(2, 2)) = 0 and γwsdR(S(2, 3)) = −1 Let

next s ≥ 4.

If s = 2t is even for an integer t ≥ 2, then define g(u) = 2, g(v) = 3,

g(v1) = g(v2) = . . . = g(vt+2) = −1 and g(vt+3) = g(vt+4) = . . . = g(v2t) = 1.

If s = 2t + 1 is odd for an integer t ≥ 2, then define g(u) = g(v) = 3,

g(v1) = g(v2) = . . . = g(vt+3) = −1 and g(vt+4) = g(vt+5) = . . . = g(v2t+1) = 1. As

above, g is a WSDRDF on S(2, s) of weight -1 and therefore γwsdR(S(2, s)) = −1

also in these cases.

(g) Let r = 1. Let f be a γwsdR(S(1, s))-function. If f(u) + f(v) ≤ 2, then ω(f) =

f(N [u])+f(N [v])−f(u)−f(v) ≥ 1+1−2 = 0. If f(u)+f(v) = 3, then f(N [u]) ≥ 2

and so ω(f) = f(N [u]) + f(N [v])− f(u)− f(v) ≥ 2 + 1− 3 = 0. If f(u) + f(v) = 4,

then f(N [u]) ≥ 3 and so ω(f) = f(N [u]) + f(N [v])− f(u)− f(v) ≥ 3 + 1− 4 = 0. If

f(u) + f(v) = 5, then f(N [u]) ≥ 4 and so ω(f) = f(N [u]) + f(N [v])− f(u)− f(v) ≥
4+1−5 = 0. If f(u)+f(v) = 6, then f(N [u]) ≥ 5 and so ω(f) = f(N [u])+f(N [v])−
f(u)− f(v) ≥ 5 + 1− 6 = 0.

Furthermore, it is a simple matter to verify that γwsdR(S(1, 1)) = 2, γwsdR(S(1, 2)) =

1 and γwsdR(S(1, 3)) = 0. Let now s ≥ 4.

Define the function g : V (G) → {−1, 1, 2, 3} by g(u1) = −1. If s = 2t is even for an

integer t ≥ 2, then define g(u) = 2, g(v) = 3, g(v1) = g(v2) = . . . = g(vt+2) = −1

and g(vt+3) = g(vt+4) = . . . = g(v2t) = 1. If s = 2t + 1 is odd for an integer

t ≥ 2, then define g(u) = g(v) = 3, g(v1) = g(v2) = . . . = g(vt+3) = −1 and

g(vt+4) = g(vt+5) = . . . = g(v2t+1) = 1. Again, g is a WSDRDF on S(1, s) of weight

0 and therefore γwsdR(S(1, s)) = 0 for s ≥ 4.

Proposition 19. If 2 ≤ p ≤ q are integers, then γwsdR(K2,q) = 2, γwsdR(K3,q) = 3 and
γwsdR(Kp,q) = 4 for p ≥ 4.

Proof. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq} be the bipartite sets of

Kp,q, and let f be a γwsdR(Kp,q)-function. If there exists a vertex x ∈ X and y ∈ Y
with f(x) = f(y) = −1, then the property f(N [x]) ≥ 1 implies f(Y ) ≥ 2 and the
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property f(N [y]) ≥ 1 implies f(X) ≥ 2 and thus ω(f) ≥ 4.

First let p ≥ 4. Assume that f(x) ≥ 1 for each x ∈ X. Then

ω(f) = f(N [x1]) +

p∑
i=2

f(xi) ≥ 1 + (p− 1) = p ≥ 4.

Analogously we see that ω(f) ≥ 4 when f(y) ≥ 1 for each y ∈ Y . Therefore we obtain

ω(f) ≥ 4 in each case. It follows from Proposition 5 that γwsdR(Kp,q) ≤ γsdR(Kp,q) =

4 and thus γwsdR(Kp,q) = 4 in this case.

Next let p = 3. As above we observe that ω(f) ≥ 3 when f(x) ≥ 1 for each x ∈ X
or f(y) ≥ 1 for each y ∈ Y . Therefore ω(f) ≥ 3 in each case. Now define the

function g : V (G) → {−1, 1, 2, 3} as follows. Let g(x1) = g(x2) = g(x3) = 1 and if

Y = {y1, y2, ..., y2t} for an integer t ≥ 2, then let g(y1) = g(y2) = . . . = g(yt) = 1

and g(yt+1) = g(yt+2) = . . . = g(y2t) = −1 and if Y = {y1, y2, ..., y2t+1} for an

integer t ≥ 1, then let g(y1) = 2, g(y2) = g(y3) = . . . = g(yt) = 1 and g(yt+1) =

g(yt+2) = . . . = g(y2t+1) = −1. Then g is a WSDRDF on K3,q of weight 3 and thus

γwsdR(K3,q) ≤ 3. This yields to γwsdR(K3,q) = 3.

Finally, let p = 2. As above, we see that ω(f) ≥ 2 when f(x) ≥ 1 for each x ∈ X or

f(y) ≥ 1 for each y ∈ Y . Therefore ω(f) ≥ 2 in each case. Now define the function

g : V (G)→ {−1, 1, 2, 3} as follows. Let g(x1) = g(x2) = 1 and if Y = {y1, y2, ..., y2t}
for an integer t ≥ 1, then let g(y1) = g(y2) = . . . = g(yt) = 1 and g(yt+1) = g(yt+2) =

. . . = g(y2t) = −1 and if Y = {y1, y2, ..., y2t+1} for an integer t ≥ 1, then let g(y1) = 2,

g(y2) = g(y3) = . . . = g(yt) = 1 and g(yt+1) = g(yt+2) = . . . = g(y2t+1) = −1. Then

g is a WSDRDF on K2,q of weight 2 and thus γwsdR(K2,q) ≤ 2. This leads to

γwsdR(K2,q) = 2.

Proposition 20. If G = Kn1,n2,...,nr is a complete r-partite graph with 3 ≤ n1 ≤ n2 ≤
. . . ≤ nr and r ≥ 3, then γwsdR(G) = γsdR(G) = 3.

Proof. Let Xi = {vi1, vi2, . . . , vini
} be the partite sets of G for 1 ≤ i ≤ r, and let f be

a γwsdR(G)-function. Assume that there exists a partite set Xk such f(vki ) ≥ 1 for

each 1 ≤ i ≤ nk. Then

ω(f) = f(N [vk1 ]) +

nk∑
i=2

f(vki ) ≥ 1 + (nk − 1) = nk ≥ 3.

Next assume that each partite set Xi contains a vertex xi with f(xi) = −1. Then

f(N [xi]) ≥ 1 yields f(V (G) \Xi) ≥ 2 for each 1 ≤ i ≤ r. Therefore

(r − 1)ω(f) = (r − 1)f(V (G)) =

r∑
i=1

f(V (G) \Xi) ≥ 2r
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and thus

ω(f) = f(V (G)) ≥
⌈

2r

r − 1

⌉
= 3.

Consequently, γsdR(G) ≥ γwsdR(G) = ω(f) ≥ 3 in every case.

Conversely, we shall define a function f : V (G) → {−1, 1, 2, 3} such that f(X1) =

f(X2) = f(X3) = 1 so that f(xi) ≥ 2 for at least one vertex xi ∈ Xi for i = 1, 2, 3

and f(Xi) = 0 for 4 ≤ i ≤ r.
First let i ∈ {1, 2, 3}. If Xi = {v1i , v2i , v3i }, then define f(v1i ) = 3 and f(v2i ) =

f(v3i ) = −1. If Xi = {v1i , v2i , ..., v
2p
i } for an integer p ≥ 2, then define f(v1i ) = 2,

f(v2i ) = f(v3i ) = . . . = f(vpi ) = 1 and f(vp+1
i ) = f(vp+2

i ) = . . . = f(v2pi ) = −1.

If Xi = {v1i , v2i , ..., v
2p+1
i } for an integer p ≥ 2, then define f(v1i ) = f(v2i ) = 2,

f(v3i ) = f(v4i ) = . . . = f(vpi ) = 1 and f(vp+1
i ) = f(vp+2

i ) = . . . = f(v2p+1
i ) = −1.

Now let i ≥ 4. If Xi = {v1i , v2i , ..., v
2p
i } for an integer p ≥ 2, then define f(v1i ) =

f(v2i ) = . . . = f(vpi ) = 1 and f(vp+1
i ) = f(vp+2

i ) = . . . = f(v2pi ) = −1. If Xi =

{v1i , v2i , ..., v
2p+1
i } for an integer p ≥ 1, then define f(v1i ) = 2, f(v2i ) = f(v3i ) = . . . =

f(vpi ) = 1 and f(vp+1
i ) = f(vp+2

i ) = . . . = f(v2p+1
i ) = −1.

We observe that f is an SDRDF on G of weight 3 and thus γwsdR(G) ≤ γsdR(G) ≤ 3.

Altogether, we have γwsdR(G) = γsdR(G) = 3.

Proposition 21. If G = Kn1,n2,...,nr is an r-partite graph with 2 = n1 ≤ n2 ≤ . . . ≤ nr

and r ≥ 3, then γwsdR(G) = 2.

Proof. Let Xi = {vi1, vi2, . . . , vini
} be the partite sets of G for 1 ≤ i ≤ r, and let f be

a γwsdR(G)-function. Assume that there exists a partite set Xk such f(vki ) ≥ 1 for

each 1 ≤ i ≤ nk. Then

ω(f) = f(N [vk1 ]) +

nk∑
i=2

f(vki ) ≥ 1 + (nk − 1) = nk ≥ 2.

Next assume that each partite set Xi contains a vertex xi with f(xi) = −1. As

in the proof of Proposition 20, we obtain ω(f) ≥ 3 in this case. Consequently,

γwsdR(G) = ω(f) ≥ 2 in every case.

Conversely, we define the function g : V (G) → {−1, 1, 2, 3} as follows. Let g(v11) =

g(v12) = 1. Let now i ≥ 2. If Xi = {v1i , v2i , ..., v
2p
i } for an integer p ≥ 1, then define

g(v1i ) = g(v2i ) = . . . = g(vpi ) = 1 and g(vp+1
i ) = g(vp+2

i ) = . . . = g(v2pi ) = −1. If

Xi = {v1i , v2i , ..., v
2p+1
i } for an integer p ≥ 1, then define g(v1i ) = 2, g(v2i ) = g(v3i ) =

. . . = g(vpi ) = 1 and g(vp+1
i ) = g(vp+2

i ) = . . . = g(v2p+1
i ) = −1. Then g is a WSDRDF

on G of weight 2 and thus γwsdR(G) ≤ 2. Consequently, γwsdR(G) = 2.
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