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Saylé Sigarreta1,∗, Hugo Cruz-Suárez1,†, Sergio Torralbas Fitz2

1
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Abstract: In this paper, we examine a specific type of random chains and pro-

pose a unified approach to studying the degree-based topological indices, including
their extreme values. We derive explicit analytical expressions for the expected val-

ues and variances of these indices and we establish the asymptotic behavior of the
indices. Specifically, we analyze the first Zagreb index, Sombor index, harmonic index,

Geometric-Arithmetic index, Inverse Sum Index, and the second Zagreb index for var-

ious general random chains, including random phenylene, random polyphenyl, random
hexagonal, and linear chains.
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1. Introduction

A graph is defined as a pair G = (V,E), where the elements of V are the vertices

of the graph G and the elements of E are its edges. The graphs considered in this

manuscript are, unless otherwise specified finite, simple and connected. Undoubtedly,

graph theory concepts are potentially applicable for many purposes, for instance, a

chemical graph is a model of a chemical system, i.e., a graph is used to represent a

molecule by considering the atoms as the nodes of the graph and the molecular bonds

as the edges.
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The topological indices, on the other hand, quantify the structural information con-

tained in the graph and are independent of the numbering of the nodes and edges. In

1947, Wiener began to use topological indices to study some physico-chemical prop-

erties of alkanes, thus giving rise to chemical graph theory [36]. In fact, since then,

several topological indices have been introduced and extensively studied to better

understand the molecular structure [17, 25, 32]. In particular, Sombor index was

recently introduced by Gutman in [12]. Recent papers about Sombor index can be

found in [2–5, 19, 20]. Also, Sombor index has several generalizations in the papers

[10, 13, 24]. Nowadays, the characterization of molecular structures through topolog-

ical indices remains a key focus of chemical graph theory, which plays a crucial role

in designing molecules with specific physico-chemical or biological properties.

Many important topological indices, specifically degree-based indices, can be defined

as

TI(G) =
∑

vu∈E(G)

h(dv, du), (1.1)

where h is some function with the property h(x, y) = h(y, x) for x, y ∈ {1, 2, . . . } and

dv is the degree of a node v. In the rest of the manuscript, we will denote h(x, y) as

hx,y.

In the field of random chains analysis, topological indices have been an evolving

research topic for the past two decades [31]. Multiple topological indices have been

analyzed for different random chains, such as, random cyclooctane chains ([28],[37]),

random polyphenyl chains ([29],[16]), random phenylene chains ([27], [26]), random

spiro chains ([15],[35]) and random hexagonal chains ([6],[8]). In the same vein, in

[38], Definition 2.1, introduced the concept of a general random chain. In this paper,

we adopt this definition with slight modifications.

Definition 1. We say that a graph H is a random chain generated by a graph G if the
following conditions hold: H contains n ∈ N copies of G (so, we can denote H as Gn), any
two copies of G are either adjacent (i.e., they are attached in certain way) or non-adjacent
and the adjacent copies induce a path of n vertices. The construction of such a random
chain can proceed as follows:

(a) G1 = G and G2 consists of two copies of G attached in a specific manner.

(b) For each n > 2, Gn is constructed by attaching one copy ofG to the last copy ofG inGn−1

in m (m ≥ 1) specific ways, resulting in the graphs G1
n, G

2
n, . . . , G

m
n with probabilities

p1, p2, . . . , pm respectively, where pi > 0 and
∑m
i=1 pi = 1.

Hence, from now on, we will denote Gn as G(n, p1, p2, . . . , pm).

In addition, the article [38] focused on establishing the distributions of Sombor indices

in a general random chain, where explicit analytical expressions for the expected

values and variances were derived. Note that, G(n, p1, p2, . . . , pm) is constructed by

a zero-order Markov process (0MP ). At this point, it is important to highligth

that random chains play crucial roles in chemistry and material science due to their
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unique structural and chemical properties. They are widely used in applications

such as conducting polymers, organic electronics, elastomer design, and biocompatible

materials ([21],[22]).

Given a random chain, let Li denote the link (attachment) selected at time i ≥ 2,

specifically, L2 represents the initial link, and for i ≥ 3, Li is a random variable with

range {1, 2, . . . ,m} where, pj = P(Li = j). For us, a random chain generated by a

graph G is referred to as a 0MP -random chain with respect to a topological index

TI, if for all n ≥ 3

TI(G(n, p1, p2, . . . , pm))− TI(G(n− 1, p1, p2, . . . , pm)) = g(Ln),

where g : {1, 2, . . . ,m} → R. In simple terms, for all n ≥ 3, the change in the

calculation of the topological index from time n − 1 to n depends solely on the last

link, making it independent of the links selected in previous steps.

The primary goal of this manuscript is to derive explicit formulas for the expected

value, variance, and asymptotic distribution of a 0MP -random chain concerning the

topological indices defined in Equation (1.1). Furthermore, we show that several

well-known random chains, including random phenylene, random polyphenyl, random

cyclooctane, and linear chains, fit within this framework, which also allows us to

use the same methodology to study the deterministic versions of these chains. As

a result, various topological indices are examined for these structures, with several

known results emerging as corollaries.

2. Main Result

In this section, we state and prove our main result. First, let n ≥ 2 and consider the

following notation: TIn := TI(G(n, p1, p2, . . . , pm)), α := E(g(X)) and β := V(g(X)),

where X ∼ Li for i ≥ 3. Here, when m ≥ 2, we use G (n, p1, p2, . . . , pm−1) instead of

G (n, p1, p2, . . . , pm) since
∑m

i=1 pi = 1.

Theorem 1. Given a 0MP -random chain with respect to a topological index TI, for
n ≥ 2, we have

(a) E(TIn) = TI2 + α(n− 2).

(b) V (TIn) = β(n− 2).

(c) As n→∞, TIn−αn√
βn

D−→ N(0, 1).

(d) As n→∞, TIn
n

a.s−→ α.

Proof. It follows by definition that: for all n ≥ 3,

TIn − TIn−1 = g(Ln), (2.1)
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for some g : {1, 2, . . . ,m} → R. At this point, by using the above recursive relation

we have that

TIn = TI2 +

n∑
i=3

g(Li),

which directly allows us to obtain the expressions for the expectation and the variance.

Likewise, since {g(Li)}i≥3 are independent and identically distributed (Chapter 2,

Theorem 10.4. [11]), due to the the Central Limit Theorem, the Strong Law of Large

Number and Theorem 11.4. (Chapter 5, [11]) we can verify (c) and (d), respectively.

Remark 1. At this point, it is important to emphasize that, given a 0MP -random chain
with respect to a topological index TI, the following equivalence holds: TIn = TI2+α(n−2)
for n ≥ 2 (a deterministic sequence) if and only if g(1) = g(2) = · · · = g(m); meaning
that, the change remains constant throughout. In particular, when m = 1 by vacuity the
previous equivalence is verified. Finally, note that, TIn = TI2 + aT · X, where aT =
(g(1), g(2), . . . , g(m)) and X = (X1, X2, . . . , Xm) is a multinomial random variable with
parameters n − 2 and (p1, p2, . . . , pm). In this context, it is useful to point out that, the
approximation given in the previous theorem for the convergence in distribution is identical
to the one obtained by using the previous representation and the Central Limit Theorem in
the case of random vectors [30].

3. Application to 0MP -Random Chains

The purpose of this section is to provide examples of 0MP -random chains with respect

to degree-based topological indices. We will build on the results of the previous section

and the following corollaries encapsulate these ideas.

Corollary 1. Let RPCn = RPC (n, p1, p2) be a random phenylene chain with n ≥ 2 and
TI a degree-based topological index. Then

(a) TIn = AX +Bn+ C,

(b) E (TIn) = (Ap1 +B)n− 2Ap1 + C,

(c) V (TIn) = A2p1 (1− p1) (n− 2),

(d) As n→∞, TIn−(Ap1+B)n

A
√
p1(1−p1)n

D−→ N(0, 1),

(e) As n→∞, TIn
n

a.s−→ Ap1 +B,

where A = 2h2,3 − h2,2 − h3,3, B = h2,2 + 2h2,3 + 5h3,3, C = 4h2,2 − 6h3,3 and X ∼
Binomial(n− 2, p1). In particular, given a phenylene chain pcn containing n hexagons,

TI(pcn) = An1 +Bn+ C,

where n1 represents the number of type-1 links chosen up to the time n.
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Figure 1. The graphs of RPC1 and RPC2.

Figure 2. RPCn.

Proof. A random phenylene chain is constructed by the following way: for n = 1

and n = 2, RPCn are shown in Figure 1. For n ≥ 3, the terminal hexagon can be

attached in three ways, which results in RPC1
n, RPC

2
n and RPC3

n, respectively, see

Figure 2. Given RPCn, conducting the one-step analysis

TI(RPCn)− TI(RPCn−1) =
∑

uv∈En,1

hn(du, dv) +
∑

uv∈En,2

(hn(du, dv)− hn−1(du, dv)),

where hk(du, dv) := h(du, dv) is calculated within RPCk, En,1 represents the edges

added as we progress from step n− 1 to n while En,2 are the edges that modify their

h(du, dv) during the same transition. By analyzing each sum separately, we find that:

∑
uv∈En,1

hn(du, dv) = 3h2,2 + 2h2,3 + 3h3,3,

and ∑
uv∈En,2

(hn(du, dv)− hn−1(du, dv)) = h3,3 − 2h2,2 + h3,3I{Ln 6=1}

+ (2h2,3 − h2,2) I{Ln=1}.

Hence, by definition, a random phenylene chain is a 0MP -random chain with respect

to the degree-based topological index with g(1) = 4h2,3 + 4h3,3 and g(2) = g(3) =

h2,2 + 2h2,3 + 5h3,3. Therefore, by Theorem 1, (b)-(e) have been established. Finally,

since TIn = TI2 + (g(1), g(2), g(2)) · X for X a multinomial random variable with

parameters n− 2 and (p1, p2, 1−p1−p2), (a) is completed, and as a consequence, the

deterministic formula is proven.
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Corollary 2. Let RPoCn = RPoC (n, p1, p2) be a random polyphenyl chain with n ≥ 2
and TI a degree-based topological index. Then

(a) TIn = AX +Bn+ C,

(b) E (TIn) = (Ap1 +B)n− 2Ap1 + C,

(c) V (TIn) = A2p1 (1− p1) (n− 2),

(d) As n→∞, TIn−(Ap1+B)n

A
√
p1(1−p1)n

D−→ N(0, 1),

(e) As n→∞, TIn
n

a.s−→ Ap1 +B,

where A = h2,2 − 2h2,3 + h3,3, B = 2h2,2 + 4h2,3 + h3,3, C = 4h2,2 − 4h2,3 − h3,3 and
X ∼ Binomial(n− 2, p1). Moreover, given a polyphenyl chain pocn containing n hexagons,

TI(pocn) = An1 +Bn+ C,

where n1 represents the number of type-1 links chosen up to the time n.

Figure 3. The graphs of RPoC1 and RPoC2.

Figure 4. RPoCn.

Proof. A random polyphenyl chain is constructed as follows: for n = 1 and n = 2,

RPoCn are illustrated in Figure 3. For n ≥ 3, the terminal hexagon can be attached

in three different ways, resulting in RPoC1
n, RPoC

2
n and RPoC3

n, respectively, see

Figure 4. Following a similar method, we find that a random polyphenyl chain is a

0MP -random chain with respect to the degree-based topological indices with g(1) =

2h2,2 + 2h2,3 + 2h3,3 and g(2) = g(3) = 2h2,2 + 4h2,3 + h3,3. Therefore, applying the

same procedure of the proof of Corollary 1, we complete the proof.

Corollary 3. Let RHCn = RHC (n, p1, p2) be a random hexagonal chain with n ≥ 2
and TI a degree-based topological index. Then
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(a) TIn = AX +Bn+ C,

(b) E (TIn) = (Ap1 +B)n− 2Ap1 + C,

(c) V (TIn) = A2p1 (1− p1) (n− 2),

(d) As n→∞, TIn−(Ap1+B)n

A
√
p1(1−p1)n

D−→ N(0, 1),

(e) As n→∞, TIn
n

a.s−→ Ap1 +B,

where A = −h2,2 + 2h2,3 − h3,3, B = h2,2 + 2h3,3, C = 4h2,2 + 4h2,3 − 2h3,3 and X ∼
Binomial(n− 2, p1). Moreover, given a hexagonal chain hcn containing n hexagons,

TI(hcn) = An1 +Bn+ C,

where n1 represents the number of type-1 links chosen up to the time n.

Figure 5. The graphs of RHC1 and RHC2.

Figure 6. RHCn.

Proof. A random hexagonal chain is constructed by the following way: for n = 1 and

n = 2, RHCn are shown in Figure 5. For n ≥ 3, the terminal octagon can be attached

in three ways, which results in RHC1
n and RHC2

n respectively, see Figure 6. By

following a similar method, we have that a random hexagonal chain is a 0MP -random

chain with respect to the degree-based topological indices with g(1) = 2h2,3 + h3,3
and g(2) = g(3) = h2,2 + 2h3,3. Therefore, applying the same procedure of the proof

of Corollary 1, we complete the proof.
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Remark 2. By Remark 1, we know that a degree-based topological index on the above
random chains will be deterministic if and only if the corresponding A’s are 0; which also
is aligned with the expressions found in the previous corollaries. Likewise, since ARHCn =
ARPoCn = −ARPCn , it follows that: a fixed degree-based topological index is deterministic
for RHCn, RPoCn and RPCn if and only if

h2,2 + h3,3 = 2h2,3. (3.1)

In particular, when h(x, y) = xa + ya with a ∈ R, i.e., we are working with the Generalized

Zagreb Index, Equation (3.1) holds. Remember that, TIn = Bn+ C =
∑

v∈V (G)

(dv)a+1, due

to the identity [7] ∑
vu∈E(G)

(dv)a + (du)a =
∑

v∈V (G)

(dv)a+1.

It is worth noting that a similar argument may be used to demonstrate that random cy-
clooctane and random spiro chains [35] are also 0MP -random chains with respect to the
degree-based topological indices.

Remark 3. Given the definition of a 0MP -random chain with respect to a topological
index (TI), analyzing the extreme values of the function g, which is determined by the
recursive formula (2.1), could enables us to identify the extreme values of the topological
index over the random chains with a fixed n. The analysis of the previously studied random
chains ultimately reduces to a comparison between g(1) and g(2). If g(1) < g(2), then
the minimum and maximum values of TIn are achieved in Ch1 and Ch2,3, respectively.
Conversely, if g(1) > g(2), the minimum and maximum values of TIn are attained in Ch2,3

and Ch1, respectively. Here, given a fixed n, Ch1 denotes the chain where all the selected
links are of type-1, while Ch2,3 represents any chain where none of the selected links are of
type-1.

The authors in works such as ([1], [23], [18], [14], [9]) examined several well-known

topological indices within the context of a polyomino chain. A random polyomino

chain at time n ≥ 1 denoted as RSCn = RSC(n, p1) can be constructed as follows:

for n = 1 and n = 2, the configurations of RSCn are illustrated in Figure 7. For

n ≥ 3, the terminal square can be attached in two ways, resulting in RSC1
n and

RSC2
n respectively, see Figure 8. If Ln = 2 for all n ≥ 3 then RSCn = Zn (a zigzag

chain) whereas if Ln = 1 for all n ≥ 3 then RSCn = Lin (a linear chain). Note that,

in general, a random polyomino chain is not a 0MP -random chain with respect to any

degree-based topological index. For example, the change between R(Z2) and R(Z3)

differs from the change between R(Z4) and R(Z5) where R represents the Randić

index. In contrast, a linear chain is classified as a 0MP -random chain concerning

degree-based topological indices, so, we can directly obtain the next corollary, which is

aligned with Remark 1. By the way, both zigzag and linear chains represent examples

of general random chains with m = 1; however, while linear chain qualifies as a 0MP -

random chain regarding degree-based topological indices, zigzag chain does not.
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Figure 7. The graphs of RSC1 and RSC2.

Figure 8. RSCn.

Corollary 4. Let Lin be a linear chain with n ≥ 2. Then

TIn = An+B,

where A = 3h3,3 and B = 2h2,2 + 4h2,3 − 5h3,3.

Indeed, Corollary 4 is established in [1]. This analysis raises a natural question:

Could a similar procedure be applied to specific types of topological indices in random

polyomino chains? This question is explored in [33, 34].

Finally, Tables 1, 2, 3, and 4 display the form of the first Zagreb index (M1), Sombor

index (S), harmonic index (H), geometric-arithmetic index (GA), inverse sum indeg

index (ISI), and second Zagreb index (M2) for the random chains analyzed in this

section. Note that the results align with Remark 2 for M1. Additionally, in light of

Remark 3, for a fixed n, these tables emphasize the chains where the extreme values

of the topological indices are attained. In particular, for these random chains, the

extreme values can be directly computed as a consequence of the deterministic part

of Corollaries 1, 2, and 3.

By way of summary, in this paper, we present a unified approach to studying degree-

based topological indices in general random chains. We have derived the expected

value, variance, and distribution of these indices. Additionally, we explored the

asymptotic behavior and extreme values of the topological indices. Specifically, we fo-

cus on the Sombor, harmonic, geometric-arithmetic, and inverse sum indeg indices for

various general random chains, including random phenylene and random polyphenyl.

Finally, we believe the proposed method could be utilized in future research to ex-

plore additional properties of both similar and distinct random chains, extending its

application to a wider variety of topological indices beyond those solely dependent on

degree.
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TI RPCn
M1 (0,44,-20)

S (0.14,31.25,-14.4) [38], (RPC(Ch1), RPC(Ch2,3))

H (-1/30,89/30,0) [27], (RPC(Ch2,3), RPC(Ch1))

GA (−0.04, 7.96,−2), (RPC(Ch1), RPC(Ch2,3)) [26]

ISI (-0.1,10.9,-5), (RPC(Ch1), RPC(Ch2,3))

M2 (-1,61,-38), (RPC(Ch1), RPC(Ch2,3))

Table 1. The relevant information associated with each topological index on RPCn is presented in the
structure ≈ (A,B,C). The minimum and maximum values are respectively given in an ordered
pair.

TI RPoCn
M1 (0, 34, -10)

S (-0.14, 24.32, -7.35) [38], [29], (RPoC(Ch1), RPoC(Ch2,3))

H (0.03,2.93,0.07), (RPoC(Ch2,3), RPoC(Ch1))

GA (2− 4
√

6/5, 3 + 8
√

6/5, 3− 8
√

6/5) [16], (RPoC(Ch2,3), RPoC(Ch1))

ISI (0.1,8.3,-2.3), (RPoC(Ch2,3), RPoC(Ch1))

M2 (1,41,-17), (RPoC(Ch2,3), RPoC(Ch1))

Table 2. The relevant information associated with each topological index on RPoCn is presented in the
structure ≈ (A,B,C). The minimum and maximum values are respectively given in an ordered
pair.

TI Lin
M1 (18,-2) [23], [18]

S (12.73,-1.13)

H (1,14/15) [23], [18]

GA (3, 8
√
6

5
− 3) [23]

ISI (4.5,-0.7) [23], [18]

M2 (27,-13) [23], [18]

Table 3. The information of interest associated with each topological index on Lin is exposed with the
structure ≈ (A,B).

TI RHCn
M1 (0,16,24)

S (0.14, 11.31, 17.25), (RHC(Ch2,3), RHC(Ch1)) [8]

H (-0.03, 1.167, 2.93), (RHC(Ch1), RHC(Ch2,3))

GA (-0.04, 3, 5.92), (RHC(Ch1), RHC(Ch2,3))

ISI (-0.1, 4, 5.8), (RHC(Ch1), RHC(Ch2,3))

M2 (-1,22,22), (RHC(Ch1), RHC(Ch2,3))

Table 4. The relevant information associated with each topological index on RHCn is presented in the
structure ≈ (A,B,C). The minimum and maximum values are respectively given in an ordered
pair.

Funding Information: Salyé Sigarreta was supported by CONAHCYT 2023-2024

project CBF2023-2024-1842.



S. Sigarreta, et al. 11

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were

generated or analyzed during the current study.

References

[1] A. Ali, Z. Raza, and A.A. Bhatti, Bond incident degree (BID) indices of poly-

omino chains: A unified approach, Appl. Math. Comput. 287 (2016), 28–37.

https://doi.org/10.1016/j.amc.2016.04.012.

[2] S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun.

Math. Comput. Chem. 86 (2021), 715–728.

[3] S. Amin, A.U. Rehman Virk, M.A. Rehman, and N. Ali Shah, Analysis of den-

drimer generation by Sombor indices, J. Chem. 2021 (2021), no. 1, 9930645.

https://doi.org/10.1155/2021/9930645.

[4] H. Chen, W. Li, and J. Wang, Extremal values on the sombor index of trees,

MATCH Commun. Math. Comput. Chem. 87 (2022), no. 1, 23–49.

[5] K.C. Das, A.S. Çevik, I.N. Cangul, and Y. Shang, On sombor index, Symmetry

13 (2021), no. 1, 140.

https://doi.org/10.3390/sym13010140.
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[22] K. Müllen, J.R. Reynolds, and T. Masuda, Conjugated Polymers: a Practical

Guide to Synthesis, Royal Society of Chemistry, 2013.

[23] A. Pegu, B. Deka, I.J. Gogoi, and A. Bharali, Two generalized topological indices

of some graph structures, J. Math. Comput. Sci. 11 (2021), no. 5, 5549–5564.

https://doi.org/10.28919/jmcs/6040.
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