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Abstract: For an ordinary graph G, we compute the eigenvalues and the eigenspaces

of the signed line graph L(G̈), where G̈ is obtained from G by inserting a negative

parallel edge between every pair of adjacent vertices. As an application, we prove
that if G and H share the same vertex degrees, then L(G̈) and L(Ḧ) share the same

spectrum. To the best of our knowledge, this construction does not follow the line

of any known construction developed for either graphs or signed graphs. Among the
other consequences, we emphasize that L(G̈) is integral (i.e., its spectrum consists

entirely of integers), which means that a construction of integral signed graphs has
been established simultaneously.
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1. Introduction

We consider finite undirected signed graphs without loops. Moreover, the title of

the paper refers to signed graphs having no multiple (or parallel) edges neither. To

construct them, in an intermediate step, we allow the existence of at most two parallel

edges, one positive the other negative; the details are given in the end of this section.

Throughout the text, when say a ‘graph’ (without the preceding word ‘signed’), we

always mean an ordinary finite undirected graph without loops or multiple edges.

Two graphs are cospectral if they are not isomorphic, but share the same spectrum.

For signed graphs, isomorphism is usually combined with switching equivalence to

the more general concept of switching isomorphism of signed graphs. Accordingly,

signed graphs are cospectral if they are not switching isomorphic, but share the same

spectrum. It is well-known that, in general, graphs are not determined by their

multiset of eigenvalues of the adjacency matrix or any other prescribed graph matrix,

but it is conceivable that almost all graphs have this property – an assertion known
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as the Haemers conjecture [15]. Accordingly, constructing cospectral graphs appears

as a long-standing and challenging problem. A majority of constructions starts with

the adjacency matrix of a single graph and transforms it into a similar matrix that

features as the adjacency matrix of a non-isomorphic graph. In graph terminology,

such a transformation is interpreted as a prescribed edge perturbation between two or

more vertex subsets. Notable routines in this direction are the Seidel switching [19],

its generalization developed by Godsil and McKay (the GM-switching) [13] and the

more recent switching developed by Wang, Qiu and Hu (the WQH-switching) [17].

More constructions that follow the same idea can be found in [2, 11, 12]; slightly

different approaches are offered by Butler for bipartite graphs [9] and Cvetković [10]

for trees. The GM-switching and the WQH-switching are extended to signed graphs

in [4]. More constructions of cospectral signed graphs can be found in [5, 24].

It occurs that, in the framework of signed graphs, there is a simple and surprising con-

struction developed on the basis of signed line graphs. To the best of our knowledge,

there is no similar construction for ordinary graphs. In the case of regular signed

graphs it appears in [22, 24], and in this paper we extend it to pairs of signed graphs

sharing the same vertex degrees. The result is given in a wider context in which

we explicitly compute the eigenvalues and the corresponding eigenspaces of signed

line graphs in question. It appears that every eigenvalue is an integer, and so we

simultaneously establish a construction of integral signed graphs.

In the remainder of this section we give all necessary notions, terminology and nota-

tion. The main contribution is reported in Section 2. Some consequences and further

developing are separated in Section 3.

A signed graph Ġ = (G, σ) consists of an underlying graph G = (V,E) with a signature

function σ that maps the edge set E into {1,−1}. The edges mapped to 1 are positive,

those mapped to −1 are negative, and together they comprise the edge set of Ġ. A

graph is interpreted as a signed graph in which all edges are positive; it is recognized

in the text by the absence of a dot symbol. The number of vertices and the number

of edges are called the order and the size of Ġ.

If the order of Ġ is n, then its adjacency matrix AĠ is the n×n vertex-vertex {0, 1,−1}-
matrix which is obtained from the adjacency matrix of its underlying graph by revers-

ing the sign of all 1s which correspond to negative edges. By the eigenvalues and the

spectrum of Ġ, we mean the eigenvalues and the spectrum of A(Ġ). The Laplacian

matrix of Ġ is L(Ġ) = D(Ġ) − A(Ġ), where D(Ġ) is the diagonal matrix of vertex

degrees (in G or Ġ, all the same).

Signed graphs Ġ and Ḣ are switching equivalent if Ḣ is obtained by selecting a

vertex subset of Ġ and reversing the sign of every edge with exactly one end in the

selected subset. Switching equivalent signed graphs share the same spectrum since

the corresponding adjacency matrices are similar.

In this paper, we use the definition of signed line graphs that can be found in [7, 22–24].

This concept is tailored to spectral graph theory and differs in sign from that of [26];

a comprehensive comparison is given in [8]. So, for a signed graph Ġ we introduce

the vertex-edge orientation η : V (G) × E(G) −→ {0, 1,−1} formed by obeying the

following rules: η(i, jk) = 0 if i /∈ {j, k}, η(i, ij) ∈ {1,−1} and η(i, ij)η(j, ij) =
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−σ(ij). Accordingly, one may randomly choose η(i, ij) to be either 1 or −1, but

η(j, ij) is then fixed by σ(ij); this will be used in the forthcoming Figure 1. The vertex-

edge incidence matrix Bη is the matrix whose (i, e) entry is η(i, e). The adjacency

matrix of a signed line graph L(Ġ) is

A(L(Ġ)) = Bᵀ
ηBη − 2I (1.1)

where I is the identity matrix. A signed line graph depends on the orientation η, but

different orientations produce switching equivalent signed line graphs. Also, switching

equivalent signed graphs produce switching equivalent signed line graphs (see [8]).

The Laplacian matrix can be derived as the row-by-row product of the matrix Bη
with itself:

L(Ġ) = BηB
ᵀ
η . (1.2)

Regardless of the orientation η chosen, we get the same L(Ġ).

In a signed graph, two parallel edges (i.e., two edges between the same pair of vertices)

form a cycle of length 2 called a digon. A digon is positive if its edges have the same

sign, and negative if they differ in sign. It follows that the existence of a positive digon

in Ġ implies the existence of parallel edges in its signed line graph. On the contrary, a

negative digon produces non-adjacent vertices. A signed graph which allows parallel

edges if and only if they form negative digons is called by Zaslavsky [26] a simply

signed graph. Accordingly, L(Ġ) has no multiple edges if and only if Ġ is a simply

signed graph. For a graph G, we denote by G̈ the signed doubled graph obtained from

G by replacing every edge with a negative digon.

The adjacency matrix of a simple signed graph coincides with the adjacency matrix

of a signed graph obtained by removing all parallel edges. The definition of the

corresponding Laplacian matrix follows the same line. Intuitively, a positive and a

negative edge between the same pair of vertices cancel each other.

2. Results

We exploit the idea that, for a matrix M , the matrices MMᵀ and MᵀM are positive

semidefinite and share the same non-zero eigenvalues. Both properties are well-known,

but for the sake of completeness, we include short proofs. Positive semidefiniteness

follows from yᵀMMᵀy = (Mᵀy)ᵀ(Mᵀy) ≥ 0, for every vector y of feasible size. If

λ is a non-zero eigenvalue of MMᵀ associated with an eigenvector x, then we have

MMᵀx = λx, which impliesMᵀM(Mᵀx) = λMᵀx, and this gives the latter assertion.

We have simultaneously proved that the eigenspace for λ in MᵀM is determined by

the eigenspace for the same eigenvalue in MMᵀ.

By setting M = Bη, we find that the spectrum of L(Ġ) is bounded below by −2 and

L(Ġ) is positive semidefinite, for every signed graph Ġ. We proceed with two lemmas.

Lemma 1. Given a graph G without isolated vertices, let G̈ be the corresponding signed
doubled graph. The following statements hold true:
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(i) The Laplacian matrix of G̈ is positive semidefinite.

(ii) If Bη is a vertex-edge incidence matrix of G̈, then ker(Bᵀ
η) = 0.

Proof. (i): The Laplacian matrix L(G̈) has vertex degrees on the main diagonal and

zeros outside this diagonal. Since G has no isolated vertices, the main diagonal has

no zero entries which gives the desired result.

(ii): If x ∈ ker(Bᵀ
η ), then x ∈ ker(BηB

ᵀ
η ). The identity (1.2), in conjunction with

item (i), leads to x = 0.

Lemma 2. Let G be a graph without isolated vertices. The dimension of the eigenspace
E(−2) in L(G̈) is 2m− n, where n and m are the order and the size of G, respectively.

Proof. The 2m × 2m matrix Bᵀ
ηBη and the n × n matrix BηB

ᵀ
η share the same

non-zero eigenvalues. By Lemma 1(i), the latter matrix has n non-zero eigenvalues,

which means that the multiplicity of zero in the former matrix is 2m−n. The desired

result follows from the identity (1.1).

We now compute the eigenvalues distinct from −2 and the corresponding eigenvectors

of a signed doubled graph.

Theorem 1. Given a graph G without isolated vertices, let G̈ be the corresponding signed
doubled graph. Suppose that the vertices 1, 2, . . . , n of G are arranged in a non-increasing
order according to their degrees d1, d2, . . . , dn. The eigenvalues distinct from −2 of L(G̈) are
2(di − 1), for 1 ≤ i ≤ n. An eigenvector associated with 2(di − 1) is Bᵀ

ηei, where Bη is a

vertex-edge incidence matrix of G̈, and ei is the ith vector of the canonic basis of Rn.

Proof. The Laplacian matrix of G̈ is the diagonal matrix diag(2d1, 2d2, . . . , 2dn), and

therefore the corresponding eigenvalues 2d1, 2d2, . . . , 2dn are associated with eigen-

vectors e1, e2, . . . , en, respectively. Using the discussion given at the beginning of

this section together with (1.1) and (1.2), we find that the eigenvalues of L(G̈) are

2(d1−1), 2(d2−1), . . . , 2(dn−1). The proof is completed by taking into account that

A(L(G̈)) shares the eigenvectors with Bᵀ
ηBη.

We proceed with the eigenspace for −2.

Theorem 2. Given a graph G without isolated vertices, let G̈ be the corresponding signed
doubled graph. Then

E(−2) = ker(Bη),

where E(−2) is the eigenspace for −2 in A(L(G̈)) and Bη is a vertex-edge orientation of G̈.

Proof. Let x ∈ E(−2). From (1.1), we have Bᵀ
ηBηx = 0. By virtue of Lemma 1(ii),

Bᵀ
η has a trivial kernel, which implies Bηx = 0, that is x ∈ ker(Bη).

Suppose now that x ∈ ker(Bη). We compute
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A(L(G̈))x =
(
Bᵀ
ηBη − 2I

)
x = Bᵀ

ηBηx− 2Ix = 0− 2x,

giving x ∈ E(−2).

Here is the main application of the previous results.

Theorem 3. Let G and H be graphs of order n that share the same vertex degree sequence
d1, d2, . . . , dn. The signed line graphs L(G̈) and L(Ḧ) share the same spectrum.

Proof. Without loss of generality, we may suppose that d1 ≥ d2 ≥ · · · ≥ dn. If k

is the largest integer such that dk > 0, then by Lemma 2 and Theorem 1 L(G̈) and

L(Ḧ) share the spectrum consisting of −2 with multiplicity
∑k
i=1 di − k (the sum is

twice the number of edges in G) and 2(di − 1), for 1 ≤ i ≤ k.

Although there exist non-isomorphic signed graphs that produce switching isomorphic

signed line graphs, from a still unpublished manuscript [20] we know that if G and

H of the previous theorem are non-isomorphic, then L(G̈) and L(Ḧ) are switching

non-isomorphic.

We conclude the section with an example.

Example 1. The smallest pair of non-isomorphic graphs that share the same vertex
degrees are the graphs G and H of order 5 illustrated in Figure 1. The corresponding signed
doubled graphs and their signed line graphs are in the same figure. This example also
shows that vertex degrees of the corresponding signed line graphs may differ. According to
Lemma 2 and Theorem 1, their common spectrum is [4, 23, 0, (−2)5] (an exponent denotes
the multiplicity).

3. Other consequences of Lemma 2 and Theorem 1

Integral signed graphs. Integral signed graphs are investigated in [6, 21, 25]. In

addition, there is an extensive literature concerning integral graphs, not listed here. It

occurs that integral graphs are a rare phenomenon. For example, it is established in [1]

that only 150 connected graphs with at most 10 vertices are integral; less than 0.002%

of the total number. Also, only 13 connected regular graphs of vertex degree 3 are

integral [18]. On the other hand, every graph gives rise to an integral signed graph –

the line graph of its signed double.

Inertia. The inertia of a signed graph is an integer triple specifying the numbers

of positive, negative and zero eigenvalues of the adjacency matrix. For a graph G

without isolated vertices, the inertia of L(G̈) is (n− d1, 2m− n, d1), where n, m and

d1 are the order, the size and the number of pendant vertices (i.e., vertices of degree 1)

of G, respectively. Moreover, the following facts are direct consequences of Lemma 2

and Theorem 1:
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Figure 1. Graphs G and H sharing the same degree sequence, signed doubled graphs G̈ and Ḧ, and signed
line graphs L(G̈) and L(Ḧ). For G̈ and Ḧ, an arrow indicates a vertex-edge orientation; for
the sake of simplicity, only one orientation of each edge is given.

Fact 1. The number −2 appears in the spectrum of L(G̈) if an only if G is not a disjoint
union of isolated vertices and isolated edges. If λ is a negative eigenvalue of L(G̈), then
λ = −2.

Fact 2. The signed graph L(G̈) is singular (i.e., has 0 as an eigenvalue) if and only if G
has a pendant vertex.

Fact 3. The signed graph L(G̈) has exactly one positive eigenvalue if and only if G is a
disjoint union of isolated vertices, isolated edges and a star K1,n, with n ≥ 2.

Distinct eigenvalues. If G is a connected graph with at least two edges, then the

number of distinct eigenvalues of L(G̈) is the number of distinct vertex degrees in G

plus one. In particular, L(G̈) has exactly two distinct eigenvalues if and only if G is

regular. By the pigeonhole principle, the number of distinct eigenvalues of L(G̈) does

not exceed the order of G.

Signed line graphs with spectrum in [−2, 2]. In [16], McKee and Smyth proved

that the spectrum of a connected signed graph Ġ lies in the segment [−2, 2] if and

only if Ġ is a subgraph of either the so-called toral tessellation with 2n (n ≥ 3) vertices

or one of two particular signed graphs having 14 and 16 vertices, respectively. It is

proved in [23] that a toral tessellation is in fact a signed line graph L(C̈n) (where

Cn is a cycle of order n), whereas the remaining two signed graphs are not signed
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line graphs. By taking into account Lemma 2 and Theorem 1, together with the

eigenvalue interlacing, we deduce that the spectrum of a signed line graph L(Ġ) lies

in [−2, 2] if and only if Ġ is a subgraph of C̈n, for some n, or L(Ġ) is an induced

subgraph of some of the two aforementioned particular signed graphs.

The least Laplacian eigenvalue of a proper simply signed graph. In [3],

Belardo proved that the least Laplacian eigenvalue of a connected signed graph Ġ

(without parallel edges) is zero if and only if Ġ is balanced, i.e., switches to its

underlying graph. This statement extends to simply signed graphs with at least one

negative digon.

Theorem 4. Let Ġ be a connected simply signed graph with at least one negative digon.
Then the least Laplacian eigenvalue of Ġ is greater than zero.

Proof. Since Ġ is connected, it has a connected spanning subgraph Ḟ which contains

a single cycle isomorphic to a negative digon. Thus, Ḟ has n edges and, by [14,

Theorem 6], each of the n eigenvalues of L(Ḟ ) is greater than−2. IfG is the underlying

graph of Ġ, then G̈ is obtained from Ġ by forming a negative digon for every pair of

vertices joined by a single edge. Say that G̈ is obtained by adding exactly k edges to

Ġ. By Lemma 2, the multiplicity of −2 in L(G̈) is m+k−n, where m is the size of Ġ.

Observing that Ḟ is obtained from G̈ by deleting m + k − n edges and employing

the eigenvalue interlacing, we deduce that in passing from G̈ to Ḟ every removal of

a single edge decreases the multiplicity of −2 (in the spectrum of the corresponding

signed line graph) by 1. Thus, the multiplicity of −2 in L(Ġ) is m− n, meaning that

exactly n eigenvalues are greater than −2, which in turn implies that every eigenvalue

of the Laplacian L(Ġ) is greater than zero.
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