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Abstract: For a graph G = (V,E), a set S ⊆ V is a dominating set if every vertex in

V \S has a neighbour in S. The domination number, denoted by γ(G), is the minimum

cardinality of a dominating set in G and a dominating set of minimum cardinality is
called a γ(G)-set. Cockayne et al. defined a Roman dominating function (RDF) on a

graph G = (V,E) to be a function f : V → {0, 1, 2} satisfying the condition that every

vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The
Roman domination number, denoted by γR(G), is the minimum weight of an RDF in

G. An RDF of weight γR(G) is called a γR(G)-function. Eunjeong Yi introduced the
domination value of v, denoted by DVG(v), to be the number of γ(G)-sets to which v

belongs. In this paper, we extend the idea of domination value to Roman domination.

For a vertex v ∈ V , we define the Roman domination value, denoted by RG(v), as
RG(v) =

∑
f∈F f(v), where F denote the set of all γR(G)-functions. We also study

some basic properties of Roman domination value of vertices for a given graph and

determine the Roman domination value for the vertices of a complete k-partite graph.

Keywords: domination, Roman domination, Roman domination value.

AMS Subject classification: 05C69

1. Introduction

By a graph G = (V,E), we mean a simple, finite, undirected graph with |V | = n. For

any vertex v ∈ V , the open neighbourhood of v is the set N(v) = {u ∈ V : uv ∈ E}
and the closed neighbourhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , the

open neighbourhood of S is N(S) = ∪v∈SN(v) and the closed neighbourhood of S is

N [S] = N(S) ∪ S. We denote by 4(G) and δ(G), respectively, the maximum degree

and minimum degree of G. For graph theoretic terminology, we refer to Chartrand

and Lesniak. [1].
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2 Roman domination value in graphs

A set of vertices S is a dominating set if N [S] = V or equivalently, every vertex in

V \ S is adjacent to at least one vertex in S. The domination number γ(G) is the

minimum cardinality of a dominating set in G and a dominating set S of minimum

cardinality is called a γ(G)-set. The literature on domination and its variations in

graphs has been surveyed and detailed in the two books by Haynes et al. [5, 6].

In 1999, Slater [12] introduced the notion of the number of dominating sets of G,

which he denoted by HED(G) in honour of Steve Hedetniemi; further, he used #

γ(G) to denote the number of γ(G)-sets. Mynhardt [8] characterized vertices that

belong to all γ(T )-sets for a tree T . In 2012, Yi [14] introduced the domination value

of v, denoted by DVG(v), to be the number of γ(G)-sets to which v belongs and

he used the notation τ(G) to denote the number of γ(G)-sets. Kang [7] initiated

the study of total domination value in graphs. For additional article on the topic of

domination value in graphs see [15].

Cockayne et al. [4] defined a Roman dominating function (RDF) on a graph G =

(V,E) to be a function f : V → {0, 1, 2} satisfying the condition that every vertex u

for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight

of f is f(V ) =
∑

v∈V f(v). The Roman domination number, denoted by γR(G), is

the minimum weight of an RDF in G. An RDF of weight γR(G) is called a γR(G)-

function. This definition of a Roman dominating function was motivated by an article

in Scientific American by Ian Stewart entitled ”Defend the Roman Empire!” [13]. Also

Roman domination has been studied in [2, 3, 9–11]. Let (V0, V1, V2) be the ordered

partition of V induced by f , where Vi = {v ∈ V : f(v) = i} for i = 0, 1, 2. Note

that there exists a 1-1 correspondence between the function f : V → {0, 1, 2} and

the ordered partition (V0, V1, V2) of V . Thus, we write f = (V0, V1, V2). Following

[7, 14], we denote by τR(G), the number of γR(G)-functions. For a graph G, let

F = {fi = (V i
0 , V

i
1 , V

i
2 ), 1 ≤ i ≤ τR(G)} be the set of all γR(G)-functions and Γi =

{V i
1 ∪ V i

2 }, 1 ≤ i ≤ τR(G).

In this paper, we extend this idea of domination value to Roman domination. Anal-

ogous to [7, 14], we define the Roman domination value of a vertex v ∈ V , denoted

by RG(v), to be the value
∑

f∈F f(v).

For practical purposes, a vertex with high Roman domination value gains importance.

For instance, facility locations such as hospitals, fire stations, mobile towers can be

located in such vertices which will minimize the cost involved and further, will increase

the coverage area. In certain practical scenarios, one may also opt for minimizing |V1|
(see Figure 1).

In this paper, analogues to the results obtained in [7, 14], for (total) domination value

in graphs, we observe some basic properties of Roman domination value in graphs and

determine Roman domination value of vertices in complete k-partite graphs.

2. Basic Properties of Roman Domination value of graphs

Clearly for any vertex v ∈ V , 0 ≤ RG(v) ≤ 2τR(G). In this section, we consider the

lower and upper bounds of the Roman domination value for a fixed vertex v0 of a
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Figure 1. Graphs illustrating the concept of minimizing |V1| and not minimizing |V1| respectively.

graph G and for v ∈ N [v0]. We state the following Observations 1, 2 and 3 that are

analogous to those of the domination value [14] and the total domination value [7].

Observation 1.
∑

v∈V (G)

RG(v) = τR(G).γR(G)

Observation 2. If there is an isomorphism of graphs carrying a vertex v in G to a vertex
v′ in G′, then RG(v) = RG′(v′).

Cycles, paths and the Petersen graph are some of the graphs that admit automor-

phism. Let P denote the Petersen graph with V (P) = {vj , 1 ≤ j ≤ 10} (Refer Figure

2). It is clear that γR(P) = 6. Since P is vertex transitive, it suffices to compute

RG(v1). It was obtained in [14] that {v1, v3, v7}, {v1, v4, v10} and {v1, v8, v9} are the

only γ(P)-sets containing the vertex v1. Now f1 : V → {0, 1, 2} defined by f1(v1) =

f1(v3) = f1(v7) = 2, ; f1(x) = 0 for all x ∈ V (P) \ {v1, v3, v7}, f2 : V → {0, 1, 2}
defined by f2(v1) = f2(v4) = f2(v10) = 2, f2(x) = 0 for all x ∈ V (P) \ {v1, v4, v10}
and f3 : V → {0, 1, 2} defined by f3(v1) = f3(v8) = f3(v9) = 2, f3(x) = 0 for

all x ∈ V (P) \ {v1, v8, v9} are the only three γR(P)-functions that assign 2 to v1
and all other γR(P)-functions assign 0 to v1 and hence RG(v1) = 6. Hence for all

v ∈ V, RG(v) = 6.
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Figure 2. The Petersen graph
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Observation 3. Let G be the disjoint union of two graphs G1 and G2. Then γR(G) =
γR(G1) + γR(G2) and τR(G) = τR(G1).τR(G2). For v ∈ V (G1), RG(v) = RG1(v).τR(G2).

The following statement and its proof for the case of domination value and total

domination value can be found in [14] and [7], respectively.

Theorem 4. For a fixed v0 ∈ V , we have τR(G) ≤
∑

v∈N [v0]

RG(v) ≤ γR(G)τR(G) and

both the bounds are sharp.

Proof. The upper bound follows from Observation 1. Also every Γi must contains a

vertex in N [v0]. Otherwise Γi fails to dominate v0 and hence the lower bound follows.

Let v0 be the pendant vertex of any spider. Then τR(G) =
∑

v∈N [v0]

RG(v) and hence

the lower bound is sharp (Refer Figure 3(B)). Let v0 be the root of complete binary

tree. Then
∑

v∈N [v0]

RG(v) = γR(G)τR(G) and hence the upper bound is sharp (Refer

Figure 3(A)).

v0

v0

(A) (B)

Figure 3. Graphs that attain the upper and lower bound, respectively, of Theorem 4

The rest of the results in this section for τR(G) and RG(v) on a general graph G

and vertices v ∈ V (G) are analogous to those obtained in [7, 14] for the number of

minimum (total) dominating sets and the (total) domination value of a general graph,

while there are similarities and differences.

Theorem 5. Let H be a spanning subgraph of G. If γR(H) = γR(G), then τR(H) ≤
τR(G).

Proof. Since γR(H) = γR(G), every γR(H)-function is also a γR(G)-function. Hence

τR(H) ≤ τR(G).

Theorem 6. Let G be any graph on n = 2m ≥ 4 vertices. If G or G is mK2, then for
any v ∈ V , RG(v) +RG(v) = 3

n
2 + 3.
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Proof. Without loss of generality, assume G = mK2 and label the vertices of G

by v1, v2, · · · , v2m. Further, assume that the vertex v2k−1 is adjacent to the vertex

v2k, 1 ≤ k ≤ m. Clearly γR(K2) = 2.

Consider the vertex v1. Now the number of γR(G)-functions that assign 2 to the vertex

v1 is (m−1)C(m−1)2
0+(m−1)C(m−2)2

1+· · ·+(m−1)C22m−3+(m−1)C12m−2+(m−
1)C02m−1 = (1+2)m−1 = 3m−1 [nCr denotes the number of ways of selecting r objects

out of n objects]. Similarly, the number of γR(G)-functions that assign 1 to the vertex

v1 is 3m−1. Now, by Observation 3, RG(v1) = 2(3m−1)+3m−1 = 3×3m−1 = 3m = 3
n
2 .

Hence by Observation 2, for any v ∈ V , RG(v) = 3
n
2 .

Consider the graph G and the vertex v1. Clearly γR(G) = 3. Now f1 : V (G) →
{0, 1, 2} defined by f1(v1) = 2, f1(v2) = 1, f1(x) = 0 for all x ∈ V \ {v1, v2}
and f2 : V (G) → {0, 1, 2} defined by f2(v1) = 1, f2(v2) = 2, f2(x) = 0 for all

x ∈ V \ {v1, v2} are the only γR(G)-functions that assign positive weight to v1 and

all other γR(G)-functions assign 0 to that vertex. Hence RG(v1) = 3. This is true for

every vertex in G. Hence for v ∈ V, RG(v) +RG(v) = 3
n
2 + 3.

Theorem 7. Let G be any graph on n = 2m ≥ 4 vertices. If G or G is mK2 and
|V i

1 |, 1 ≤ i ≤ τR(G) is minimized, then for any v ∈ V (G), RG(v) +RG(v) = 2
n
2 + 3.

Proof. Let G be the graph as described in Theorem 6. In this case, |V1| = 0. The

number of γR(G)-functions that assign 2 to v1 is 2m−1. Hence RG(v1) = 2× 2m−1 =

2m = 2
n
2 .

For the graph G, as in the proof of Theorem 6, we see that RG(v1)
= 3. Thus for any

v ∈ V,RG(v) +RG(v) = 2
n
2 + 3.

The following Observation is immediate.

Observation 8. Let G be a graph of order n ≥ 2 such that 4(G) = n − 1. Then
γR(G) = 2 and RG(v) = 0 or 2 or 3 for any v ∈ V .

It is clear from Observation 8, that forG = Kn, n ≥ 3, RG(v) = 2 for each v ∈ V (Kn).

Further τR(G) = n.

Theorem 9. Let G be a graph of order n ≥ 3 such that 4(G) = n − 2. Then for any
v ∈ V , γR(G) = 3 and RG(v) ≤ 3. Further RG(v) = 3 if and only if deg(v) = n − 2 and
there exists a vertex w ∈ V such that deg(w) = n− 2 where vw 6∈ E(G).

Proof. Let deg(v) = n − 2. Then γR(G) > 2 and there is only one vertex say w

such that vw 6∈ E(G). Clearly, f : V (G) → {0, 1, 2} defined by f(v) = 2, f(w) =

1, f(x) = 0 for all x ∈ V (G) \ {v, w} is a γR(G)-function. Hence γR(G) = 3. Since

v dominates N [v], we see that the number of γR(G)-functions assigning a positive

weight to v is at most two. If exactly one function assigns positive weight to v, then
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deg(w) < n − 2 and in this case, RG(v) = 2. If two γR(G)-functions assign positive

weights to v, then clearly deg(w) = n− 2. In this case, RG(v) = 3.

Theorem 10. Let G be a graph of order n ≥ 4 and 4(G) = n− 3 with degG(u) = 4(G).

(i) If G is disconnected, then γR(G) = 4 and RG(u) = 2, 3 or 6.
(ii) If G is connected, then γR(G) = 4 and RG(u) ≤ 2n.

Proof. We have the following four cases.

Case (i). Neither v nor w is adjacent to any vertex in N(u).

Clearly G is a disconnected graph. Let G′ = G[V (G) \ {v, w}]. Then |V (G′)| = n− 2

and degG′(u) = n− 3 = (n− 2)− 1. By Observation 8, γR(G′) = 2 and R′G(u) = 2.

Let G′′ = G[{v, w}]. Clearly, γR(G) = 4 and γR(G′′) = 2. Suppose that deg(v) =

deg(w) = 0, then clearly τR(G′′) = 1. Now by Observation 3,RG(u) = 2 (Refer

Figure 4(A)).
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Figure 4. Graphs illustrating the various cases of Theorem 10 and Theorem 11.

Suppose that deg(v) = deg(w) = 1, then vw ∈ E(G). Clearly there exist exactly three

γR(G)-functions fi : V (G′′) → {0, 1, 2}, 1 ≤ i ≤ 3 defined as f1(v) = 2, f1(w) = 0,

f2(w) = 2, f2(v) = 0 and f3(v) = f3(w) = 1. Hence τR(G′′) = 3. Now by Observation

3, RG(u) = 6 (Refer Figure 4(B)).

Case (ii). Exactly one of v or w is adjacent to a vertex in N(u).

Without loss of generality, assume that v is adjacent to a vertex say x in N(u).



P.R.L. Pushpam, S. Padmapriea 7

Suppose G is disconnected, then vw 6∈ E(G). Let G′ = G[V (G) \ {w}]. Then

γR(G′) = 3. Now |V (G′)| = n− 1 and degG′(u) = n− 3 = (n− 1)− 2. By Theorem

9, RG′(u) ≤ 3.

If 1 ≤deg(v) ≤ n−4, then function f : V (G′)→ {0, 1, 2} defined by f(u) = 2, f(v) =

1, f(r) = 0 for all r ∈ V \ {u, v} is the only γR(G′)-function. Hence RG′(u) = 2.

Suppose deg(v) = n − 3, then there exists two γR(G)-functions fi : V (G′) →
{0, 1, 2}, i = 1, 2 that are defined as

f1(u) = 2, f1(v) = 1, f1(r) = 0 for all r ∈ V \ {u, v} and

f2(u) = 1, f2(v) = 2, f2(r) = 0 for all r ∈ V \ {u, v}.
Hence RG′(u) = 3.

Let G′′ = G[{w}]. Then γR(G′′) = 1 and τR(G′′) = 1. Now by Observation 3,

RG(u) = 2 or 3 (Refer Figure 4(C)).

Suppose that G is connected, then vw ∈ E(G). Clearly γR(G) = 4 and 1 ≤ deg(v) ≤
n− 3.(Refer Figure 4(D)).

Suppose 1 ≤ deg(v) ≤ n − 4, then there exist exactly three γR(G)-functions fi :

V (G)→ {0, 1, 2}, 1 ≤ i ≤ 3 that are defined as

f1(u) = f1(v) = 2, f1(r) = 0 for all r ∈ V \ {u, v},
f2(u) = f2(w) = 2, f2(r) = 0 for all r ∈ V \ {u,w} and

f3(u) = 2, f3(v) = f3(w) = 1, f3(r) = 0 for all r ∈ V \ {u, v, w}.
Hence RG(u) = 6.

Suppose deg(v) = n − 3, then there exist exactly four γR(G)-functions fi : V (G) →
{0, 1, 2}, 1 ≤ i ≤ 4 that are defined as

f1(u) = f1(v) = 2, f1(r) = 0 for all r ∈ V \ {u, v},
f2(u) = f2(w) = 2, f2(r) = 0 for all r ∈ V \ {u,w},
f3(u) = 2, f3(v) = f3(w) = 1, f3(r) = 0 for all r ∈ V \ {u, v, w} and

f4(u) = f4(y) = 1, f4(v) = 2, f4(r) = 0 for all r ∈ V \ {u, v, y} where y is the vertex

such that y ∈ N(u) but y 6∈ N(v).

Hence RG(u) = 7. (Refer Figure 4(D)).

Case (iii). Both v and w are adjacent to a vertex in N(u).

Let x be a vertex in N(u) which is adjacent to both v and w. In this case, x is not

adjacent to at least two members of N(u) (otherwise degG(x) >degG(u) = 4(G)).

Since ux, vx,wx ∈ E(G), clearly, f : V (G) → {0, 1, 2} defined by f(u) = f(x) =

2, f(r) = 0 for all r ∈ V (G) \ {u, x} is a γR(G)-function with weight 4.

If vw 6∈ E(G), then |N(v) ∩N(w)| ≤ n− 3.

Suppose deg G(v) = degG(w) = n−3. Then there are |N(v)∩N(w)| γR(G)-functions

that assign 2 to u. Also the functions fi : V (G) → {0, 1, 2}, 1 ≤ i ≤ 3 defined

by f1(u) = 2, f1(v) = f1(w) = 1 and f1(r) = 0 for all r ∈ V \ {u, v, w}, f2(v) =

2, f2(u) = f2(w) = 1 and f2(r) = 0 for all r ∈ V \ {u, v, w}, f3(w) = 2, f3(u) =

f3(v) = 1 and f3(r) = 0 for all r ∈ V \ {u, v, w} assign 2 or 1 to u. Hence RG(u) =

2 + 1 + 1 + 2|N(v) ∩N(w)| ≤ 4 + 2(n− 3) ≤ 2n− 2.

Suppose deg G(v) = n−3 and degG(w) < n−3. Then there are |N(v)∩N(w)| γR(G)-

functions that assign 2 to u. Also the functions fi : V (G) → {0, 1, 2}, i = 1, 2

defined by f1(u) = 2, f1(v) = f1(w) = 1 and f1(r) = 0 for all r ∈ V \ {u, v, w},



8 Roman domination value in graphs

f2(v) = 2, f2(u) = f2(w) = 1 and f2(r) = 0 for all r ∈ V \ {u, v, w} assign 2 or 1 to

u. Hence RG(u) = 2 + 1 + 2|N(v) ∩N(w)| ≤ 3 + 2(n− 3) ≤ 2n− 3.

Suppose degG(v) < n−3 and degG(w) < n−3. Then there are |N(v)∩N(w)| γR(G)-

functions that assign 2 to u. Also the function f : V (G) → {0, 1, 2} defined by

f(u) = 2, f(v) = f(w) = 1 and f1(r) = 0 for all r ∈ V \{u, v, w} assign 2 to u. Hence

RG(u) = 2 + 2|N(v) ∩N(w)| ≤ 2 + 2(n− 3) ≤ 2n− 4 (Refer Figure 4(E)).

If vw ∈ E(G), then |N(v) ∩N(w)| ≤ n− 4.

Suppose degG(v) = degG(w) = n− 3. Then there are |N(v)∩N(w)| γR(G)-functions

that assign 2 to u. Also the functions fi : V (G) → {0, 1, 2}, 1 ≤ i ≤ 5 defined by

f1(u) = 2, f1(v) = f1(w) = 1 and f1(r) = 0 for all r ∈ V \{u, v, w}, f2(u) = f2(v) = 2

and f2(r) = 0 for all r ∈ V \ {u, v}, f3(u) = f3(w) = 2 and f3(r) = 0 for all

r ∈ V \ {u,w} assign 2 to u, f4(u) = f4(y) = 1, f4(v) = 2 and f4(r) = 0 for

all r ∈ V \ {u, v, y} and f5(u) = f5(y) = 1, f5(w) = 2 and f5(r) = 0 for all

r ∈ V \ {u,w, y} where y is a vertex in N(u) such that y 6∈ N(v) ∩ N(w) assign 1

to u. Hence RG(u) = 3(2) + 1 + 1 + 2|N(v) ∩N(w)| ≤ 8 + 2(n − 4) ≤ 2n. Suppose

deg G(v) = degG(w) = n − 3 such that y 6∈ N(v) and z 6∈ N(w), then as above

RG(u) ≤ 2n.

Suppose degG(v) = n− 3 and degG(w) < n− 3 or vice-versa, then there are |N(v) ∩
N(w)| γR(G)-functions that assign 2 to u. Also the functions fi : V (G)→ {0, 1, 2}, i =

1, 2, 3, 4 defined by f1(u) = 2, f1(v) = f1(w) = 1 and f1(r) = 0 for all r ∈ V \{u, v, w},
f2(u) = f2(v) = 2 and f2(r) = 0 for all r ∈ V \{u, v}, f3(u) = f3(w) = 2 and f3(r) = 0

for all r ∈ V \{u,w} assign 2 to u and f4(u) = f4(y) = 1, f4(v) = 2 and f4(r) = 0 for

all r ∈ V \ {u, v, y} where y is a vertex in N(u) such that y 6∈ N(v) ∩N(w). Hence

RG(u) = 3(2) + 1 + 2|N(v) ∩N(w)| ≤ 7 + 2(n− 4) ≤ 2n− 1.

Suppose degG(v) < n− 3 and degG(w) < n− 3, then there are |N(v)∩N(w)| γR(G)-

functions that assign 2 to u. Also the functions fi : V (G) → {0, 1, 2}, i = 1, 2, 3

defined by f1(u) = 2, f1(v) = f1(w) = 1 and f1(r) = 0 for all r ∈ V \ {u, v, w},
f2(u) = f2(v) = 2 and f2(r) = 0 for all r ∈ V \ {u, v}, f3(u) = f3(w) = 2 and

f3(r) = 0 for all r ∈ V \{u,w} assign 2 to u. Hence RG(u) = 3(2)+2|N(v)∩N(w)| ≤
6 + 2(n− 4) ≤ 2n− 2 (Refer Figure 4(F)).

Case(iv): No vertex in N(u) is adjacent to both v and w.

Let x ∈ N(u) ∩N(v) and y ∈ N(u) ∩N(w). Suppose that vw 6∈ E(G).

If N(x) ∪ N(y) = V (G), then a function f : V (G) → {0, 1, 2} defined by f(x) =

f(y) = 2, f(r) = 0 for all r ∈ V (G) \ {x, y} is a γR(G)-function and in this case

RG(u) = 2.

If N(x) ∪ N(y) ⊂ V (G), then a function f : V (G) → {0, 1, 2} defined by f(u) =

2, f(v) = f(w) = 1 f(r) = 0 for all r ∈ V (G) \ {u, x} is a γR(G)-function and in this

case RG(u) = 2.

Suppose that vw ∈ E(G). Since there is no vertex in N(u) that is adjacent to both

v and w, there exists only three γR(G)-functions fi : V (G) → {0, 1, 2}, i = 1, 2, 3

that are defined as f1(u) = 2, f1(v) = 2, f1(r) = 0 for all r ∈ V (G) \ {u, v} or

f2(u) = 2, f2(w) = 2, f2(r) = 0 for all r ∈ V (G) \ {u,w} or f3(u) = 2, f3(v) =

f3(w) = 1, f3(r) = 0 for all r ∈ V (G) \ {u, v, w} and RG(u) = 6.
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Theorem 11. Let G be a graph of order n ≥ 4 and 4(G) = n− 3. Let deg G(u) = 4(G)
and |V i

1 |, 1 ≤ i ≤ τR(G) be minimized.

(i) If G is disconnected, then γR(G) = 4 and RG(u) = 2, 3 or 4.

(ii) If G is connected, then γR(G) = 4 and RG(u) ≤ 2n− 4.

Proof. Since deg G(u) = 4(G) = n − 3, there exist two vertices say v and w such

that uv, uw 6∈ E. We consider the following four cases.

Case (i). Neither v nor w is adjacent to any vertex in N(u).

As in the proof of Theorem 10, γR(G) = 4 and RG(u) = 2.

Suppose deg(v) = deg(w) = 1, then vw ∈ E(G′′). Clearly there are only two

γR(G′′)-functions fi : V (G′′) → {0, 1, 2}, i = 1, 2 defined as f1(v) = 2, f1(w) = 0

and f2(w) = 2, f2(v) = 0. Hence τR(G′′) = 2. Now by Observation 3, γR(G) = 4

and RG(u) = 0 or 4 (Refer Figure 4(B)).

Case (ii). Exactly one of v and w is adjacent to a vertex in N(u).

As in the proof of Theorem 10, γR(G) = 4 and RG(u) = 2 or 3.

Suppose G is connected, then vw ∈ E. Clearly γR(G) = 4 and there exists at

least one vertex y ∈ N(u) that is not adjacent to v. Now there exist two γR(G)-

functions fi : V → {0, 1, 2}, i = 1, 2 such that γR(G) = 4 that are defined as f1(u) =

2, f1(v) = 2, f1(r) = 0 for all r ∈ V \ {u, v} and f2(u) = 2, f2(w) = 2, f2(r) = 0 for

all r ∈ V \ {u,w}. Hence RG(u) = 4 (Refer Figure 4(D)).

Case (iii). Both v and w are adjacent to a vertex in N(u).

As in the proof of Theorem 10, γR(G) = 4.

If vw 6∈ E(G), then |N(v)∩N(w)| ≤ n−3. There are |N(v)∩N(w)| γR(G)-functions

that assign 2 to u. Hence RG(u) = 2|N(v)∩N(w)| ≤ 2(n− 3) ≤ 2n− 6 (Refer Figure

4(E)).

If vw ∈ E(G), then |N [v]∩N [w]| ≤ n−4. There are |N(v)∩N(w)|−γR(G)-functions

that assign 2 to u. Also two other functions fi : V (G) → {0, 1, 2}, i = 1, 2 defined

by f1(u) = f1(v) = 2 and f1(r) = 0 for all r ∈ V \ {u, v}, f2(u) = f2(w) = 2 and

f2(r) = 0 for all r ∈ V \ {u,w} assign 2 to u. Hence RG(u) = 4 + 2 |N(v) ∩N(w)| ≤
4 + 2(n− 4) ≤ 2n− 4 (Refer Figure 4(F)).

Case(iv). No vertex in N(u) is adjacent to both v and w.

Let x ∈ N(u) ∩N(v) and y ∈ N(u) ∩N(w).

Suppose that vw 6∈ E(G). Then, as in the proof of Theorem 10, γR(G) = 4 and

RG(u) = 2.

Suppose that vw ∈ E(G). Since there is no vertex in N(u) that is adjacent to both

v and w there exist only two γR(G)-functions say f1 and f2 such that f1 : V (G) →
{0, 1, 2} defined by f1(u) = 2, f1(v) = 2, f1(r) = 0 for all r ∈ V \ {u, v} or f2 :

V (G)→ {0, 1, 2} defined by f2(u) = 2, f2(w) = 2, f2(r) = 0 for all r ∈ V (G)\{u,w}
with weight 4 and hence γR(G) = 4 and RG(u) = 4.
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3. Roman Domination Value on Complete k-partite graphs

Yi [14] determined the number of minimum dominating sets and the domination value

of vertices on paths, cycles and complete multipartite graphs. Kang [7] determined the

number of minimum total dominating sets and the total domiantion value of vertices

on paths, cycles and complete multipartite graphs. As shown in [7, 14], determining

the (total) domination value of a vertex in a general graph can be very challenging.

In this section, we determine the number of minimum Roman dominating functions

and Roman domination value of vertices on complete multipartite graphs. For a

complete k-partite graph G with k ≥ 2, let V (G) be partitioned into k-partite sets

X1, X2, . . . , Xk with |Xj | = mj , where 1 ≤ j ≤ k. We recall that, for a γR(G)-function

f on V (G), Vi = {u ∈ V (G) : f(u) = i} where i ∈ {0, 1, 2}.
First, we determine γR(G) where G is a complete k-partite graph. It was observed in

[4] that, if min{m,n} 6= 2, then γR(Km,n) ∈ {2, 4}.

Observation 12. [4] For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Lemma 1. Let G = Km1, m2,..., mk be a complete k-partite graph such that k ≥ 2 and
mk ≥ mk−1 ≥ · · · ≥ m2 ≥ m1. Then

γR(G) =


2 if m1 = 1

3 if m1 = 2

4 if m1 ≥ 3

Proof. Let G be a complete k-partite graph as described. Note that γ(G) ∈ {1, 2},
where γ(G) = 1 if and only if m1 = 1. If m1 = 1, then γR(G) = 2 by Observation 12

and the definition of Roman domination number.

Now, suppose m1 ≥ 2. If f is a function on V (G) such that either |V1| = 2 and

|V2| = 0, or |V1| = 0 and |V2| = 1, then f fails to be a Roman dominating function of

G; thus, γR(G) ≥ 3. By Observation 12, γR(G) ∈ {3, 4}.
First, suppose m1 = 2. Let X1 = {w1, w2} and let g : V (G)→ {0, 1, 2} be a function

defined by g(w1) = 2, g(w2) = 1 and g(v) = 0 for each v ∈ V (G) −X1. Since g is a

Roman dominating function of G with g(V (G)) = 3, γR(G) ≤ 3 . Thus, γR(G) = 3.

Second, suppose m1 ≥ 3. We show that γR(G) = 4 by claiming that γR(G) ≥ 4.

Assume, to the contrary, that there exists a Roman dominating function f on G with

f(V (G)) = 3. Then f must satisfy one of the following: (i) |V1| = 3 and |V2| = 0

or (ii) |V1| = 1 and |V2| = 1. Suppose f satisfies |V1| = 3 and |V2| = 0. Since

m1 ≥ 3 and k ≥ 2, |V (G)| ≥ 6 and there exists a vertex v in G with f(v) = 0 and

v is not adjacent to any vertex with the value assigned 2 under f . So, f is not a

Roman dominating function of G. Now, suppose f satisfies |V1| = 1 and |V2| = 1.

Assume that V2 = {u} ⊂ Xa for some a ∈ {1, 2, . . . , k}, where ma ≥ 3. Since each

vertex in Xa − {u} is not adjacent to u and there exists a vertex in Xa − {u} with

the value 0 assigned under f , f fails to form a Roman dominating function of G. So,

γR(G) ≥ 4.
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Next we determine the Roman domination value of vertices in a complete k-partite

graph.

Theorem 13. Let G = Km1, m2,..., mk be a complete k-partite graph of order n ≥ 3 with
k ≥ 2 and mk ≥ mk−1 ≥ · · · ≥ m2 ≥ m1. Then

(a) If m1 = 1, then

RG(v) =

{
2, if v ∈ Xi, with |Xi| = 1,

0, if v ∈ Xi, with |Xi| ≥ 2.

(b) If m1 = 2, then

RG(v) =

{
3, if v ∈ Xi, with |Xi| = 2,

0, if v ∈ Xi, with |Xi| ≥ 3.

(c) If m1 = 3, then

RG(v) =

{
2(n−mi + 2), if v ∈ Xi, with |Xi| = 3,

2(n−mi) if v ∈ Xi, with |Xi| ≥ 4.

(d) If m1 ≥ 4, then RG(v) = 2(n−mi) for each v ∈ Xi, where i ∈ {1, 2, · · · , k}.

Proof. Let G be a complete k-partite graph of order n ≥ 3 as described.

(a) Let m1 = 1 and s be the number of partite sets of V (G) consisting of exactly

one element, that is, |Xi| = 1 for i ∈ {1, 2, . . . , s}. By Lemma 1, γR(G) = 2. Since

n ≥ 3, |V2| = 1 and |V1| = 0. So, for each minimum Roman dominating function f on

V (G) and for v ∈ V (G), we have f(v) ∈ {0, 2} and f(w) = 2 for exactly one vertex

w satisfying degG(w) = n − 1. Thus, RG(v) = 2 if v ∈ ∪si=1Xi and RG(v) = 0 if

v ∈ V (G) \ ∪si=1Xi.

(b) Let m1 = 2 and d be the number of partite sets of V (G) consisting of exactly

two elements, that is, |Xi| = 2 for i ∈ {1, 2, . . . , d}. By Lemma 1, γR(G) = 3. Since

n ≥ 4, |V1| = |V2| = 1. If V1 ⊂ Xi and V2 ⊂ Xj with i 6= j, then each vertex in

Xj − V2 that is assigned the value 0 is not adjacent to any vertex assigned the value

2 under the function being considered. So, V1 ∪ V2 ⊆ Xi for some i ∈ {1, 2, . . . , d}.
For each minimum Roman dominating function f on V (G), we have f(Xi) = 3 for

exactly one i ∈ {1, 2, . . . , d}. If f(Xi) = 3 and Xi = {wi, w
′
i}, then f satisfies either

f(wi) = 1 and f(w′i) = 2, or f(wi) = 2 and f(w′i) = 1. So, RG(v) = 3 if v ∈ ∪di=1Xi

and RG(v) = 0 if v ∈ V (G) \ ∪di=1Xi.

(c) Let m1 = 3 and t be the number of partite sets of V (G) consisting of exactly

three elements, that is, |Xi| = 3 for i ∈ {1, 2, . . . , t}. By Lemma 1, γR(G) = 4. Since

n ≥ 6, |V2| ≥ 1. Let f : V (G)→ {0, 1, 2} be a minimum Roman dominating function

of G with f(V (G)) = 4. Then f satisfies one of the following two cases:

(i) |V1| = 2 and |V2| = 1;

(ii) |V1| = 0 and |V2| = 2.
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We note that |V1| = 2 and |V2| = 1 imply V1 ∩ V2 ⊂ Xi, with |Xi| = 3 for some

i ∈ {1, 2, . . . , t}, and that |V1| = 0 and |V2| = 2 imply that V2∩Xi 6= ∅ and V2 ∩Xj 6= ∅
for distinct i, j ∈ {1, 2, . . . , k}. If |Xi| = 3, then both (i) and (ii) can occur for

the vertices belonging to Xi. So, for v ∈ Xi with |Xi| = 3, we have RG(v) =

4 + 2(n − mi) = 2(n − mi + 2). If |Xi| ≥ 4,then only (ii) can occur, that is, for

distinct w ∈ Xi and w′ ∈ Xj with i 6= j, f(w) = f(w′) = 2 and f(v) = 0 for each

v ∈ V (G) \ {w,w′}. So, for v ∈ Xi with |Xi| ≥ 4, RG(v) = 2(n−mi).

(d) Let m1 ≥ 4. By Lemma 1, γR(G) = 4. Since k ≥ 2 and m1 ≥ 4, |V1| = 0

and |V2| = 2. For any minimum Roman dominating function f on V (G), there are

exactly two vertices w ∈ Xi and w′ ∈ Xj , where i 6= j, such that f(w) = f(w′) = 2

and f(v) = 0 for each v ∈ V (G) \ {w,w′}. For w ∈ Xi, then number of minimum

Roman dominating functions f satisfying f(w) = 2 equals the number of elements in

V (G)−Xi. So RG(v) = 2(n−mi) for v ∈ Xi.

Next, based on Observation 12, Lemma 1 and Theorem 13, we determine τR(G) when

G is a complete k-partite graph.

Corollary 1. Let G = Km1, m2,..., mk be a complete k-partite graph of order n ≥ 3 with
k ≥ 2 and mk ≥ mk−1 ≥ · · · ≥ m2 ≥ m1. If m1 = 1(m1 = 2 and m1 = 3 respectively),
let s (d and t respectively) denote the number of partite sets of V (G) with cardinality
1(2 and 3 respectively). Then

τR(G) =



s if m1 = 1,

2d if m1 = 2,

3t+
1

2

{
n2 −

k∑
i=1

m2
i

}
if m1 = 3,

1

2

{
n2 −

k∑
i=1

m2
i

}
if m1 ≥ 4.

Proof. Let G be a complete k-partite graph of order n ≥ 3 as described. By Obser-

vation 1, Lemma 1 and Theorem 13, we have the following.

If m1 = 1, then

s∑
i=1

2(1) = 2τR(G), and thus τR(G) = s.

If m1 = 2, then

d∑
i=1

3(2) = 3τR(G), and thus τR(G) = 2d.

If m1 = 3, then

t∑
i=1

2(n−mi + 2)(3) +

k∑
i=t+1

2(n−mi)mi = 4τR(G)

t∑
i=1

4(3) +

k∑
i=t+1

2(n−mi)mi = 4τR(G);
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Thus,

τR(G) = 3t+
1

2

k∑
i=1

(nmi −m2
i )

= 3t+
1

2

(
n

k∑
i=1

mi −
k∑

i=1

m2
i

)

= 3t+
1

2

{
n2 −

k∑
i=1

m2
i

}
.

If m1 ≥ 4, then

k∑
i=1

2(n − mi)mi = 4τR(G) and thus τR(G) = 1
2

k∑
i=1

(nmi − m2
i ) =

1

2

(
n2 −

k∑
i=1

m2
i

)
.
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