تعداد نشریات | 5 |
تعداد شمارهها | 112 |
تعداد مقالات | 1,259 |
تعداد مشاهده مقاله | 1,225,095 |
تعداد دریافت فایل اصل مقاله | 1,084,995 |
Strong global distribution center of graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 دی 1403 اصل مقاله (380.93 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.29903.2217 | ||
نویسندگان | ||
Mostafa Edalat؛ Hamidreza Maimani* | ||
Department of Basic Sciences, Shahid Rajaee Teacher Training University, P.O. Box 16785-163, Tehran, Iran | ||
چکیده | ||
Let $G=(V,E)$ be a graph. A strong global distribution center of $G$ is a dominating set $S\subseteq V$ such that for any $v\in V\setminus S$, there exists a vertex $u\in N[v]\cap S$ with the property $|N[u]\cap S|> |N[v]\cap (V\setminus S)|$. The strong global distribution center number, gdc$^s(G)$, of a graph $G$ is the minimum cardinality of a strong global distribution center of $G$. In this paper, we introduce the concept of strong global distribution center. We give some bounds on the gdc$^s(G)$ for general graphs and classify graphs with extremal values of gdc$^s(G)$. Also, we compute the strong global distribution center number for some families of graphs and study this parameter for some families of graph products. | ||
کلیدواژهها | ||
Global distribution center؛ Strong global distribution center؛ Dominating set؛ Graphs products | ||
مراجع | ||
[1] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, Chapman & Hall London, 1996.
[2] W.J. Desormeaux, T.W. Haynes, S.T. Hedetniemi, and C. Moore, Distribution centers in graphs, Discrete Appl. Math. 243 (2018), 186–193. https://doi.org/10.1016/j.dam.2018.02.009
[3] R. Durgut, H. Kutucu, and T. Turaci, Global distribution center number of some graphs and an algorithm, RAIRO Oper. Res. 53 (2019), no. 4, 1217–1227. https://doi.org/10.1051/ro/2018119
[4] R.H. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC press Boca Raton, 2011.
[5] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (2003), Article Number: R47 https://doi.org/10.37236/1740
[6] J.A. Rodríguez-Velázquez and J.M. Sigarreta, Global defensive $k$-alliances in graphs, Discrete Appl. Math. 157 (2009), no. 2, 211–218. https://doi.org/10.1016/j.dam.2008.02.006 | ||
آمار تعداد مشاهده مقاله: 20 تعداد دریافت فایل اصل مقاله: 11 |