
تعداد نشریات | 5 |
تعداد شمارهها | 116 |
تعداد مقالات | 1,312 |
تعداد مشاهده مقاله | 1,308,511 |
تعداد دریافت فایل اصل مقاله | 1,211,435 |
Some results on the strongly annihilator ideal graph of a lattice | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 بهمن 1403 اصل مقاله (478.15 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.29956.2240 | ||
نویسندگان | ||
Vikas Kulal* 1؛ Anil Khairnar2 | ||
1Department of Applied science and humanities, School of engineering and sciences, MIT Art, Design and Technology University, Pune-412 201, India | ||
2Department of Mathematics, Abasaheb Garware College, Pune-411 004, India | ||
چکیده | ||
For a lattice $L$, the strongly annihilator ideal graph of $L$ is denoted by $SAnnIG(L)$. It is a graph with the vertex set, which consists of all ideals in $L$ that have nontrivial annihilators such that any two distinct vertices $I$ and $J$ are adjacent in $SAnnIG(L)$ if and only if the annihilator of $I$ contains a nonzero element of $J$ and the annihilator of $J$ contains a nonzero element of $I$. In this paper, we determine the radius, circumference, and domination number of $SAnnIG(L)$. We obtain necessary and sufficient conditions for $SAnnIG(L)$ to be in the class of paths, cycles, unicyclic, triangle-free, trees, complete multipartite, split or claw-free graphs. Among other results, we study the affinity between the strongly annihilator ideal and the annihilator ideal graph of a lattice. | ||
کلیدواژهها | ||
Lattice؛ ideal؛ domination number and strongly annihilator ideal graph | ||
مراجع | ||
[1] M. Afkhami and K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc. 37 (2014), no. 1, 261–269.
[2] M. Afkhami, K. Khashyarmanesh, and F. Shahsavar, On the properties of zero-divisor graphs of posets, Quasigr. Relat. Syst. 43 (2020), no. 1, 1–16.
[3] J. Amjadi, R. Khoeilar, and A. Alilou, The annihilator-inclusion ideal graph of a commutative ring, Commun. Comb. Optim. 6 (2021), no. 2, 231–248. https://doi.org/10.22049/cco.2020.26752.1139
[4] D.F. Anderson, T. Asir, A. Badawi, and T.T. Chelvam, Graphs from rings, Springer Nature Switzerland AG, 2021.
[5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840
[6] S. Bagheri and M.K. Kerahroodi, The annihilator graph of a 0-distributive lattice, Trans. Comb. 7 (2018), no. 3, 1–18. https://doi.org/10.22108/toc.2017.104919.1507
[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. https://doi.org/10.1016/0021-8693(88)90202-5
[8] T.T. Chelvam and S. Nithya, A note on the zero divisor graph of a lattice, Trans. Comb. 3 (2014), no. 3, 51–59. https://doi.org/10.22108/toc.2014.5626
[9] E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a lattice, Results Math. 61 (2012), no. 1, 1–11.
[10] G.A. Grätzer, Lattice Theory: Foundation, Springer, 2011.
[11] A. Khairnar and B.N. Waphare, Zero-divisor graphs of laurent polynomials and laurent power series, Algebra and its Applications (Singapore) (S.T. Rizvi, A. Ali, and V.D. Filippis, eds.), Springer Singapore, 2016, pp. 345–349.
[12] V. Kulal and A. Khairnar, Strongly annihilator ideal graph of a lattice, Asian-Eur. J. Math. 17 (2024), no. 7, Article ID: 2450050. https://doi.org/10.1142/S1793557124500505
[13] V. Kulal, A. Khairnar, and T.T. Chelvam, Annihilator intersection graph of a lattice, Discrete Math. Algorithms Appl. (2024), In press. https://doi.org/10.1142/S1793830924500344
[14] V. Kulal, A. Khairnar, and K. Masalkar, Annihilator ideal graph of a lattice, Palest. J. Math. 11 (2022), no. 4, 195–204.
[15] A. Patil, A. Khairnar, and B.N. Waphare, Zero-divisor graph of a poset with respect to an automorphism, Discrete Appl. Math. 283 (2020), 604–612. https://doi.org/10.1016/j.dam.2020.02.015
[16] N.K. Tohidi, M.J. Nikmehr, and R. Nikandish, On the strongly annihilating-ideal graph of a commutative ring, Discrete Math. Algorithms Appl. 9 (2017), no. 2, Article ID: 1750028. https://doi.org/10.1142/S1793830917500288
[17] D.B. West, Introduction to Graph Theory, Prentice hall Upper Saddle River, 2001. | ||
آمار تعداد مشاهده مقاله: 108 تعداد دریافت فایل اصل مقاله: 72 |