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Abstract: In a connected graph G, the all-paths transit function A(u, v), consists
of the set of all vertices in the graph G which lies on some path connecting u and

v. Convexity obtained by the all-paths transit function is called all-paths convexity.
A Radon partition of a set P of vertices of a graph G is a partition of P into two

disjoint non-empty subsets such that their convex hulls intersect. A Radon partition

(Pt, Qt) of P is called t-tolerant Radon partition, if for any set S ⊆ P with |S| ≤ t,
the intersection of the convex hulls 〈Pt \ S〉 ∩ 〈Qt \ S〉 6= ∅. This paper is devoted to

t-tolerant Radon partitions for the all-paths convexity of connected simple undirected

graphs. It is proved that the minimum number of vertices needed for t-tolerant Radon
partition is 2t + 4. But, some selection of 2t + 4 vertices of G has a (t + 1)-tolerant
Radon partition. In this paper, we discuss the necessary and sufficient condition to

the existence of (t + 1)-tolerant Radon partition for 2t + 4 vertices of G. We also
develop algorithms to construct the Radon partition, t-tolerant Radon partition, and
(t + 1)-tolerant Radon partition of a set of 2t + 4 vertices, if it exists.

Keywords: all-paths convexity, Radon partition, (t + 1)-tolerant Radon partition.

AMS Subject classification: 05C38, 52A01

1. Introduction

In Discrete Geometry, Radon’s theorem is one of the most useful theorems by its

applications. In 1921, Radon [14] proved that every set P of d + 2 points in Rd

possesses a partition of P into two non-empty sets (P , Q) such that their convex
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hulls intersect. Such a partition is called a Radon partition. The classical convexity

invariant named as Radon number, which represents the smallest number k of points

in the Euclidean space Rd such that any set of k points has a Radon partition.

The natural generalisation of Radon’s theorem is the Tverberg’s theorem. In 1966,

Tverberg [21] partitioned (k − 1)(d + 1) + 1 points in Rd into k non-empty subsets

such that their convex hulls intersect.

A Radon partition (Pt, Qt) of a set P in Rd has tolerance t, if by removing

any t points from P , then (Pt, Qt) still remains as a Radon partition. Generally,

zero-tolerant Radon partition refers to the usual Radon partition. Tolerant Radon

partitions of Rd have applications in computational geometry. So many studies are

done in the tolerance of Tverberg’s partitions in the classical Euclidean convexity.

Larman [12], proved that any set of 2d + 3 points in Rd has one tolerant Radon

partition and Garcia-Colin [7] gives the existence of t-tolerant Radon partition for

any set of (t + 1)(d + 1) + 1 points in Rd. Further, Soberon et al. [19] proved that

for any set of (t+ 1)(k− 1)(d+ 1) + 1 points in Rd has t-tolerant Tverberg partition.

In 2022, Bereg et al. [2] developed different algorithms to compute the tolerance in

Radon partitions in Rd.

Tolerant Radon partitions in abstract convexity spaces, in particular in graph con-

vexity spaces is an interesting area of the Radon partition problem. The theory of

abstract convexity spaces was developed with the main intention of generalizing the

classical convexity invariants such as Helly, Carathéodory, and Radon numbers in Rd.

Later these ideas are used in abstract convexity spaces by Sierksma [16–18], Duchet

[10], van de Vel [22], to name a few important references.

In abstract convexity spaces, graph convexity spaces captured more attention and

several authors have studied graph convexities in different settings. The most promi-

nent types of graph convexities are defined in terms of paths in the graph. Important

studies are done in terms of geodesic, induced path and all-paths convexity [1, 3–

6, 9, 15].

The coarsest path convexity in a connected graph is the all-paths convexity [4, 6].

The convexity invariants of the all-paths convexity are determined in [6] for a graph

G. It can be proved easily that the Carathéodory number, c(G) = 2; Helly number,

h(G) = 2 and Radon number r(G) satisfies 3 ≤ r(G) ≤ 4, for the all-paths convexity.

In [20], it is proved that any set S of 2t+4 vertices in a graph G guarantees that S has

a t-tolerant Radon partition for the all-paths convexity. It may be noted that in some

cases, a set of 2t+4 vertices of G can have a Radon partition with maximum tolerance

of t+ 1 for the all-paths convexity. In this paper, we give the necessary and sufficient

condition for the existence of maximum tolerance of t + 1 for a set of 2t + 4 vertices

of G with respect to all-paths convexity and discuss algorithms to construct tolerant

Radon partitions of a set of vertices and the maximum tolerant Radon partition of a

set of vertices, if it exists.

We discuss all the possibilities to form (t + 1)-tolerant Radon partition to a set of

2t + 4 vertices of G for the all-paths convexity.
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The paper is organised in the following way. In Section 2, we present the preliminary

concepts, definitions, and results for the remaining sections. The necessary and suffi-

cient condition to the existence of (t + 1)-tolerant Radon partition for 2t + 4 vertices

of G is described in Section 3. In Section 4, we discuss the algorithms.

2. Preliminaries

In this paper, we consider a simple connected undirected graph G with vertex set V .

Also, only the tolerant Radon partition with respect to the all-paths convexity in a

graph G is taken into account. In this sense, the term convexity that we mention at

times needs to be read as all-paths convexity.

A convexity space is a pair (V,C ) where V is a non-empty set and C is a collection

of subsets of V such that ∅, V ∈ C , arbitrary intersection of elements of C is also in

C , and every nested union of elements of C is also in C [22]. If V is finite, then the

nested union condition is redundant and not required.

The elements of C are called convex sets. The smallest convex set containing a set S

is called the convex hull of S and it is represented by 〈S〉C . A graph convexity space

is a pair (G,C ) formed with V , a vertex set and C , a convexity on V .

According to Mulder in [13], a transit function on a finite set V is a function R :

V × V → 2V satisfying the following conditions

u ∈ R(u, v) for any u, v ∈ V , R(u, v) = R(v, u) for all u, v ∈ V and R(u, u) = {u} for

all u ∈ V .

Let R be a transit function on V . A set W ⊂ V is an R-convex set if R(u, v) ⊆W for

all u, v ∈ W . The collection CR of all R-convex sets in V is a convexity in the sense

that CR contains the empty set ∅ and V itself and CR is closed under intersections

and nested unions.

If R is a transit function on the vertex set V of a graph G then we say that R is a

transit function on G. Transit function gives a rule to move around from an element

u ∈ V to an element v ∈ V via the set R(u, v). The geodesic interval function I, the

induced path transit function J , and the all-paths transit function A [4, 6, 9, 15] are

some examples of transit functions, where

I(u, v) = {w ∈ V : w lies on some shortest u− v path in G},

J(u, v) = {w ∈ V : w lies on some induced u− v path in G},

and

A(u, v) = {w ∈ V : w lies on some u− v path in G}.

The family of R-convex sets in a graph G is called R-convexity on G. Thus the

convexities induced by the geodesic, induced path, and all-paths transit functions are



4 On maximum tolerant Radon partitions for all-paths convexity in graphs

called geodesic convexity, induced path convexity and all-paths convexity, respectively.

All these graph convexities are extensively studied, for e.g., in [4, 6, 9, 15].

For convenience, we denote the all-paths convex hull of a subset S of V by 〈S〉. It may

be noted that the convex hull 〈S〉 of subset S always induces a connected subgraph

of G.

For the basic graph theoretical terms, we refer to West [23]. A cut vertex of a graph

G is a vertex whose removal increases the number of components of G. A subgraph

H having vertex set S, S ⊆ V , is called an induced subgraph if for any two vertices

u, v ∈ S, u and v are adjacent in H if and only if u and v are adjacent in G. Pendant

vertex (leaf vertex) of G is a vertex of G having degree one. The diameter of G is

the maximum distance between any two vertices of G. The graph G is two-connected

if the removal of any single vertex in G is not sufficient to disconnect the graph. A

block of a graph G is a maximal two-connected subgraph of G. From the definition

of A(u, v), it is clear that A(u, u) = {u} for any vertex u of V , and if u, v are two

vertices of a block, then A(u, v) is the set of all vertices of that block. For u, v in

G, A(u, v) contains all vertices of the blocks in G, in which there exists a u− v path

traversing through that block. Thus if a u− v path contains an edge of a particular

block, then the all-paths convex hull of {u, v} contains all vertices of that particular

block. From the definition of A, it follows that, for any x, y ∈ V , 〈{x, y}〉 = A(x, y)

where 〈{x, y}〉 is the all-paths convex hull of {x, y}. The block cut-vertex tree denoted

as B(G) of G has the blocks and cut vertices of G as its vertices and two vertices of

B(G) are adjacent whenever one of them is a cut vertex of a block and the other is a

block containing that cut vertex [3]. It is clear that the all-paths transit function has

the structure reflecting the block-cut vertex tree structure of the graph. Blocks of a

graph G having only one cut vertex are called end blocks.

The Radon number of a convexity space is the smallest integer r such that every r

element subset P of V has a Radon partition. We denote the Radon partition of P

concerning the all-paths convexity into sets P0 and Q0 as (P0, Q0).

A Radon partition of P into two nonempty subsets Pt and Qt is called t-tolerant

Radon partition for some non-negative integer t, if for any set S ⊆ P with |S| ≤ t, we

have 〈Pt \ S〉 ∩ 〈Qt \ S〉 6= ∅. For t-tolerant Radon partition, each set of a partition

must have at least t + 1 vertices. Clearly, t-tolerant Radon partition of a set is

(t− 1)-tolerant Radon partition. But, the converse need not be true.

3. (t+ 1)-tolerant Radon partition

In [20], we proved that for any set of 2t + 4 vertices of G has a t-tolerant Radon

partition for the all-paths convexity. Here t is the greatest lower bound of the tolerance

of the Radon partition for any set of 2t + 4 vertices of G. But for some collection of

2t+ 4 vertices of G, there exists a (t+ 1)-tolerant Radon partition. In this section we

find the different cases for the existence of (t + 1)-tolerant Radon partition for a set

of 2t + 4 vertices of the graph. In [20], we proved that if G has no cut vertices, then
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any collection of 2t + 2 vertices of P has a t-tolerant Radon partition.

Proposition 1. [20] If a graph G has no cut vertices, then any set of 2t + 2 vertices of
G has a t-tolerant Radon partition, t ≥ 1.

Proposition 2. Let P be a set of 2t + 4 vertices of a graph G and let H be the subgraph
induced by 〈P 〉. If P contains only one vertex of some end block of H other than a cut vertex,
then P has no (t + 1)-tolerant Radon partition.

Proof. To form a (t+ 1)-tolerant Radon partition, each set of a partition must have

at least t + 2 vertices of P . Since P contains only one vertex x of some end block

Bi of H other than a cut vertex, it is clear that H contains more than one block.

Consider any partition (P1, Q1), both having t + 2 vertices of P . Let x ∈ P1. Let

S be the set of t + 1 vertices of P1 such that x /∈ S. Then P1 \ S = {x} and so

〈P1 \ S〉 = {x}. Since x is the only vertex from the end block Bi with possible

exception of its cut vertex, Q1 contains no vertex of Bi. Thus 〈Q1 \ S〉 does not

contain x. Hence 〈P1 \ S〉 ∩ 〈Q1 \ S〉 = ∅. Thus P has no (t + 1)-tolerant Radon

partition.

Proposition 3. Let P be a set of 2t+ 4 vertices G other than cut vertices. If each block
of G contains an even number (greater than 2) of vertices of P , then P has a (t+ 1)-tolerant
Radon partition; t ≥ 0.

Proof. Here we form partitions P ∗ and Q∗ such that each partition contains half of

the total number of vertices from each block. Then |P ∗| = t+ 2 and |Q∗| = t+ 2. We

have to show that P ∗ and Q∗ forms a (t + 1)-tolerant Radon partition.

Case 1. If we remove any t + 1 vertices from P ∗ then one vertex of some block

Bi remains in P ∗. Since no vertices are removed from Q∗, Q∗ contains at least one

vertex of that block Bi. So the all-paths convex hull of the remaining vertices of the

partitions intersects at the remaining vertex of P ∗ from Bi. Similarly if we remove

any t + 1 vertices from Q∗, then also the convex hull of the remaining vertices of

partitions intersects.

Case 2. If we remove any k, 1 ≤ k < t + 1, vertices from P ∗ and t + 1 − k vertices

from Q∗. After removing k vertices from P ∗, t+2−k vertices remain in P ∗. Since P ∗

and Q∗ contain the same number of vertices from each block, corresponding to these

t+2−k vertices of P ∗ there exists t+2−k vertices in Q∗. Since (t+2−k)−(t+1−k) = 1,

after removing any t + 1− k vertices from Q∗, at least one vertex of the same block

Bi remains in both P ∗ and Q∗. So the all-paths convex hull of the remaining vertices

intersects at block Bi, because there are no cut vertices in P and so (P ∗, Q∗) is a

(t + 1)-tolerant Radon partition.

Thus to form a (t + 1)-tolerant Radon partition from a set of 2t + 4 vertices of G, P

must contain at least two vertices from all the end blocks of the subgraph induced by

〈P 〉 other than cut vertices.
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Theorem 1. Let P be a set of 2t + 4 vertices of a graph G and let H be the subgraph
induced by 〈P 〉. Suppose that P contains at least one vertex from every interior block of H
and at least two vertices from every end block of H other than cut vertices. Then P has a
(t + 1)-tolerant Radon partition.

Proof. Given a partition P = (P1, Q1), we call (P1, Q1) is of the same cardinality,

if |P1| = |Q1| and of different cardinality if |P1| = |Q1|+ 1. We use this terminology

in the proof.

Since H is a convex subgraph of G, H is connected. Now, consider the block cut

vertex tree, B(H) of the subgraph H. Blocks and cut vertices of H are the vertices

of B(H). We represent the vertices of P in B(H) in such a way that, all cut vertices

of H in P can be represented in their corresponding places of B(H) and all other

vertices of P from the same block can be represented in the corresponding vertex of

B(H). Thus, a vertex of B(H) may represent more vertices of P .

Case 1. B(H) is a path.

Since 2t + 4 is even, the number of vertices of B(H) that corresponds to an odd

number of vertices of P is always even. We construct P1 and Q1 by partitioning the

vertices of P using B(H), starting from a pendant vertex of B(H). Suppose that the

pendent vertex of B(H) represents x1 vertices of P . If x1 is even, then allocate x1

2

vertices to P1 and remaining x1

2 vertices to Q1. If x1 is odd, then x1 ≥ 3 and allocate
x1+1

2 vertices to P1 and the remaining x1−1
2 vertices to Q1. Continuing the traversal

through B(H), we come across the next x2 vertices of P . If x2 is even, then as in the

previous case, allocate x2

2 vertices to P1 and remaining x2

2 vertices to Q1. If x2 is odd

then the allocation of x2+1
2 vertices depends on |P1| and |Q1|. If |P1| = |Q1|, then

allocate x2+1
2 vertices to P1 and remaining x2−1

2 vertices to Q1. If |P1| > |Q1|, then

allocate x2+1
2 vertices to Q1 and remaining x2−1

2 to P1. Thus, after the allocation of

two sets of odd vertices, we have |P1| = |Q1|. Continuing this way, we allocate all

vertices of P and construct (P1, Q1) such that |P1| = |Q1| = t + 2.

Since P1 and Q1 contains at least one vertex from all the end blocks, 〈P1〉 = 〈Q1〉 =

V (H). Let S be any set of t+1 vertices of P1. Then it follows that 〈P1\S〉∩〈Q1〉 6= ∅.
Similar is the case, when S is any t + 1 vertices of Q1. If we remove k, 1 ≤ k ≤ t

vertices from P1 and t + 1 − k vertices from Q1, then t + 2 − k vertices remains in

P1. These t + 2− k vertices may be from the same block or from different blocks. If

the all-paths convex hull of the remaining t + 2− k vertices of P1 contains t + 2− k

vertices of Q1, after removing any t + 1 − k vertices from Q1, at least one vertex of

Q1 remains and so the convex hull of the remaining vertices of P1 and Q1 intersects.

If the all-paths convex hull of the remaining t+ 2− k vertices of P1 contains t+ 1− k

vertices of Q1, then by the way of construction of partition, Q1 contains at least

one vertex from the block B, which is adjacent to the all-paths convex hull of the

remaining vertices of P1. So after removing any t+ 1− k vertices from Q1 the convex

hull of the remaining vertices of the partitions intersects at a cut vertex of B or at a

block. Thus the partition (P1, Q1) is a (t + 1)-tolerant Radon partition.

Case 2. B(H) is a tree, which is not a path.
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We perform a traversal in B(H) to construct the Radon partition. We define a branch

T of B(H) as a sparse branch if T starts with a leaf u and ends in a vertex w, which

is the first vertex such that the neighbor of w as we traverse has a degree at least

three in B(H) so that the path connecting u and w contains no vertex having degree

≥ 3. We construct the partition as follows.

We construct P1 and Q1 by partitioning the vertices of P using B(H), by following a

traversal through the sparse branches of B(H). Let the leaf vertex of a sparse branch,

say T of B(H) represent x1 ≥ 2 vertices of P . If x1 is even, x1

2 vertices are allotted

to P1 and remaining x1

2 vertices are allotted to Q1. If x1 is odd then x1 ≥ 3, x1+1
2

vertices are allotted to P1 and remaining x1−1
2 vertices are allotted to Q1. We have

that |P1| = |Q1| or |P1| = |Q1|+ 1.

We traverse along the vertices of T to find the next vertex, say w of T , which contains

vertices of P . Let w contain x2 vertices of P . If x2 is even, then as in the previous case,
x2

2 vertices are allotted to P1 and the remaining x2

2 vertices are allotted to Q1. If x2 is

odd and |P1| = |Q1|, then allocate x2+1
2 vertices to P1 and the remaining vertices of x2

to Q1, otherwise, if |P1| > |Q1|, then allocate x2−1
2 vertices to P1 and the remaining

vertices to Q1. Continue the traversal and the partitioning of the vertices of P through

the entire sparse branch T , thus obtaining the partition (P1, Q1) of vertices of P lying

in T . From this procedure, we obtain that if the number of vertices of P lying in T

is even (odd), then |P1| = |Q1| (|P1| = |Q1| + 1). Then delete the branch T and

continue the procedure on another sparse branch T1 to obtain the partition (P2, Q2)

of vertices of P lying in T1. Delete the branch and continue until all sparse branches

are deleted and obtaining a sequence of partitions (P1, Q1), (P2, Q2), . . . ,(Pm, Qm) of

P . Let there be k partitions having different cardinality (Pi, Qi) (1 ≤ i ≤ k) and m−k
partitions (Pj , Qj) (k + 1 ≤ j ≤ m) having same cardinality. Since the cardinality of

P is even, k is even. Now, consider the partition (Pt, Qt) defined as follows.

Pt = P1 ∪ P2 ∪ · · · ∪ P k
2
∪Q k

2+1 ∪ · · · ∪Qk ∪ Pk+1 ∪ · · · ∪ Pm

and

Qt = Q1 ∪Q2 ∪ · · · ∪Q k
2
∪ P k

2+1 ∪ · · · ∪ Pk ∪Qk+1 ∪ · · · ∪Qm

.

From construction, it follows that |Pt| = |Qt| = t + 2.

We prove that (Pt, Qt) is a (t+ 1)-tolerant Radon partition of P . From construction,

it follows that Pt and Qt contain at least one vertex from all the end blocks of H

different from cut vertices and so 〈Pt〉 = 〈Qt〉 = V (H). Thus, (Pt, Qt) is a Radon

partition of P . Let S be a set of t + 1 vertices of Pt. Now Pt \ S consists of a single

vertex, say z. Clearly Qt \ S = Qt and so 〈Pt \ S〉 ∩ 〈Qt \ S〉 = {z}. Similarly if S

consists of t + 1 vertices of Qt, then, also 〈Pt \ S〉 ∩ 〈Qt \ S〉 6= ∅.
Now, let K be any set of k (1 ≤ k ≤ t) vertices of Pt and L be any set of t + 1 − k

vertices of Qt so that S = K ∪L. Then Pt \K contains t+ 2− k vertices of Pt. Since

B(H) is not a path, 〈Pt \ K〉 contains some or no vertices of Qt. If Qt contains at
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least t + 2− k vertices from 〈Pt \K〉, then at least one vertex remains in Qt \L, and

so 〈Pt \K〉 ∩ 〈Qt \L〉 6= ∅. If 〈Pt \K〉 contains t + 1− k vertices of Qt, then 〈Qt \L〉
contains a vertex from a block, which is adjacent to 〈Pt \ K〉 by our construction.

Thus 〈Pt \K〉 and 〈Qt \ L〉 intersect at a cut vertex. If 〈Pt \K〉 contains less than

t + 1 − k vertices of Qt, then there exists a set T ⊂ Qt with |T | ≥ t + 2 − k such

that 〈T 〉 contains the vertices of Pt \ K, consisting of vertices from different sparse

branches of B(H). Then T \ L 6= ∅ and T \ L ⊂ Qt \ L. Then 〈Qt \ L〉 contains

at least one vertex of Pt \ K. Hence 〈Qt \ L〉 and 〈Pt \ K〉 intersect, since the all-

paths convex hull contains the entire block containing the vertices. Thus in all cases,

〈Pt \ S〉 ∩ 〈Qt \ S〉 6= ∅.

Figure 1. Graph H

Example 1. Consider the graph H having three blocks B1, B2, B3 as in Figure 1. Let
P = {v1, v2, v3, v4, v5, v6}. Then |P | = 2t + 4, t = 1 and P has no vertex from an inner
block B2. We claim that P has no 2-tolerant Radon partition. Any possible 2-tolerant
Radon partition P ∗ and Q∗ should contain at least 3 vertices of P . Since |P | = 6, P ∗ and
Q∗ should contain exactly 3 vertices of P . The possibilities of P ∗ and Q∗ are as follows.
P ∗ and Q∗ consists of one vertex from B1 or B3 and two vertices from B3 or B1. Let
P ∗ = {v1, v3, v5} and Q∗ = {v2, v4, v6} be one such partition. Let S = {v2, v5} with
|S| = 2. Then P ∗ \ S = {v1, v3} and 〈P ∗ \ S〉 = {v1, v2, v3, u1}. Also, Q∗ \ S = {v4, v6} and
〈Q∗ \ S〉 = {v4, v5, v6, u3}. Thus 〈P ∗ \ S〉 ∩ 〈Q∗ \ S〉 = ∅. For any Radon partition (P ∗, Q∗),
we can find a set S with |S| = 2, such that 〈P ∗ \S〉∩ 〈Q∗ \S〉 = ∅. Thus P has no 2-tolerant
Radon partition.

Now, we see the existence of a (t + 1)-tolerant Radon partition even if there exists

some blocks that contain no interior vertex of P .

For any set P of vertices, a block B of a graph G is called a cut block with respect

to P if P contains no vertices of B other than cut vertices. If P changes, then the

cut blocks of H with respect to P also change. Such a cut block B separates G

into two or more components if B contains two or more cut vertices of G. Here,

each component contains only one cut vertex of B. The components are formed by

removing all vertices of B other than cut vertices from G. In Figure 1, B2 is a cut

block with respect to P . B2 separates H into two components B1 and B3.
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Theorem 2. Let P be a set of 2t + 4 vertices of a graph G, and let H be the subgraph
induced by 〈P 〉. Suppose that H has at least one cut block and P contains at least two vertices
from every end block of H other than cut vertices. Then P has a (t + 1)-tolerant Radon
partition if and only if every cut block of H that separates H into exactly two components,
must contain an even number of vertices of P .

Proof. Let P be a set of 2t + 4 vertices of a graph G and H be the subgraph

induced by 〈P 〉 such that P contains at least two vertices from every end block of

H, other than cut vertices. Let G contain a cut block C with respect to P such that

the removal of C from H results in exactly two components with each component

containing an even number of vertices of P .

Consider the block cut vertex tree B(H) of H. Identify all cut blocks of H that

separate H into exactly two components and remove the vertices from B(H) that

corresponds to these cut blocks in H. After the removal of these vertices, let B(H)

be split into sub trees T1, T2, · · · , Tn. From the assumption, we observe that each

Ti contains an even number of vertices of P . The sub trees Ti may contain vertices

corresponding to some cut blocks of H that separate H into more than two com-

ponents. Identify these cut blocks of H that separate each Ti into more than two

components. Remove the vertices of Ti that correspond to these cut blocks from H

so that each Ti can be split into m subtrees Ti,1, Ti,2, · · · , Ti,m such that each of them

contains no cut blocks. Using the method of construction of the Radon partition

described in the proof of Theorem 1, we form a partition of vertices of P that lie in

each of the subtrees Ti,1, Ti,2, · · · , Ti,m. It may be noted that all these partitions may

not be Radon. Let (Pi,j , Qi,j) be the partition of vertices of P that lies in Ti,j , for

1 ≤ j ≤ m. Among these m partitions, let k partitions have different cardinality and

the remaining m − k partitions have same cardinality. From the construction of the

partitions as described in the proof of Theorem 1, it follows that for partitions with

different cardinality, |Pi,r| = |Qi,r| + 1 for 1 ≤ r ≤ k and for partitions with same

cardinality, |Pi,r| = |Qi,r| for k + 1 ≤ r ≤ m. Since each Ti contains an even number

of vertices of P , k must be even. Now we form a partition (Pi, Qi) of Ti such as

Pi = Pi,1 ∪ Pi,2 ∪ · · · ∪ Pi, k2
∪Qi, k2+1 ∪ · · · ∪Qi,k ∪ Pi,k+1 ∪ · · · ∪ Pi,m

and

Qi = Qi,1 ∪Qi,2 ∪ · · · ∪Qi, k2
∪ Pi, k2+1 ∪ · · · ∪ Pi,k ∪Qi,k+1 ∪ · · · ∪Qi,m

for each i. Also, Pi and Qi contain the same number of vertices of P .

Now we construct the partition, (P ∗, Q∗) as

P ∗ = P1 ∪ P2 ∪ · · · ∪ Pn
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and

Q∗ = Q1 ∪Q2 ∪ · · · ∪Qn.

It is clear that (P ∗, Q∗) forms a Radon partition. Since |Pi| = |Qi| for each i, we

have |P ∗| = |Q∗| = t + 2. We have to show that (P ∗, Q∗) forms a (t + 1)-tolerant

Radon partition.

Consider a cut block that separates B(H) into two components C1 and C2. By

construction of the partition, vertices of C1 has a partition (P1, Q1) and vertices of

C2 has a partition (P2, Q2). Since each component contains an even number of vertices

of P , clearly |P1| = |Q1| and |P2| = |Q2|. Form P ∗ = P1 ∪P2 and Q∗ = Q1 ∪Q2. Let

S ⊂ P , has cardinality t + 1. Clearly 〈P ∗〉 = 〈Q∗〉 = V (H). If S ⊂ P ∗ (or S ⊂ Q∗),

then 〈P ∗ \S〉∩ 〈Q∗ \S〉 6= ∅, since 〈P ∗ \S〉 (or 〈Q∗ \S〉) contains one vertex of P ∗ (or

Q∗). Now, consider the case when S contains k, (1 < k < t + 1) vertices of P ∗ and

t + 1− k vertices of Q∗. If P ∗ \ S and Q∗ \ S contain vertices from both components

C1 and C2, then 〈P ∗ \ S〉 and 〈Q∗ \ S〉 intersect at the cut block. If P ∗ \ S or Q∗ \ S
contains the vertices from only one component,

then 〈P ∗ \S〉 and 〈Q∗ \S〉 intersect in a cut vertex of the cut block or at a block other

than the cut block. Thus for any set S having t + 1 vertices, 〈P ∗ \ S〉 ∩ 〈Q∗ \ S〉 6= ∅.
This shows that (P ∗, Q∗) forms a (t + 1)-tolerant Radon partition.

Conversely, let P be a set of 2t + 4 vertices of G such that P has a (t + 1)-tolerant

Radon partition. We have to prove that for all cut blocks that separate H into two

components, each of the components must contain an even number of vertices of P .

Suppose there exists a cut block B that separates H into two components C1 and C2

such that C1 and C2 contain odd number of vertices of P . Let C1 contains p vertices

of P and C2 contains q vertices of P . We have p + q = 2t + 4. Using B(H), we can

construct partitions P ∗ and Q∗ such that |P ∗| = |Q∗| = t+ 2. Since p and q are odd,

P ∗ contains p+1
2 vertices of P from C1 and q−1

2 vertices of P from C2. Similarly Q∗

contains p−1
2 vertices of P from C1 and q+1

2 vertices of P from C2. We can form a

set S of t + 1 vertices of P such that S contains all the p−1
2 vertices of Q∗ from C1

and all the q−1
2 vertices of P ∗ from C2. Thus P ∗ \ S contains p+1

2 vertices of C1 and

Q∗ \ S contains q+1
2 vertices of C2. Clearly |S| = p+q−2

2 = t + 1.

Since there is a cut block B between C1 and C2, we have 〈P ∗ \ S〉 ∩ 〈Q∗ \ S〉 = ∅.
Thus (P ∗, Q∗) is not a (t+1)-tolerant Radon partition, which completes the converse

part of the theorem.

We observe the following remark, which can be established in the same procedure as

we have described in Theorem 2.

Remark 1. For a set P of vertices of a graph G, the cut blocks that separate G into
more than two components will not reduce the tolerance of the Radon partition even if the
components contain an odd number of vertices of P .
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An illustration of the Remark 1 is given in Figure 2, where B is a cut block

with respect to P = {v1, v2, . . . , v12} and C1, C2, C3, C4 are the components. Here

P1 = {v1, v3, v5, v7, v9, v11} and Q1 = {v2, v4, v6, v8, v10, v12} form a 5-tolerant Radon

partition of P .

Figure 2. A 5-tolerant Radon partition as an illustration for Remark 1

4. Algorithms for tolerant Radon partitions

In this section, we develop five algorithms related to tolerant Radon partitions for a

given set of vertices of a graph. We assume that G is a connected graph having n

vertices and m edges. The following Proposition (Corollary 3.1 from [20]) guarantees

that a given set of 2t + 3 vertices of a path has a t-tolerant Radon partition.

Proposition 4 (Corollary 3.1[20]). Any set of 2t+3 vertices of a path has a t-tolerant
Radon partition.

Algorithm 1. Algorithm for t-tolerant Radon partition on paths.

Input : A path X represented by a list of vertices (v1, v2, . . . , vn) and a set P of

2t + 3 vertices of X.

Output: A t-tolerant Radon partition (Pt, Qt) of P .

Initially, set Pt = ∅ and Qt = ∅.

Starting from the first vertex, v1 of X and make a traversal from v1 and add

each vertex of X encountered in the traversal alternatively to Pt and Qt respectively.

The resulting partition (Pt, Qt) is a t-tolerant Radon partition.
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Running time analysis: Each vertex and edge is considered only once during the

traversal and so the time complexity of the traversal is O(n+m) where m is the number

of edges. For a path, m = n−1 and hence the Algorithm 1 has time complexity O(n).

Theorem 3. The partition (Pt, Qt) formed in Algorithm 1 is a t-tolerant Radon partition
of a set P of 2t + 3 vertices of a path.

Proof. Suppose that during the traversal through X, we renamed the vertices of

P as v1, v2, v3, . . . , v2t+3 in the order in which they are encountered. From the

algorithm, we formed a partition to the set P as Pt = {v1, v3, . . . , v2t+3} and

Qt = {v2, v4, . . . , v2t+2} with |Pt| = t + 2 and |Qt| = t + 1.

Case 1. Removing any t vertices from Pt.

Then two vertices remain in Pt having an odd label. In this case no vertices are

removed from Qt. Between the two odd labeled vertices of Pt, there exists at least

one even labeled vertex and that vertex is in Qt. Thus the convex hull of the remaining

vertices of the partitions intersects.

Case 2. Removing any t vertices from Qt.

Then only one vertex remains in Qt. Clearly the remaining vertex of Qt has even

label. In this case no vertex is removed from Pt and so there exists at least two

vertices in Pt having odd label, between them the vertex of Qt lies. Thus the convex

hull of the remaining vertices intersects.

Case 3. Removing any k vertices from Pt and t−k vertices from Qt for 1 ≤ k ≤ t−1.

Then t+ 2− k vertices remain in Pt. So, the convex hull of these t− k + 2 vertices of

Pt contains at least t− k + 1 vertices of Qt. After removing t− k vertices from Qt, at

least one vertex of Qt remains and that vertex is in the convex hull of the remaining

vertices of Pt. Thus, the convex hull of the remaining vertices intersects. Hence the

partition (Pt, Qt) is a t-tolerant Radon partition to the given set of 2t + 3 vertices of

a path.

Next, we discuss the algorithm for determining t-tolerant Radon partition for a given

input of 2t + 4 vertices of a tree. Before discussing the algorithm on trees, we need

an algorithm for constructing the Radon partition. It follows from Theorem 11 in

[6] that every set of four points in a tree has a Radon partition. In this algorithm,

at first, we construct a subtree W of the given tree T such that all pendant vertices

of W are from the given input set P of four vertices. Then it follows that W=〈P 〉.
The algorithm determines the Radon partition of P depending upon the number of

pendant vertices of W .

We use the adjacency list for representing trees and graphs in all the algorithms

discussed from here onwards.

Algorithm 2. Algorithm for Radon partition of a set of four vertices of a tree.

Input : A tree T and a set P of four vertices {a, b, c, d} of T .

Output: A Radon partition (P0, Q0) of P .
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Initially set P0 = ∅ and Q0 = ∅.

Step 1: Start a Breadth First Search traversal from any one vertex of P to

identify the remaining three vertices and find the path connecting the three pairs

of vertices. Combination of these three paths represents 〈P 〉. Let W be the newly

obtained tree.

Step 2: Make a Breadth First Search traversal through W to identify the de-

gree of all vertices of W .

Step 3: If W contains only two pendant vertices a and d, we form P0 = {a, d} and

Q0 = {b, c}. Return (P0, Q0).

Step 4: If W contains three pendant vertices a, b, c; then make a Depth First

Search traversal from the unique vertex x of degree 3 in W towards a. If we find

d during this traversal then construct P0 = {a, b} and Q0 = {c, d}. Otherwise

construct P0 = {b, c} and Q0 = {a, d}. Return (P0, Q0).

Step 5: In this case all four vertices of P are pendant vertices of W . If W

contains a unique vertex of degree 4, construct P0 = {a, b} and Q0 = {c, d}. Return

(P0, Q0). Otherwise go to Step 6.

Step 6: If W contains two vertices u1 and u2 having degree 3, then make a

Depth First Search traversal from a to b. If u1 and u2 are encountered, then

P0 = {a, b} and Q0 = {c, d}. Otherwise form P0 = {a, c} and Q0 = {b, d}. Return

(P0, Q0).

Running time analysis: Time complexity to do the BFS traversal is O(n + m).

Since m = n − 1, time taken to complete the first Step of the algorithm is O(n). In

Step 2, each vertex and each edge is listed at most once and so time complexity is

O(n + m) and hence it is O(n). Time complexity of Step 3 is O(1). In the Step 4

and Step 6, one more traversal is needed in each Step and so the time complexity of

each Step is O(n + m) and it is reduced to O(n). Time complexity of Step 5 is O(1).

Thus the total time complexity of the Algorithm 2 is O(n).

Theorem 4. The partition P0 and Q0 formed in Algorithm 2 is a Radon partition of a
set P of four vertices of a tree.

Proof. If W contains only two pendant vertices a and d, then P0 = {a, d} and

Q0 = {c, d}. Here 〈P0〉 contains all vertices of 〈Q0〉. If W contains three pendant

vertices a, b, c; then there exists the unique vertex x in W having degree 3. If d lies

in the path connecting a and x, then P0 = {a, b} and Q0 = {c, d}. Otherwise d lies

in the path connecting b and c. In this case P0 = {b, c} and Q0 = {a, d}. So 〈P0〉 and
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〈Q0〉 intersect at d. If all vertices of W are pendant vertices, then W contains either

a unique vertex of degree 4 or two vertices of degree 3. If W contains the vertex of

degree 4, then P0 = {a, b} and Q0 = {c.d}. If W contains two vertices of degree 3,

then we can form 〈P0〉 and 〈Q0〉 are paths containing these two vertices. Hence in all

cases, 〈P0〉 and 〈Q0〉 intersect and hence the partition is a Radon partition.

Now, we find t-tolerant Radon partitions on trees by using the Radon partition ob-

tained from Algorithm 2. The following Theorem from [20] guarantees that for a

given input of 2t + 4 vertices of the tree T has a t-tolerant Radon partition. We

continuously remove two special vertices from P in the tree T and form a partition

(Pt, Qt) by putting one of the vertices in Pt and the other in Qt. After t steps, the

Radon partition of the remaining four vertices is obtained and the t-tolerant Radon

partition is developed by using it.

Theorem 5. [20] Any set of 2t + 4 vertices of a tree has a t-tolerant Radon partition.

Algorithm 3. Algorithm for t-tolerant Radon partitions on trees.

Input : A tree T and a set Y of 2t + 4 vertices of T .

Output : A t-tolerant Radon partition (Pt, Qt) of Y .

Initially set Pt = ∅ and Qt = ∅.

Step 1: Compute the distance from each vertex of Y to all other vertices of

the tree T and store the distances in a matrix M . Let Y1 = Y

For each j, 1 ≤ j ≤ t, repeat Steps 2 to 6

Step 2: Start a Breadth First Search traversal from any one vertex of P to

identify the remaining 2t+ 3 vertices and find the path connecting the 2t+ 3 pairs of

vertices. Combination of these paths represents 〈Y 〉. Let Tj be the newly obtained

tree.

Step 3: We start a Depth First Search traversal in Tj from one pendant vertex uj ,

to find another vertex vj of Yj or to find a vertex xj of Tj having degree ≥ 3. If we

met vj first, then form the set Sj = {uj , vj}. Then Pt = Pt∪{uj} and Qt = Qt∪{vj}.

Step 4: If we met xj /∈ Yj first, then from the distance matrix M , find the

pendant vertex wj of Tj having minimum distance with xj , other than uj . Repeat

Step 4 starting from wj .

Step 5: If all the intermediate vertices of the wj − xj path are not from Yj

and if there is no intermediate vertex having degree ≥ 3 in the wj − xj path, then

we form Sj = {uj , wj}. Rename wj as vj and form Sj = {uj , vj}. Construct
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Pt = Pt ∪ {uj} and Qt = Qt ∪ {vj}.

Step 6: Form Yj+1 = Yj \ Sj .

Step 7: Use Algorithm 2 to form a Radon partition (P0, Q0) to Yt+1.

Step 8: Form Pt = Pt ∪ P0 and Qt = Qt ∪Q0 and Stop.

Running time analysis: Time complexity to find the distance from a vertex of Y

to all other vertices of the tree is O(n) where n is the number of vertices of T . This

can be done for 2t + 4 vertices. So, the time complexity of the first Step is O(nt).

Time complexity to do the BFS traversal is O(n+m). Since m = n− 1, it is reduced

to O(n). The process can be repeated for t iterations and so the time complexity of

Step 2 of the algorithm is O(nt). For each Step 3 to 5, the time complexity of the

traversal to find the set Sj for 1 ≤ j ≤ t is O(n). The process is continued for a

maximum of t iterations. So the total time complexity of the algorithm from Step

3 to Step 5 is O(nt). The total time complexity of Step 6 is O(t). For the Step 7,

the time complexity of constructing a Radon partition is O(n). Hence the total time

complexity of the Algorithm 3 is O(nt).

Theorem 6. Algorithm 3 correctly computes the t-tolerant Radon partition for vertices
in a tree T , for the convexity defined by the paths in T .

Proof. We have constructed the sets Sj = {uj , vj}, for 1 ≤ j ≤ t, either in Step 4

or in Step 6. It is to be shown that the path connecting every vertex of Sj to a

vertex of Yj+1, as defined in Step 7 of the Algorithm, must passes through a common

vertex xj of Tj . Clearly Sj contains one pendant vertex or two pendant vertices.

Also 〈Sj〉 does not contain other vertices of Yj+1. If uj is a pendant vertex and vj
is not a pendant vertex, then the path from a vertex of Sj to a vertex of Yj+1 must

passes through the vertex vj . Here, with out loss of generality, we take xj = vj . If uj

and vj are pendant vertices, then there is no other vertex of Yj in the interior of the

uj − vj path. So the path connecting a vertex of Sj to a vertex of Yj+1 must passes

through an interior vertex xj that lies in the uj − vj path such that degree(xj) ≥ 3.

Thus in any case, for each j, 1 ≤ j ≤ t, both paths connecting a vertex of Sj to any

vertex of Yj+1 will intersect at a vertex xj of the tree Tj .

From the algorithm described above we constructed partitions as Pt = P0 ∪
{u1, u2, . . . , ut} and Qt = Q0 ∪ {v1, v2, . . . , vt}. Then |Pt| = t + 2 and |Qt| = t + 2.

The following cases are considered for proving the theorem.

Case 1. Removing t vertices from Pt.

In this case, no vertex is removed from Qt and hence two vertices will remain in Pt.

If the remaining two vertices are from P0, since (P0, Q0) is a Radon partition, the

convex hull of the remaining vertices intersects.
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Suppose the remaining vertices of Pt are ui, uj where i < j, where ui ∈ Si and uj ∈ Sj .

Then by the method of selection of Si, the path connecting every vertex of Si to every

vertex of Sj must passes through a common vertex xi. Since vi and vj are in Qt, the

convex hull of the remaining vertices of Pt and Qt intersect at xi.

Suppose that one vertex ui and one vertex of P0 remains in Pt. Then also the path

connecting ui to a vertex of P0 intersects with the path connecting vi to Q0 and so

the convex hull of the remaining vertices intersects.

Case 2. Removing t vertices from Qt.

By using the symmetric arguments used in the previous case, we conclude that the

convex hull of the remaining vertices intersects.

Case 3. Removing any k vertices from Pt and t−k vertices from Qt for 1 ≤ k ≤ t−1.

Consider the partitions Pt = {u1, u2, ..., ut}∪P0 and Qt = {v1, v2, .., vt}∪Q0. Suppose

that (P0, Q0) intersects at x0 and suppose that two paths from vertices of Sj to a

vertex of P0 ∪Q0 ∪ S1 ∪ S2 ∪ · · · ∪ Sj−1 must passes through a common vertex xj for

1 ≤ j ≤ t. Thus 〈Pt〉 and 〈Qt〉 intersect at least t+ 1 vertices of the tree (intersecting

points), counted with repetition. Removing of one vertex from one partition may

reduce the intersection points by one. If we remove any t− k vertices from Qt, then

at least k+2 vertices remains in Qt. The convex hull of the remaining k+2 vertices of

Qt and 〈Pt〉 intersect with at least k + 1 intersecting points, counted with repetition.

After removing any k vertices from Pt, then again the convex hull of the remaining

vertices of Pt and the convex hull of the remaining vertices of Qt intersect with at least

one intersecting point. Thus the partition (Pt, Qt) is a t-tolerant Radon partition to

the set of 2t + 4 vertices of a tree.

The all-paths convexity reflects the block-cut vertex tree structure of graphs. Now

we design the algorithm to construct t-tolerant Radon partition on an arbitrary

connected graph G. The idea is that first we construct a spanning tree of G using

the simple standard Breadth First Search algorithm. Then form t-tolerant Radon

partition to the vertices of the spanning tree using Algorithm 3. We prove that the

Radon partition of the spanning tree obtained using Algorithm 3 is the same that of

the given graph G.

Algorithm 4. Algorithm for t-tolerant Radon partitions of an arbitrary connected graph.

Input: A connected graph G = G(V,E) and a set P of 2t + 4 vertices of a graph G

Output: A t-tolerant Radon partition (Pt, Qt) of P .

Initially set Pt = ∅ and Qt = ∅.

Step 1: Construct a spanning tree T = G(V,E′) of G by using Breadth First Search

algorithm, where E′ ⊆ E.
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Step 2: Use Algorithm 3 to construct a t-tolerant Radon partition (Pt, Qt) to the

set of 2t + 4 vertices of the spanning tree T . Return (Pt, Qt) and Stop.

Running time analysis: The construction of spanning tree has complexity

O(m + n) by a Breadth First Search algorithm, where m is the number of edges

and n is the number of vertices of the graph. The time complexity of constructing

t-tolerant Radon partition of vertices of a tree is O(nt). Hence the time complexity

of the Algorithm 4 is O(m + nt).

We proved the following Theorem in [20], which guarantees that any set of 2t + 4

vertices in a graph G has a t-tolerant Radon partition on all-paths convexity.

Theorem 7. [20] Any set of 2t + 4 vertices of a graph G has t-tolerant Radon partition
with respect to all-paths convexity if the block cut vertex tree of G is not a path.

Theorem 8. The Algorithm 4 correctly computes the t-tolerant Radon partition of vertices
of a given connected graph G.

Proof. In the Algorithm 4, a spanning tree T of the graph is constructed at first and

a t-tolerant Radon partition (Pt, Qt) to a set P of vertices of the tree T is formed.

Thus for any set C ⊂ P with |C| ≤ t, 〈Pt\C〉∩〈Qt\C〉 6= ∅. In the spanning tree T of

the graph G, we are considering only one path between any two vertices of G. Since

the all-paths transit function considers all paths connecting any two vertices of G, we

have 〈Pt \ C〉 ⊆ A〈Pt \ C〉 and 〈Qt \ C〉 ⊆ A〈Qt \ C〉, where 〈Pt \ C〉 represents the

convex hull of Pt \C in the tree T and A〈Pt \C〉 represents the all-paths convex hull

of Pt\C in the graph G. So for any set C ⊂ P with |C| ≤ t, A〈Pt\C〉∩A〈Qt\C〉 6= ∅.
Thus the same partition (Pt, Qt) is a t-tolerant Radon partition of P with respect to

all-paths convexity.

4.1. Algorithm for (t + 1)-tolerant Radon partition

Here we design a decision algorithm to check the existence of (t + 1)-tolerant Radon

partition for any input of 2t+ 4 vertices and the algorithm outputs a (t+ 1)-tolerant

Radon partition, if there is such a partition. If P has no (t + 1)-tolerant Radon

partition, then the algorithm outputs ”False”. Such an algorithm is called a decision

algorithm. The main idea of the algorithm can be described as follows. At first, we

determine all the cut vertices of G, which is available in [8]. Then we determine all

blocks of G. For this we make use of an algorithm by Hopcroft et al. in [11]. Then we

construct the block cut vertex tree of G, B(G), with blocks and cut vertices of G as

its vertices. From B(G), we construct a subtree of B(G), which is precisely the block

cut vertex tree B(H) of the subgraph H, where H is the subgraph induced by 〈P 〉
in G. A vertex of B(H) represents either a cut vertex of H or a block of H. Vertex

of B(H) corresponding to a block will represent all vertices of P which are from a

particular block of H other than cut vertices. We count the number of vertices of P
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in each block. We can construct (t + 1)-tolerant Radon partition, if it exists using

the results that we have presented in the previous Section (Section 3) with the help

of B(H). A block which has only one cut vertex is an end block. Now, we are ready

to describe the algorithm.

Algorithm 5. A decision algorithm to determine a (t + 1)-tolerant Radon partition on a set of

2t + 4 vertices of a graph G.

Input : A graph G represented as adjacency list and a set P of 2t + 4 vertices of G.

Output : A (t + 1)-tolerant Radon partition of P = (X,Y ) or False, that re-

turns that P has no such partition.

Initially set X = ∅, Y = ∅.
Step 1: Determine the set C of cut vertices of G by using an application of the

standard DFS algorithm and the set {B1, B2, . . . , Bk} of blocks of G by the algorithm

of Hopcroft and Tarjan from [11].

Step 2: Identify the sets PC = P ∩ C, the set of cut vertices of P ; and

PBi = P ∩ (Bi \C), the set of vertices of P which are not cut vertices from the blocks

Bi. Let bi is the cardinality of PBi
for 1 ≤ i ≤ k.

Step 3: Identify the sets CBi
= Bi ∩ C of cut vertices of a particular block

Bi for each i.

Step 4: Construct block cut vertex tree B(G) of G by using the adjacency of blocks

and cut vertices.

Step 5: If bi = 0 for any pendant vertex Bi of B(G), remove it from B(G). Repeat

this process until bi > 0 for all pendant vertices. The resulting subtree is precisely

the block-cut vertex tree B(H) of the subgraph H induced by 〈P 〉.
Step 6: Check whether bi = 1 for any pendant vertex Bi of B(H), then go to Step

17, otherwise continue.

Step 7: Identify the vertices of B(H), which are Bi’s with degree two such that

bi = 0. Rename these vertices as u1, u2, . . . , uq. If there is no such vertex then go to

Step 10.

For each r, 1 ≤ r ≤ q, repeat Step 8 to Step 9.

Step 8: Find the components C1, C2 of B(H) \ {ur} and find the total num-

ber of vertices of P in C1 (say x).

Step 9: If x is odd, then go to Step 17.

Step 10: If B(H) contains only one vertex, (say Bs) then bs
2 vertices of PBs

are added

to X and remaining vertices of PBs
are added to Y and go to Step 16. Otherwise

start partitioning from one pendant vertex Bi of B(H) for some i.
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Step 11: If bi is even, bi
2 vertices of PBi

are added to X and remaining vertices of

PBi are added to Y . Go to Step 13.

Step 12: If bi is odd and |X| = |Y |, then bi+1
2 vertices of PBi

are added to X and

remaining vertices of PBi
are added to Y . If bi is odd and |X| > |Y | then bi+1

2 vertices

of PBi are added to Y and remaining vertices of PBi are added to X.

Step 13: If a new vertex adjacent to the already partitioned vertex has degree > 2

during the DFS (completed one sparse branch), select another pendant vertex Bl of

B(H). Remove the already partitioned vertex from B(H) and continue partitioning

from Bl. put i = l and go to Step 11.

Step 14: If a new vertex adjacent to the already partitioned vertex has degree ≤ 2

(still in the same sparse branch), select that new vertex for partitioning and remove

the already partitioned vertex from B(H). If the newly selected vertex is a block Bj

then i = j and go to Step 11.

Step 15: If the vertex is a cut vertex of PC , then that vertex is added to X if

|X| = |Y | or that vertex is added to Y if |X| > |Y |.
Step 16: If B(H) contains only one vertex, then return (X,Y ) and Stop.

Step 17: Return ’False’ and Stop.

Running time analysis: At first, all the cut vertices and blocks of the given graph

G are identified. Each part of Step 1 is a Depth First Search algorithm with time

complexity O(n + m). Thus the time complexity of this Step of the algorithm is

O(n+m). In Step 2, by visiting only the vertices of Bi, 1 ≤ i ≤ k we get the vertices

of P which are cut vertices and which are non cut vertices in blocks. In Step 3, the

cut vertices of a particular block are identified. The time complexity of Steps 2 and

3 is O(n). To construct block cut vertex tree B(G) of G, we have to check whether

which of the blocks contains a particular cut vertex and which of the cut vertices

are connected to a particular block. Represent B(G) as adjacency list of blocks and

cut vertices and the time complexity of Step 4 is O(n). The time complexity of the

construction of B(H) is also O(n). Cut blocks of H which separates H into two

components are identified in Step 7 with time complexity O(n + m). In Step 8, all

blocks in one component can be identified by using the adjacency list of vertices of

B(H). Here we find one cut vertex of the cut block. Then find all other blocks

which contains this cut vertex. Then find the cut vertices of these selected blocks.

Continuing this way we can select the blocks of one component. Since all blocks and

cut vertices are already listed, time complexity of this Step is O(n). The process is

repeated at most r, r < n steps and so the total time complexity is O(n2). Time

complexity of Steps 11 to 16 is O(n + m). Thus the total time complexity of the

algorithm is O(n2).

Theorem 9. The Algorithm 5 is correct.

Proof. In Step 1, we find all the cut vertices of the graph [8] and the blocks of the

graph using the Hopcroft-Tarjan Algorithm described in [11]. The proof of the algo-
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rithm completely depends on the theorems we proved in Section 3. In Proposition 2

it is proved that if an end block of G contains only one vertex of P other than cut

vertex then the partition we obtained is not (t + 1)-tolerant Radon partition. From

Theorem 1, it is clear that if G contains no cut blocks and end blocks contains at

least two vertices of P other than cut vertices, then G has a (t + 1)-tolerant Radon

partition. Theorem 2 proves that if G contains cut blocks that separate G into two

components such that each component contains an even number of vertices of P , then

P has a (t + 1)-tolerant Radon partition. Here, each end block must contain at least

two vertices of P other than the cut vertex. Also, Theorem 2 states that if G contains

a cut block that separates G into two components such that each component contains

an odd number of vertices of P , then P has no (t+ 1)-tolerant Radon partition. The

proof of all these theorems completes the proof of the algorithm.
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