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Abstract: The exploration of robust bilevel programming problems is a relatively

new development in optimization theory. In this study, we examine a bilevel opti-

mization problem in which both the upper-level and lower-level constraints involve
uncertainty. By reducing the problem to a single-level, nonlinear, and non-smooth

program, we explore sufficient optimality conditions and duality theorems for robust

optimal solutions of the considered non-smooth uncertain bilevel optimization problem,
using Clarke subdifferentials. Leveraging the characteristics of Clarke subdifferentials,

we propose Wolfe-type robust dual models. Additionally, we establish various duality

theorems, including weak and strong robust duality, in terms of Clarke subdifferentials.
Several illustrative examples are presented to confirm the applicability of the results

developed.

Keywords: bilevel programming, robust optimization, sufficient optimality condi-

tions, duality, robust convexity.
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1. Introduction

Bilevel programming is a prominent area of research in optimization theory, attract-

ing considerable attention due to its diverse applications in fields such as engineering,
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2 Bilevel optimization problems under uncertain data

finance, economics, and computer science, among others. These problems are in-

herently challenging, both theoretically and numerically. In a bilevel optimization

problem, two nested optimization problems are defined, with one problem’s solution

constrained by the solution of the other. Specifically, the feasible solutions to the

bilevel problem are the optimal lower-level solutions that satisfy the upper-level con-

straints. In recent years, bilevel programming has garnered significant attention from

researchers [1, 6, 9–13, 15].

From both theoretical and practical perspectives, these papers have highlighted the

potential of bilevel programming problems. The literature on this topic is extensive,

covering a wide range of applications. For example, Zhang et al. [30] explored its use

in addressing the watershed water trade problem. Wu and Chen [26] applied bilevel

programming to the HTC smartphone product line design problem, demonstrating

its practical utility. Ren [24] presented a case study on production planning as a real-

world application of bilevel programming. Additionally, Xiao et al. [27] developed

a dual-randomness bilevel interval multiobjective programming (DR-BIMP) model

to facilitate water resource management across multiple sectors under conditions of

complexity and uncertainty.

In real-world optimization problems, data are often uncertain due to prediction errors

or incomplete information, meaning they are not precisely known at the time of

solving the problem [3]. Robust optimization has become a prominent deterministic

approach for addressing mathematical programming problems with uncertain data.

Numerous researchers have extensively investigated both theoretical and practical

aspects of robust optimization, as seen in studies such as [2, 4, 5, 14, 18–20, 25] and

the references therein.

Recent studies have further expanded the applications of robust optimization across

various domains. Zhang et al. [29] conducted a comprehensive survey of robust op-

timization approaches in inventory management, highlighting their applications and

effectiveness in mitigating uncertainties inherent in supply chain operations. In the

field of data privacy, Goseling and Lopuhaä-Zwakenberg [17] formulated robust opti-

mization techniques to determine optimal data release protocols, ensuring resilience

in local differential privacy scenarios. Lin et al. [21] present a detailed review of dis-

tributionally robust optimization, focusing on its theoretical foundations and diverse

applications. They discuss various ambiguity set constructions and solution method-

ologies, illustrating the broad applicability of this approach in fields such as finance,

logistics, and machine learning. These studies underscore the growing significance of

robust optimization in effectively managing uncertainty across diverse disciplines.

For each r ∈ R = {1, 2, . . . , p}, s ∈ S = {1, 2, . . . , q}, let Ωr ⊆ Rmr and Λs ⊆ Rms are

nonempty convex, compact sets, where mr and ms are integers. This investigation

focuses on the subsequent uncertain bilevel optimization problem (H) of the form

(H) :


min
z,k

Γ(z, k)

s. t. Tr(z, ξr) ≤ 0, ∀ r ∈ R = {1, 2, . . . , p},
k ∈ F0(z),
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where ξr ∈ Ωr, r ∈ R = {1, 2, . . . , p} are uncertain parameters. For each z ∈ Rn1 ,

F0(z) represents the set of solutions to the following parametric optimization problem

(Hz) :

mink Υ(z, k)

s. t. ζs
(
(z, k), ρs

)
≤ 0, ∀ s ∈ S = {1, 2, . . . , q}.

Where ρs ∈ Λs are uncertain parameters, Γ, Υ : Rn1×Rn2 −→ R, Tr : Rn1×Ωr −→
R, r ∈ R and ζs : Rn1 × Rn2 × Λs −→ R, s ∈ S are given functions. Here, p, q, n1

and n2 are integers. It is important to note that both the upper-level and lower-level

constraints involve uncertainty.

The robust counterpart (RH) of the uncertain bilevel optimization problem (H) is

defined as the following bilevel optimization problem

(RH) :


min
z,k

Γ(z, k)

s. t. Tr(z, ξr) ≤ 0, ∀ ξr ∈ Ωr ∀ r ∈ R,
k ∈ F (z),

where for each z ∈ Rn1 , F (z) represents the set of solutions to the following parametric

optimization problem

(RHz) :

mink Υ(z, k)

s. t. ζs
(
(z, k), ρs

)
≤ 0, ∀ ρs ∈ Λs ∀ s ∈ S.

The robust counterpart model effectively handles worst-case uncertainty without di-

rectly depending on uncertain variables. Let

G :=
{

(z, k) ∈ Rn1 × Rn2 : Tr(z, ξr) ≤ 0, ∀ ξr ∈ Ωr ∀ r ∈ R, k ∈ F (z)
}

is the feasible set of (RH).

A vector (z̃, k̃) is a robust feasible solution of (H) if it is a feasible solution of (RH).

On the other hand, a vector (z̃, k̃) ∈ G is said to be a robust optimal solution of (H)

if for every (z, k) ∈ G
Γ(z, k)− Γ(z̃, k̃) ≥ 0.

In general, problem (RH) is nonconvex, and the Karush-Kuhn-Tucker (KKT) opti-

mality conditions derived by Gadhi and Ohda [16] (as outlined in Theorem 2) are

only necessary. This raises the question: under what additional assumptions do the

KKT conditions become sufficient to guarantee optimality for problem (RH)?

By applying an optimal value reformulation, we transform the problem (RH) into a

single-level optimization problem (HP) that is fully equivalent to the original problem

(RH). Building on the necessary optimality conditions provided in [16], we derive
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sufficient optimality conditions for the uncertain bilevel optimization problem (H) in

terms of Clarke subdifferentials for robust optimal solutions. Additionally, we formu-

late a Wolfe-type robust dual problem (WH) and establish various duality theorems.

Several examples are provided to illustrate our findings. To the best of our knowl-

edge, no prior research has explored sufficient optimality conditions and duality results

for uncertain bilevel optimization problems without assuming concavity in scenarios

where uncertainties exist at both levels. Consequently, the results presented in this

paper are novel and contribute significantly to the field.

The rest of the paper is organized as follows: Section 2 provides basic definitions

and preliminaries. In Section 3, we present sufficient optimality conditions for robust

optimal solutions to the uncertain bilevel optimization problem (H). Section 4 derives

weak and strong robust duality theorems for the Wolfe-type robust dual problem.

Finally, Section 5 offers concluding remarks and explores potential directions for future

research.

2. Preliminaries

In this section, we state a few definitions, notations and results, which we will refer

to later in the paper. In what follows throughout this work Rn denotes the standard

n-dimensional Euclidean space. We write the inner product as 〈·, ·〉 and the closed

line segment joining a and b in Rn is given by [a, b] = {µa + (1 − µ)b : 0 ≤ µ ≤ 1}.
Here we shall use the notation (a, b) = {µa + (1 − µ)b : 0 < µ < 1} to represent the

open line segment from a ∈ Rn to b ∈ Rn.

Let E be a nonempty subset of Rn, we denote the convex hull and closure of E by

coE and clE respectively.

The negative polar cone and the strictly negative polar cone of E are defined as follows:

(i) E− :=
{
z ∈ Rn| 〈z, e〉 ≤ 0, ∀ e ∈ E

}
.

(ii) Es :=
{
z ∈ Rn|〈z, e〉 < 0, ∀ e ∈ E\{0}

}
.

A function Γ : Rn → R is locally Lipschitz around a point z̄ ∈ domΓ := {z ∈ Rn|Γ(z) ∈
R} if there exist a neighbourhood N ⊆ Rn of z̄ and a constant C > 0 such that

|Γ(z)− Γ(k)| ≤ C ‖z− k‖ ∀ z, k ∈ N ,

where ‖ · ‖ is the Euclidean norm in Rn.

The generalized directional derivative of Γ at z̄ in the direction δ ∈ Rn and the Clarke

subdifferential of Γ at z̄ are defined by

Γ◦(z̄, δ) := lim sup
z→z̄
µ↓0

Γ(z + µδ)− Γ(z)

µ

and

∂cΓ(z̄) :=
{
z∗ ∈ Rn :

〈
z∗, δ

〉
≤ Γ◦(z̄, δ) ∀ δ ∈ Rn

}
.
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Note that ∂cΓ(z̄) is a nonempty convex and compact set. Moreover, as established in

[8, Proposition 2.1.2], we have

Γ◦(z̄, δ) = max
{〈

z∗, δ
〉
| z∗ ∈ ∂cΓ(z̄)

}
∀ δ ∈ Rn.

If Γ is convex and continuous at z̄, then Γ is locally Lipschitz and Γ′(z̄, δ) = Γ◦(z̄, δ)

for all δ ∈ Rn, where δ → Γ′(z̄, δ) is the standard directional derivative defined by

δ → Γ′(z̄, δ) := lim sup
τ↓0

Γ(z̄ + τδ)− Γ(z̄)

τ
.

Thus, ∂cΓ(z̄) is precisely the subdifferential of Γ in the context of convex analysis,

commonly denoted as ∂Γ(z̄).

Lemma 1. [8] Let Γ : Rn → R is a locally Lipschitz, then for any z̄ ∈ Rn and scalar
a ∈ R, the Clarke subdifferential of aΓ at z̄ is given by

∂c(aΓ)(̄z) = a∂cΓ(̄z).

Lemma 2. [8] Let Γk : Rn → R, for k = 1, . . . ,m, are locally Lipschitz functions, z̄ ∈ Rn
be an arbitrary. Then

∂c(Γ1 + · · ·+ Γm)(̄z) ⊂ ∂cΓ1(̄z) + · · ·+ ∂cΓm(̄z).

3. Sufficient optimality conditions

In this section, we derive sufficient optimality conditions for a robust optimal solution

to problem (H) using the optimistic approach.

Let (z, k) ∈ Rn1 × Rn2 . For each r ∈ R, we define

Φr(z) := max
ξr∈Ωr

Tr(z, ξr), (3.1)

and for each s ∈ S, we define

Ψs(z, k) := max
ρs∈Λs

ζs
(
(z, k), ρs

)
. (3.2)

These functions will act as a crucial tool to help us manage the uncertainties within

both the upper and lower constraints of the uncertain bilevel optimization problem

(H). It is easy to see that the bilevel optimization problem (RH) can be equivalently

reformulated as follows 
min
z,k

Γ(z, k)

s. t. Φr(z) ≤ 0, ∀ r ∈ R,
k ∈ F (z),
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where, for each z ∈ Rn1 , F (z) represents the set of solutions to the following para-

metric optimization problem

mink Υ(z, k)

s. t. Ψs(z, k) ≤ 0, ∀ s ∈ S.

The following assumption was used by Gadhi and Ohda [16] to derive the Karush-

Kuhn-Tucker type necessary optimality conditions.

• The following assumption (U) holds for z̄ ∈ ∆ := {z ∈ Rn1 | Tr(z, ξr) ≤ 0, ∀ ξr ∈
Ωr ∀ r ∈ R}, if there is an open neighborhood ℵz̄ of z̄ such that:

− (U1) : For each z ∈ ℵz̄, the function t ∈ Ωr 7−→ Tr(z, t) ∈ R is upper semicontinu-

ous and the function Tr is Lipschitz continuous with respect to the first argument

on ℵz̄ with constant Cr > 0, i.e

∣∣Tr(z0, ξr)− Tr(z1, ξr)∣∣ ≤ Cr‖z0 − z1‖ ∀z0, z1 ∈ ℵz̄, ∀ξr ∈ Ωr. (3.3)

− (U2) : The multifunction (z, ξr) ∈ ℵz̄ × Ωr ⇒ ∂cTr(·, ξr)(z) ⊂ Rn1 is closed at

(z̄, ξ̄r), for each ξ̄r ∈ Ωr(z̄), where

Ωr(z̄) :=
{
ξr ∈ Ωr | Tr(z̄, ξr) = Φr(z̄)

}
. (3.4)

• Assumption (V) holds for the pair (z̄, k̄) ∈ G, if there exist open neighbourhoods ℵz̄
and ℵk̄ of z̄ and k̄, respectively, such that:

− (V1) : For each (z, k) ∈ ℵz̄×ℵk̄, the function α ∈ Λs 7−→ ζs
(
(z, k), α

)
∈ R is upper

semicontinuous and the function ζs is Lipschitz continuous with respect to the

first argument on ℵz̄ × ℵk̄ with constant Ds > 0, i.e

∣∣ζs((z0, k0), ρs
)
− ζs

(
(z1, k1), ρs

)∣∣ ≤ Ds‖(z0, k0)− (z1, k1)‖
∀ (z0, k0), (z1, k1) ∈ ℵz̄ × ℵk̄, ∀ ρs ∈ Λs. (3.5)

− (V2) :The multifunction
(
(z, k), ρs

)
∈
(
ℵz̄×ℵk̄

)
×Λs ⇒ ∂cζs(·, ρs)(z, k) ⊂ R1×R2

is closed at
(
(z̄, k̄), ρ̄s

)
, for each ρ̄s ∈ Λs(z̄, k̄), where

Λs(z̄, k̄) :=
{
ρs ∈ Λs | ζs

(
(z̄, k̄), ρs

)
= Ψs(z̄, k̄)

}
. (3.6)

According to Outrata [23], the problem (RH) is equivalent to the following single-level

optimization problem
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(HP) :


min
z,k

Γ(z, k)

s. t. Φr(z) ≤ 0, ∀ r ∈ R,
Ψs(z, k) ≤ 0, ∀ s ∈ S,
ϕ(z, k) ≤ 0,

where

ϕ(z, k) := Υ(z, k)− v(z) ∀ (z, k) ∈ Rn1 × Rn2 ,

such that for any z ∈ Rn1 ,

v(z) = min
k

{
Υ(z, k) : Ψs(z, k) ≤ 0, ∀ s ∈ S

}
is the optimal value function of the lower-level problem (RHz).

Note that the optimal value function v is non-smooth, and common constraint quali-

fications like Slater’s and Mangasarian-Fromovitz do not hold at any feasible point of

(HP) [28, Proposition 3.1]. To address this challenge, we adopt the partial calmness

approach proposed by Ye and Zhu [28].

Definition 1. [22] Let (̄z, k̄) be a local optimal solution of (RH). We say that (RH) is
partially calm at (̄z, k̄) if there exist d > 0 and a∗ > 0 such that for each (z, k, z) ∈ Bd(̄z, k̄, 0)
satisfying 

Φr(z) ≤ 0, r ∈ R,
Ψs(z, k) ≤ 0, s ∈ S,
ϕ(z, k) ≤ z,

we have Γ(z, k)− Γ(̄z, k̄) + a∗|z| ≥ 0.

Remark 1. [22] Partial calmness of (RH) at one of its local minimizers (̄z, k̄) is equivalent
to (z, k) 7−→ ϕ(z, k) being a locally exact penalty function for the problem (HP) at (̄z, k̄). For
more details, see [22, Lemma 3.1].

The concept of partial calmness is strongly related to partial exact penalization, as

shown in the following result, from [28].

Theorem 1. [28] Let (̄z, k̄) be a local optimal solution to (RH). Problem (RH) is called
partially calm at (̄z, k̄) if and only if there exists a∗ > 0 such that (̄z, k̄) is a local optimal
solution to the partially penalized problem

(HP1) :


min
z,k

Γ(z, k) + a∗ϕ(z, k)

s. t. Φr(z) ≤ 0, r ∈ R,
Ψs(z, k) ≤ 0, s ∈ S.
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Let R := {1, . . . , p + q}. Consider the functions φ : Rn1 × Rn2 → R and Θ : Rn1 ×
Rn2 → Rp+q defined by

φ(z, k) := Γ(z, k) + a∗ϕ(z, k)

and

Θr(z, k) :=

{
Φr(z), r = 1, . . . , p,

Ψr−p(z, k), r = p+ 1, . . . , p+ q.

To derive the necessary optimality conditions, Gadhi and Ohda [16] proposed the

following constraint qualification.

Definition 2. [16] We say that the Extended Non-smooth Mangasarian-Fromovitz con-
straint qualification (ENMFCQ) holds at the point (̄z, k̄) ∈ G if

∃ δ ∈ Rn1+n2\{0} such that Θ◦r
(
(̄z, k̄), δ

)
< 0, ∀ r ∈ R(̄z, k̄),

where

R(̄z, k̄) :=
{
r ∈ R : Θr(̄z, k̄) = 0

}
.

The following result, established by Gadhi and Ohda [16], provides KKT-type neces-

sary optimality conditions.

Theorem 2. [16] Let (̄z, k̄) ∈ G be a locally robust optimal solution for (H). Assume that
the functions Γ and Υ are locally Lipschitz continuous, that (RH) is partial calm at (̄z, k̄),
that (ENMFCQ) is satisfied at (̄z, k̄), and assumptions (U) and (V) hold for z̄ and (̄z, k̄),
respectively. Then, there exist x > 0, a∗ > 0, yr ≥ 0, r ∈ R and fs ≥ 0, s ∈ S, such that

(0, 0) ∈


x∂cΓ(̄z, k̄) + xa∗∂cϕ(̄z, k̄) +

∑p
r=1 yr co

( ⋃
ξr∈Ωr(z̄)

∂cTr(·, ξr)(̄z)× {0}

)

+
∑q

s=1 fs co

( ⋃
ρs∈Λs(z̄,̄k)

∂cζs
(
·, ρs

)
(̄z, k̄)

)
 (3.7)

and yr max
ξr∈Ωr

Tr(̄z, ξr) = 0, r ∈ R,

fs max
ρs∈Λs

ζs
(
(̄z, k̄), ρs

)
= 0, s ∈ S.

(3.8)

We introduce the definition of ∂c-robust convexity within our framework, which aligns

closely with the concept proposed by Chong [7].

Definition 3. We say that Γ(·, ·), ϕ(·, ·), ζs
(
(·, ·), ρs

)
and Tr(·, ξr) are ∂c-robust convex

at (̄z, k̄) ∈ G, if for all (z, k) ∈ G,

Γ(z, k)− Γ(̄z, k̄) ≥
〈
ϑ, (z, k)− (̄z, k̄)

〉
, ∀ϑ ∈ ∂cΓ(̄z, k̄),
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ϕ(z, k)− ϕ(̄z, k̄) ≥
〈
η, (z, k)− (̄z, k̄)

〉
, ∀ η ∈ ∂cϕ(̄z, k̄),

ζs
(
(z, k), ρs

)
− ζs

(
(̄z, k̄), ρs

)
≥
〈
λs, (z, k)− (̄z, k̄)

〉
, ∀λs ∈ ∂cζs

(
(̄z, k̄), ρs

)
,

ρs ∈ Λs(̄z, k̄), ∀ s ∈ S,

Tr(z, ξr)− Tr(̄z, ξr) ≥
〈
βr, (z, 0)− (̄z, 0)

〉
, ∀βr ∈ ∂cTr(̄z, ξr),

ξr ∈ Ωr(̄z), ∀ r ∈ R.

Now, we derive and prove the sufficient optimality conditions for a robust optimal

solution of the uncertain bilevel optimization problem (H) under ∂c-robust convexity

assumptions.

Theorem 3. Let (̄z, k̄) ∈ G. Further, assume that Γ(·, ·), ϕ(·, ·), ζs
(
(·, ·), ρs

)
, ρs ∈ Λs(̄z, k̄)

and Tr(·, ξr), ξr ∈ Ωr(̄z) are ∂c-robust convex at (̄z, k̄) on G. Moreover, suppose there exist
x > 0, a∗ > 0, yr ≥ 0, r ∈ R and fs ≥ 0, s ∈ S, satisfying (3.7) and (3.8). Then, (̄z, k̄) is a
robust optimal solution of (H).

Proof. Contrary to the result, suppose that (z̄, k̄) is not a robust optimal solution of

(H), then there exists other (z0, k0) ∈ G such that

Γ(z0, k0)− Γ(z̄, k̄) < 0.

As x > 0, we get

x
[
Γ(z0, k0)− Γ(z̄, k̄)

]
< 0. (3.9)

Since (z̄, k̄) ∈ G satisfies (3.7) and (3.8), there exist x > 0, ϑ ∈ ∂cΓ(z̄, k̄), a∗ >

0, η ∈ ∂cϕ(z̄, k̄), yr ≥ 0, r ∈ R, ūri ≥ 0, βri ∈ ∂cTr(z̄, ξri), ξri ∈ Ωr(z̄), i ∈ Ir :=

{1, . . . , nr}, nr ∈ N, and fs ≥ 0, s ∈ S, w̄sj ≥ 0, λsj ∈ ∂cζs
(
(z̄, k̄), ρsj

)
, ρsj ∈

Λs(z̄, k̄), j ∈ Js := {1, . . . , ns}, ns ∈ N, such that

nr∑
i=1

ūri = 1,

ns∑
j=1

w̄sj = 1,

0 = x ϑ+ xa∗η +

p∑
r=1

yr

(
nr∑
i=1

ūri βri

)
+

q∑
s=1

fs

(
ns∑
j=1

w̄sj λsj

)
(3.10)

and

yr max
ξr∈Ωr

Tr(z̄, ξr) = 0, r ∈ R, (3.11a)

fs max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
= 0, s ∈ S. (3.11b)
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Since ξri ∈ Ωr(z̄),

Tr(z̄, ξri) = max
ξr∈Ωr

Tr(z̄, ξr), ∀ i ∈ Ir, ∀ r ∈ R.

Thus, it follows by (3.11a) that

yrTr(z̄, ξri) = 0, ∀ i ∈ Ir, ∀ r ∈ R. (3.12)

And since ρsj ∈ Λs(z̄, k̄),

ζs
(
(z̄, k̄), ρsj

)
= max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
∀ j ∈ Js, ∀ s ∈ S.

Thus, it follows by (3.11b) that

fs ζs
(
(z̄, k̄), ρsj

)
= 0 ∀ j ∈ Js, ∀ s ∈ S. (3.13)

Since Γ(·, ·), ϕ(·, ·), ζs
(
(·, ·), ρs

)
, ρs ∈ Λs(z̄, k̄) and Tr(·, ξr), ξr ∈ Ωr(z̄) are ∂c-robust

convex functions at (z̄, k̄) on G, by Definition 3, for any ϑ ∈ ∂cΓ(z̄, k̄), a∗ > 0, η ∈
∂cϕ(z̄, k̄), yr ≥ 0, r ∈ R, ūri ≥ 0, βri ∈ ∂cTr(z̄, ξri), ξri ∈ Ωr(z̄), i ∈ Ir :=

{1, . . . , nr}, nr ∈ N, and fs ≥ 0, s ∈ S, w̄sj ≥ 0, λsj ∈ ∂cζs
(
(z̄, k̄), ρsj

)
, ρsj ∈

Λs(z̄, k̄), j ∈ Js := {1, . . . , ns}, ns ∈ N,

0 = x
〈
ϑ, (z0, k0)− (z̄, k̄)

〉
+ xa∗

〈
η, (z0, k0)− (z̄, k̄)

〉
+

p∑
r=1

yr

(
nr∑
i=1

ūri

〈
βri, (z0, 0)− (z̄, 0)

〉)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj

〈
λsj , (z0, k0)− (z̄, k̄)

〉)

≤ x
[
Γ(z0, k0)− Γ(z̄, k̄)

]
+ xa∗

[
ϕ(z0, k0)− ϕ(z̄, k̄)

]
+

p∑
r=1

yr

(
nr∑
i=1

ūri

[
Tr(z0, ξri)− Tr(z̄, ξri)

])

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj

[
ζs
(
(z0, k0), ρsj

)
− ζs

(
(z̄, k̄), ρsj

)])
.

This implies that

0 ≤ x
[
Γ(z0, k0)− Γ(z̄, k̄)

]
+ xa∗

[
ϕ(z0, k0)− ϕ(z̄, k̄)

]
+

p∑
r=1

yr

(
nr∑
i=1

ūri

[
Tr(z0, ξri)− Tr(z̄, ξri)

])

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj

[
ζs
(
(z0, k0), ρsj

)
− ζs

(
(z̄, k̄), ρsj

)])
.
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Thus

x
[
Γ(z0, k0)− Γ(z̄, k̄)

]
≥ −xa∗

[
ϕ(z0, k0)− ϕ(z̄, k̄)

]
−

p∑
r=1

yr

(
nr∑
i=1

ūri

[
Tr(z0, ξri)− Tr(z̄, ξri)

])

−
q∑

s=1

fs

(
ns∑
j=1

w̄sj

[
ζs
(
(z0, k0), ρsj

)
− ζs

(
(z̄, k̄), ρsj

)])
.

Consequently,

x
[
Γ(z0, k0)− Γ(z̄, k̄)

]
≥ −xa∗

[
ϕ(z0, k0)− ϕ(z̄, k̄)

]
−

p∑
r=1

(
nr∑
i=1

ūriyr

[
Tr(z0, ξri)− Tr(z̄, ξri)

])

−
q∑

s=1

(
ns∑
j=1

w̄sjfs

[
ζs
(
(z0, k0), ρsj

)
− ζs

(
(z̄, k̄), ρsj

)])
.

According to (3.12) and (3.13), since (z0, k0) ∈ G, it follows that

x
[
Γ(z0, k0)− Γ(z̄, k̄)

]
≥ 0,

which contradicts (3.9). Therefore, the proof is complete.

Algorithm 1 An algorithm for finding robust optimal solution of the problem (H)

Step 1. Input Γ(·, ·), Tr(·, ξr),Υ, ζs
(
(·, ·), ρs

)
, r ∈ R, ξr ∈ Ωr, s ∈ S and ρs ∈ Λs in

(H).

Step 2. Compute the value function v(z) of the lower level problem (Hz).

Step 3. Choose a pair of point (z̄, k̄) ∈ G in the feasible region of (RH).

Step 4. Check the functions Γ, Tr(·, ξr),Υ, ζs(·, k), r ∈ R, ξr ∈ Ωr, s ∈ S and ρs ∈ Λs

are locally Lipschitz continuous at (z̄, k̄).

Step 5. Check the ∂c-robust convexity of Γ(·, ·), ϕ(·, ·), ζs
(
(·, ·), ρs

)
, ρs ∈ Λs(z̄, k̄)

and Tr(·, ξr), ξr ∈ Ωr(z̄) at (z̄, k̄).

Step 6. Choose the multipliers x > 0, a∗ > 0, yr ≥ 0, r ∈ R and fs ≥ 0, s ∈ S.
Step 7. The point (z̄, k̄) will be robust optimal solution of (H).

Now, we present an example of a non-smooth uncertain bilevel optimization problem.

This example illustrates the sufficient optimality conditions outlined in Theorem 3.
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Example 1. Let Ω1 =
[
0, 1
]
,Λ1 =

[
− 1

2
, 1
]
,Γ(z, k) = 1

3
z+ 1

3
|k|, T1(z, ξ1) = −z−ξ1,Υ(z, k) =√

z + k + 2, and ζ1
(
(z, k), ρ1

)
= k2 − k + ln(1 + ρ1). Consider the following uncertain bilevel

optimization problem

(EH) :


min
z,k

Γ(z, k)

s. t. T1(z, ξ1) ≤ 0,

(z, k) ∈ R× R, k ∈ F0(z),

where for each z ∈ Rn1 , F0(z) represents the set of solutions to the following parametric
optimization problem

(EHz) :

{
min

k
Υ(z, k)

s. t. ζ1
(
(z, k), ρ1

)
≤ 0,

with ξ1 ∈ Ω1 and ρ1 ∈ Λ1.

? The robust counterpart of (EH) is the bilevel optimization problem

(REH) :


min
z,k

Γ(z, k)

s. t. T1(z, ξ1) ≤ 0, ∀ ξ1 ∈ Ω1,

k ∈ F (z),

where for each z ∈ Rn1 , F (z) represents the set of solutions to the following parametric
optimization problem

(REHz) :

{
min

k
Υ(z, k)

s. t. ζ1
(
(z, k), ρ1

)
≤ 0, ∀ ρ1 ∈ Λ1.

In this case, we have R = {1},S = {1}, F (z) = {0}, v(z) =
√
z + 2 and

Φ1(z) = max
ξ1∈Ω1

T1(z, ξ1) = −z,

Ψ1(z, k) = max
ρ1∈Λ1

ζs
(
(z, k), ρ1

)
= k2 − k,

ϕ(z, k) = k.

As a consequence,

G =
{

(z, 0) ∈ R× R | z ≥ 0
}
,

and

Θ1(z, k) = −z, Θ2(z, k) = k2 − k.

Observe that (̄z, k̄) = (0, 0) ∈ G and that assumption (U) and (V) are satisfied for z̄ and
(̄z, k̄), respectively. Furthermore, we have

R(̄z, k̄) = {1, 2}, Ω1(̄z) = {0}, and Λ1(̄z, k̄) = {0}.
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Figure 1. The plot of the objective function Γ(z, k) = 1
3 z + 1

3 |k| of the (EH) in Example 1.

The sets

∂cΓ(̄z, k̄) =

{(1

3
,

1

3

)
,
(1

3
,−1

3

)}
, ∂cϕ(̄z, k̄) = {(0, 1)},

∂cT1(·, 0)(̄z) = {−1}, and ∂cζ1
(
(·, ·), 0

)
(̄z, k̄) = {(0,−1)}

are the Clarke subdifferentials of Γ, ϕ, T1 and ζ1 at (̄z, k̄).

? Note that, by Definition 3 that Γ(·, ·), ϕ(·, ·), T1(·, ξ1) and ζ1
(
(·, ·), ρ1

)
are ∂c-robust convex

at (̄z, k̄).

−1 1 2 3 4 5

−1

1

2

z

k

z ≥ 0, k = 0

Figure 2. The red line represent the feasible region of Example 1.
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The constraint qualification (ENMFCQ) is satisfied at the point (̄z, k̄). Specifically, by
selecting δ = (δ1, δ2) = (1, 2) 6= (0, 0), we obtain

Θ◦1
(
(̄z, k̄), δ

)
= −δ1 = −1 < 0

and

Θ◦2
(
(̄z, k̄), δ

)
= −δ2 = −2 < 0.

Since (REH) is partially calm at (̄z, k̄). Indeed, for d = 1 > 0 and a∗ = 2 > 0 and
(z, k, z) ∈ Bd(0, 0, 0) satisfying

Φ1(z) = −z ≤ 0,

Ψ1(z, k) = k2 − k ≤ 0,

ϕ(z, k) = k ≤ z,

we have

Γ(z, k)− Γ(̄z, k̄) + a∗|z| = 1

3
z +

1

3
|k|+ 2|z|

=
1

3
z +

1

3
|k|+ 2|k| ≥ 0.

? For x = 1
2
, a∗ = 2, y1 = 1

6
and f1 = 7

6
. As a result, inclusion (3.7) and equality (3.8) are

valid.

Hence, by Theorem 3, it follows that (̄z, k̄) is robust optimal solution of (EH).

4. Duality in robust bilevel optimization

In this section, we introduce a Wolfe-type robust dual problem for the primal problem

(RH). We then investigate weak and strong robust duality results under ∂c-robust

convexity assumptions. To begin with, we should define

RN1
+ :=

{
y := (yr, ūri), r = 1, . . . , p, i = 1, . . . , nr|nr ∈ N, yr ≥ 0, ūri ≥ 0,

nr∑
i=1

ūri = 1
}

and

RN2
+ :=

{
f := (fs, w̄sj), s = 1, . . . , q, j = 1, . . . , ns|ns ∈ N, fs ≥ 0, w̄sj ≥ 0,

ns∑
j=1

w̄sj = 1
}
.
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Let (g, l) ∈ Rn1 × Rn2 . We define (WH) as the Wolfe-type robust dual of the primal

problem (RH), which is formulated as follows:

(WH)



max
g,l

{
Γ(g, l) + xa∗ϕ(g, l) +

∑p
r=1 yr

(∑nr

i=1 ūri Tr(g, ξri)

)

+
∑q

s=1 fs

(∑ns

j=1 w̄sj ζs
(
(g, l), ρsj

))}
s. t.

(0, 0) ∈ ∂cΓ(g, l) + xa∗∂cϕ(g, l) +
∑p

r=1 yr

(∑nr

i=1 ūri βri

)

+
∑q

s=1 fs

(∑ns

j=1 w̄sj λsj

)
,

λsj ∈
{
∪ ∂cζs

(
(g, l), ρsj

)
, ρsj ∈ Λs(g, l)

}
, βri ∈

{
∪ ∂cTr(g, ξri), ξri ∈ Ωr(g)

}
,

Π∗ =
{(

x, y, f
)

: x > 0, y ≥ 0, f ≥ 0
}
,

where Ωr(g) is defined as in (3.4) by replacing z̄ with g and Λs(g, l) is defined as in

(3.6) by replacing (z̄, k̄) with (g, l).

The set GWH of all feasible points of (WH) is defined as:

GWH =

{(
(g, l),Π∗

)
∈ Rn1 × Rn2 × R× RN1

+ × RN2
+

∣∣ (0, 0) ∈ ∂cΓ(g, l)

+xa∗∂cϕ(g, l) +

p∑
r=1

yr

(
nr∑
i=1

ūri βri

)
+

q∑
s=1

fs

(
ns∑
j=1

w̄sj λsj

)
,

Π∗ =
{(

x, y, f
)

: x > 0, y ≥ 0, f ≥ 0
}}

.

The following theorem presents a result on weak robust duality.

Theorem 4. (Weak Robust Duality): Let (z0, k0) ∈ G and ((g, l), Π∗) ∈ GWH. If
Γ(·, ·), ϕ(·, ·), ζs

(
(·, ·), ρs

)
and Tr(·, ξr) are ∂c-robust convex at (g, l) on (WH), then

Γ(z0, k0) ≥ Γ(g, l) + xa∗ϕ(g, l) +

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(g, ξri)

)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(g, l), ρsj

))
. (4.1)

Proof. Since ((g, l), Π∗) ∈ GWH, there exist x > 0, ϑ ∈ ∂cΓ(g, l), a∗ > 0, η ∈
∂cϕ(g, l), yr ≥ 0, r ∈ R, ūri ≥ 0, βri ∈ ∂cTr(g, ξri), ξri ∈ Ωr(g), i ∈ Ir :=
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{1, . . . , nr}, nr ∈ N,
∑nr

i=1 ūri = 1 and fs ≥ 0, s ∈ S, w̄sj ≥ 0, λsj ∈
∂cζs

(
(g, l), ρsj

)
, ρsj ∈ Λs(g, l), j ∈ Js := {1, . . . , ns}, ns ∈ N,

∑ns

j=1 w̄sj = 1, such

that

0 = ϑ+ xa∗η +

p∑
r=1

yr

(
nr∑
i=1

ūri βri

)
+

q∑
s=1

fs

(
ns∑
j=1

w̄sj λsj

)
. (4.2)

Since Γ(·, ·), ϕ(·, ·), ζs
(
(·, ·), ρs

)
, ρs ∈ Λs and Tr(·, ξr), ξr ∈ Ωr are ∂c-robust convex

functions at (g, l), by Definition 3, for any ϑ ∈ ∂cΓ(g, l), a∗ > 0, η ∈ ∂cϕ(g, l), yr ≥
0, r ∈ R, ūri ≥ 0, βri ∈ ∂cTr(g, ξri), ξri ∈ Ωr(g), i ∈ Ir := {1, . . . , nr}, nr ∈ N,
and fs ≥ 0, s ∈ S, w̄sj ≥ 0, λsj ∈ ∂cζs

(
(g, l), ρsj

)
, ρsj ∈ Λs(g, l), j ∈ Js :=

{1, . . . , ns}, ns ∈ N, we deduce from (4.2) that

0 =
〈
ϑ, (z0, k0)− (g, l)

〉
+ xa∗

〈
η, (z0, k0)− (g, l)

〉
+

p∑
r=1

yr

(
nr∑
i=1

ūri

〈
βri, (z0, 0)− (g, 0)

〉)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj

〈
λsj , (z0, k0)− (g, l)

〉)

≤
[
Γ(z0, k0)− Γ(g, l)

]
+ xa∗

[
ϕ(z0, k0)− ϕ(g, l)

]
+

p∑
r=1

yr

(
nr∑
i=1

ūri

[
Tr(z0, ξri)− Tr(g, ξri)

])

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj

[
ζs
(
(z0, k0), ρsj

)
− ζs

(
(g, l), ρsj

)])
. (4.3)

Therefore

Γ(z0, k0) ≥ Γ(g, l)− xa∗
[
ϕ(z0, k0)− ϕ(g, l)

]
−

p∑
r=1

yr

(
nr∑
i=1

ūri

[
Tr(z0, ξri)− Tr(g, ξri)

])

−
q∑

s=1

fs

(
ns∑
j=1

w̄sj

[
ζs
(
(z0, k0), ρsj

)
− ζs

(
(g, l), ρsj

)])
. (4.4)

Since (z0, k0) ∈ G, we have

xa∗ϕ(z0, k0) ≤ 0,

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(z0, ξri)

)
≤ 0
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and
q∑

s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(z0, k0), ρsj

))
≤ 0.

Hence

Γ(z0, k0) ≥ Γ(g, l) + xa∗ϕ(g, l) +

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(g, ξri)

)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(g, l), ρsj

))
.

The next result addresses strong robust duality.

Theorem 5. (Strong Robust Duality): Let (̄z, k̄) be a robust optimal solution for
(H). Suppose that the assumptions of Theorem 2 are satisfied. Then there exists Π∗ ={(

x, yr, fs
)

: x > 0, yr ≥ 0, fs ≥ 0
}
, such that ((̄z, k̄),Π∗) is a feasible point of (WH) and

respective objective values are equal. Moreover, if the conditions of Theorem 4 hold. Then
((̄z, k̄),Π∗) is a robust optimal solution of (WH).

Proof. Since (z̄, k̄) be a robust optimal solution for (H) and all conditions of Theorem

2 are met, it follows that there exist x > 0, ϑ ∈ ∂cΓ(z̄, k̄), a∗ > 0, η ∈ ∂cϕ(z̄, k̄), yr ≥
0, r ∈ R, ūri ≥ 0, βri ∈ ∂cTr(z̄, ξri), ξri ∈ Ωr(z̄), i ∈ Ir := {1, . . . , nr}, nr ∈ N,
and fs ≥ 0, s ∈ S, w̄sj ≥ 0, λsj ∈ ∂cζs

(
(z̄, k̄), ρsj

)
, ρsj ∈ Λs(z̄, k̄), j ∈ Js :=

{1, . . . , ns}, ns ∈ N, such that
∑nr

i=1 ūri = 1,
∑ns

j=1 w̄sj = 1,

0 = ϑ+ xa∗η +

p∑
r=1

yr

(
nr∑
i=1

ūri βri

)
+

q∑
s=1

fs

(
ns∑
j=1

w̄sj λsj

)
(4.5)

and

yr max
ξr∈Ωr

Tr(z̄, ξr) = 0, r ∈ R, (4.6a)

fs max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
= 0, s ∈ S. (4.6b)

This implies that ((z̄, k̄),Π∗) ∈ GWH and the values of the two objective functions are

equal. By Theorem 4, for any ((g, l), Π∗) ∈ GWH we have

Γ(z̄, k̄) ≥ Γ(g, l) + xa∗ϕ(g, l) +

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(g, ξri)

)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(g, l), ρsj

))
. (4.7)
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Since ξri ∈ Ωr(z̄),

Tr(z̄, ξri) = max
ξr∈Ωr

Tr(z̄, ξr), ∀ i ∈ Ir, ∀ r ∈ R.

Thus, it follows by (4.6a) that

yrTr(z̄, ξri) = 0, ∀ i ∈ Ir, ∀ r ∈ R.

And since ρsj ∈ Λs(z̄, k̄),

ζs
(
(z̄, k̄), ρsj

)
= max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
∀ j ∈ Js, s ∈ S.

Thus, it follows by (4.6b) that

fs ζs
(
(z̄, k̄), ρsj

)
= 0 ∀ j ∈ Js, s ∈ S.

As ϕ(z̄, k̄) = 0, This implies that

xa∗ϕ(z̄, k̄) = 0,

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(z̄, ξri)

)
=

p∑
r=1

(
nr∑
i=1

ūriyr Tr(z̄, ξri)

)
= 0

and
q∑

s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(z̄, k̄), ρsj

))
=

q∑
s=1

(
ns∑
j=1

w̄sjfsζs
(
(z̄, k̄), ρsj

))
= 0.

Therefore, we have

Γ(z̄, k̄) = Γ(z̄, k̄) + xa∗ϕ(z̄, k̄) +

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(z̄, ξri)

)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(z̄, k̄), ρsj

))
. (4.8)

From equations (4.7) and (4.8) we have

Γ(z̄, k̄) + xa∗ϕ(z̄, k̄) +

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(z̄, ξri)

)
+

q∑
s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(z̄, k̄), ρsj

))

≥ Γ(g, l) + xa∗ϕ(g, l) +

p∑
r=1

yr

(
nr∑
i=1

ūri Tr(g, ξri)

)

+

q∑
s=1

fs

(
ns∑
j=1

w̄sj ζs
(
(g, l), ρsj

))
.

Hence, ((z̄, k̄),Π∗) is a robust optimal solution of (WH).
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The following example shows the applicability of our duality results.

Example 2. We revisit problem (EH), previously discussed in Example 1, to analyze its
Wolfe-type robust dual problem

(WEH)



max
g,l

{
Γ(g, l) + xa∗ϕ(g, l) + y1 T1(g, ξ1) + f1 ζ1

(
(g, l), ρ1

)}
s. t.

(0, 0) ∈ ∂cΓ(g, l) + xa∗∂cϕ(g, l) + y1 ∂cT1(g, ξ1) + f1 ∂cζ1
(
(g, l), ρ1

)
,

Π∗ =
{(

x, y, f
)

: x > 0, y ≥ 0, f ≥ 0
}
,

(g, l) ∈ R2.

Let us claim that (g, l) = (−1, 0) is a feasible point of (WEH).
The sets

∂cΓ(−1, 0) =

{(1

3
,

1

3

)
,
(1

3
,−1

3

)}
, ∂cϕ(−1, 0) = {(0, 1)},

∂cT1(·, 0)(−1) =
{
− 1
}
, and ∂cζ1

(
(·, ·), 0

)
(−1, 0) = {(0,−1)},

are the Clarke subdifferentials of Γ, ϕ, T1 and ζ1 at (g, l). Note that, by Definition 3 that
Γ(·, ·), ϕ(·, ·), T1(·, ξ1) and ζ1

(
(·, ·), ρ1

)
are ∂c-robust convex at (g, l).

For Π∗ =
(

1, 1
3
, 7

6

)
, we have

(1

3
,−1

3

)
+ 1

3

2

(
0, 1
)

+
1

3

(
− 1, 0

)
+

7

6

(
0,−1

)
=
(

0, 0
)
.

This simplifies

(0, 0) ∈ x∂cΓ(−1, 0) + xa∗∂cϕ(−1, 0) + y1 ∂cT1(−1, ξ1) + f1 ∂cζ1
(
(−1, 0), ρ1

)
.

∗ Since G =
{

(x, 0) ∈ R× R | x ≥ 0
}
, for any feasible solution (z, k) ∈ G of (REH) and any

feasible solution (g, l,Π∗) ∈ GWH of (WEH), we have

Γ(z, k) ≥ Γ(g, l) + xa∗ϕ(g, l) + y1 T1(g, ξ1) + f1 ζ1
(
(g, l), ρ1

)
.

Therefore, Theorem 4 is valid for both (EH) and (WEH).

∗ We knows that (̄z, k̄) = (0, 0) is a robust optimal solution of (EH) where (ENMFCQ) holds

and that (3.7) and (3.8) is satisfied at
(
(̄z, k̄), Π̄∗

)
=
(

(0, 0), 1
2
, 1

6
, 7

6

)
. Since

(
(̄z, k̄), Π̄∗

)
is a

feasible point of (WEH), then for any feasible point
(
(g, l),Π∗

)
of (WEH), we have

Γ(̄z, k̄) + xa∗ϕ(̄z, k̄) + y1 T1(̄z, ξ1) + f1 ζ1
(
(̄z, k̄), ρ1

)
≥ Γ(g, l) + xa∗ϕ(g, l) + y1 T1(g, ξ1) + f1 ζ1

(
(g, l), ρ1

)
.

Therefore,
(
(̄z, k̄), Π̄∗

)
is the robust optimal solution of (WEH), which proves that Theorem

5 is valid.
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5. Conclusions

Robust bilevel programming is an emerging topic in optimization theory. This study

explores sufficient optimality conditions and duality results for a uncertain bilevel

model where uncertainty affects constraints at both levels. To tackle this problem,

we employed an optimal value reformulation along with an exact penalization ap-

proach, transforming it into a single-level surrogate. Utilizing principles from robust

counterpart optimization and ∂c-robust convexity, we derived sufficient conditions

for robust optimality and established both weak and strong robust duality results

through Wolfe-type robust dual models. Several examples were provided to illustrate

the relevance of these theoretical results in uncertain bilevel optimization. To our

knowledge, this work is among the first to address these aspects in this setting.

Future research could explore extensions to uncertain multiobjective bilevel opti-

mization problem, particularly in cases where uncertainty also affects the objective

function.
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