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Abstract: In the study of domination in graphs the following Domination Chain of

inequalities is well known and well studied: ir(G) ≤ γ(G) ≤ i(G) ≤ γ(G) ≤ α(G) ≤
Γ(G) ≤ IR(G), where ir(G) and IR(G) denote the irredundance number and upper

irredundance number, γ(G) and Γ(G) denote the domination number and upper dom-
ination number, and i(G) and α(G) denote the independent domination number and

vertex independence number of a graph G. The Domination Chain is a consequence of

the facts that (i) every maximal independent set is a minimal dominating set and every
minimal dominating set is a maximal irredundant set and (ii) the property of being an

independent set is hereditary (every subset of an independent set is also an indepen-

dent set), the property of being a dominating set is superhereditary (every superset of
a dominating set is also a dominating set), and the property of being an irredundant

set is hereditary. In this paper we consider several other hereditary properties and
superhereditary properties which give rise to similar domination chains.
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1. Introduction

In a graph G = (V,E), the open neighborhood N(v) = {u ∈ V | uv ∈ E} of a vertex

v ∈ V is the set of neighbors u of v, and the degree of v in G is deg(v) = |N(v)|.
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2 Domination chains in graphs

The closed neighborhood of a vertex v is the set N [v] = N(v) ∪ {v}, and the open

neighborhood of a set S ⊂ V is the set N(S) =
⋃

v∈S N(v).

Throughout this paper we will use the following notation: S = V \ S denotes the

vertices in V but not in S, called the complement of S in G, degS(v) = |N(v) ∩ S|,
G[S] is the subgraph of G induced by S, δ(G) = min{deg(v) | v ∈ V } is the minimum

degree of a vertex in V , and ∆(G) = max{deg(v) | v ∈ V } is the maximum degree of

a vertex in V .

A set of vertices S ⊂ V is called independent if no two vertices in S are adjacent, that

is, for every u, v ∈ S, u /∈ N(v) and v /∈ N(u). Let i(G) and α(G) equal the minimum

and maximum cardinalities of a maximal independent set in G.

A set of vertices S ⊂ V is called a dominating set if for every vertex v ∈ V , either v ∈ S
or v ∈ N(S). Let γ(G) and Γ(G) equal the minimum and maximum cardinalities of

a minimal dominating set in G.

A property P of a set S of vertices is called hereditary (resp. superhereditary) if every

subset S′ ⊂ S of S (resp. every superset S′ of S, S ⊂ S′) also has property P. For

instance, the property of being an independent set is hereditary since every subset of

an independent set is also independent, while the property of being a dominating set

is superhereditary, since every superset of a dominating set is also a dominating set.

The following well known result was established in [3].

Proposition 1. Let S be a set of vertices having some hereditary or superhereitary
property P.

1. If P is hereditary, then S is maximal with respect to P if and only if for every vertex
w ∈ S, S ∪ {w} does not have property P.

2. If P is superhereditary, then S is minimal with respect to P if and only if for every
vertex v ∈ S, S − {v} does not have property P.

Discussions of hereditary and superhereditary properties related to dominating sets

in graphs can be found in the book on domination in graphs by Haynes, Hedetniemi

and Slater in 1998 [9], and papers by Cockayne et al. in 1997 [3], and Cockayne et al.

in 1997 [2].

A domination chain expresses relationships that exist among independent sets, domi-

nating sets, and irredundant sets in graphs. Irredundance is the concept that describes

the minimality of a dominating set. If a dominating set S is minimal, then for every

vertex u ∈ S the set S − {u} is no longer a dominating set. This means that vertex

u dominates some vertex, which could be itself, that no other vertex in S dominates.

Given a vertex set S ⊆ V and a vertex v ∈ S, we make the following definitions:

1. vertex v is a self private neighbor if v has no neighbors in S, that is, N [v]∩S =

{v}.

2. vertex v has an S-external private neighbor if there exists a vertex w ∈ S such

that N(w) ∩ S = {v}.
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3. vertex v has an S-internal private neighbor if there exists a vertex w ∈ S such

that N(w) ∩ S = {v}.

A nonempty set S is irredundant if and only if every vertex v ∈ S either is a self-

private neighbor or has an S-external private neighbor. The irredundance numbers,

ir(G) and IR(G), equal the minimum and maximum cardinalities, respectively, of a

maximal irredundant set. For a comprehensive treatment of irredundance in graphs

the reader is referred to two recent 2021 chapters on this subject by Mynhardt and

Roux [14] and Hedetniemi, McRae, and Mohan [11].

From the foregoing, it is easy to see that in every graph G, every maximal independent

set is a minimal dominating set in G, and every minimal dominating set in G is a

maximal irredundant set in G, leading to the domination chain:

Theorem 1 (The Domination Chain). For every graph G,

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G).

Since its introduction by Cockayne, Hedetniemi, and Miller in 1978 [4], the Domina-

tion Chain of Theorem 1 has become one of the major focal points in the study of

domination in graphs, resulting in several hundred papers. The general framework for

developing the Domination Chain, starting with the seed property of an independent

set, can be used to obtain inequality chains similar to the domination chain starting

from other hereditary or superhereditary seed properties. This is largely what moti-

vates our study, since almost any property of subsets could be considered as a seed

property.

In this paper, we will define a series of possible hereditary seed properties of graphs,

and for each, we will attempt to determine the existence of a corresponding domina-

tion chain.

2. Total hereditary properties

A property P of vertex sets S ⊂ V is considered to be a total hereditary property if

it holds for every vertex v ∈ V with respect to a given set S, rather than for every

vertex v ∈ S. In this section we present two total hereditary properties P, one of

which apparently has not been studied.

2.1. Total Irredundant Sets

Definition 1. A set S ⊂ V is called total irredundant if for every vertex v ∈ V , N [v]
contains at least one vertex that is not contained in N [S − {v}]. Let irt(G) and IRt(G)
equal the minimum and maximum cardinalities of a maximal total irredundant set in G.

Total irredundance was first introduced by Hedetniemi, Hedetniemi and Jacobs in

1993 [10] but was only studied in terms of its algorithmic complexity and NP-

completeness.
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Proposition 2. The property of being a total irredundant set is hereditary.

Proof. Let S ⊂ V be a total irredundant set and let S′ ⊂ S. We must show that S′

is also a total irredundant set. That is, we must show that for every vertex v ∈ V ,

N [v] contains at least one vertex that is not contained in N [S′−{v}]. Consider three

cases:

Case 1. v ∈ V − S. Since S is a total irredundant set, let x ∈ N [v], where x /∈
N [S − {v}]. But if x is not in N [S − {v}], then it is not in the subset N [S′ − {v}] of

N [S − {v}].
Case 2. v ∈ S−S′. There are two cases: (i) v is a self-private neighbor in S, meaning

it is not adjacent to any vertex in S − {v}. But if v is not adjacent to any vertex in

S−{v}, then is also not adjacent to any vertex in the subset S′ of S−{v}. (ii) v has

an external private neighbor in V − S, say w. Thus, N(w)∩ S = {v}. Thus, w is not

adjacent to any vertices in S′, and therefore w is a private neighbor of v with respect

to the set S′.

Case 3. v ∈ S′. There are two cases: (i) v is a self-private neighbor in S, meaning

that it is not adjacent to any vertices in S. But if v is not adjacent to any vertices in

S, then it is not adjacent to any vertices in the subset S′ of S. (ii) v has an external

private neighbor with respect to the set S, that is there is a vertex w ∈ V − S, such

that N(w)∩S = {v}. But if N(w)∩S = {v}, then N(w)∩S′ = {v}. Thus, v has an

external private neighbor with respect to S′. 2

It follows from Proposition 2 that a total irredundant set S is a maximal total irre-

dundant set if and only if for every vertex w ∈ V − S, the set S ∪ {w} is not a total

irredundant set. This means that one of the following three conditions holds:

(i) there is a vertex x ∈ V −S whose only private neighbor with respect to S is vertex

w ∈ V − S, so that x has no private neighbors with respect to S ∪ {w}.
(ii) there is a vertex v ∈ S whose only private neighbor with respect to S is the vertex

w ∈ V − S, so that v has no private neighbors with respect to S ∪ {w}.
(iii) there is a vertex v ∈ S whose only private neighbor with respect to S is v itself,

but since v is adjacent to w ∈ V − S, v has no private neighbor with respect to

S ∪ {w}.
These three conditions define a new type of set.

Definition 2. A set S is called total redundant if for every vertex w ∈ V − S, one of the
following three conditions holds:
(i) there is a vertex x ∈ V − S whose only private neighbor with respect to S is vertex
w ∈ V − S, so that x has no private neighbors with respect to S ∪ {w}.
(ii) there is a vertex v ∈ S whose only private neighbor with respect to S is the vertex
w ∈ V − S, so that v has no private neighbors with respect to S ∪ {w}.
(iii) there is a vertex v ∈ S whose only private neighbor with respect to S is v itself, but
since v is adjacent to w ∈ V − S, v has no private neighbor with respect to S ∪ {w}.
Let tr(G) and TR(G) equal the minimum and maximum cardinalities of a total redundant
set in G.
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Proposition 3. For any graph G, a set S is a maximal total irredundant set if and only
if S is a minimal total redundant set.

Proof. Let S be a maximal total irredundant set. Since S is maximal, it meets the

definition of being a total redundant set. All that remains is to show that S is a

minimal total redundant set.

Suppose, therefore, that S is not a minimal total redundant set. Let S′ ⊂ S be a

total redundant set. Consider any vertex v ∈ (S − S′).
Since S′ is total redundant, then vertex v must meet one of the three specified con-

ditions: (i) it is the only private neighbor of a vertex x ∈ V − S′ with respect to S′.

But this is a contradiction since S is total irredundant and x must have a private

neighbor with respect to S.

(ii) it is the only private neighbor of a vertex w ∈ S′ with respect to S′. But this is

a contradiction since S is total irredundant and v cannot be a private neighbor of w

with respect to S since both v and w are in S.

(iii) the only private neighbor of a vertex w ∈ S′ with respect to S′ is itself but vertex

v is adjacent to w. This means that w can’t be a self- private neighbor with respect

to the larger set S since w is adjacent to v and both w and v are in S. 2

Corollary 1. For any graph G, tr(G) ≤ irt(G) ≤ IRt(G) ≤ TR(G).

2.2. Totally k-dependent Sets

In [8], Fink and Jacobson introduced the concept of k-dependent sets as a generali-

sation of independent sets. For an integer k ≥ 1, a set S ⊂ V is called k-dependent

if for every vertex v ∈ S, |N(v) ∩ S| < k. A domination chain corresponding to the

hereditary property of being a k-dependent set was developped in 2009 by Chellali

and Favaron [1] by introducing the concept of k-star forming sets.

In this subsection we consider totally k-independent sets S where every vertex v ∈ V
has less than k neighbors in S. Let itk(G) and αtk(G) equal the minimum and

maximum cardinalities of a maximal totally k-dependent set in G.

Clearly, the property of being totally k-dependent is hereditary. What then is the

maximality condition for being totally k-dependent?

Every vertex w ∈ V −S has a neighbor x, either in V −S or in S, whose neighborhood

in S ∪ {w} has at least k vertices, that is |NS∪{w}(x)| ≥ k. This partially coincides

with the concept of k-star forming sets defined in [1], which leads us to give the

following definition.

Definition 3. For an integer k ≥ 1, a subset S of vertices of G is a weak k-star forming set
if every vertex v ∈ V −S has a neighbor u in V such that degS(u) ≥ k−1. Let φwkf (G) and
Φwkf (G) equal the minimum and maximum cardinalities of a minimal weak k-star forming
set.
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Since the property of being a weak k-star forming set is superhereditary, a weak k-star

forming set is minimal if and only if for every vertex w ∈ S, S − {w} is no longer a

weak k-star forming set.

Proposition 4. Every maximal totally k-dependent set is a minimal weak k-star forming
set.

Proof. Let S be a maximal totally k-dependent set. Since S is maximal, it meets

the definition of being a weak k-star forming set. All that remains is to show that S

is a minimal weak k-star forming set.

Assume therefore, that S is not a minimal weak k-star forming set. Then there exists

a vertex v ∈ S such that S − {v} is a weak k-star forming set. In this case vertex

v ∈ V − (S−{v}) must have a neighbor x in V such that degS−{v}(x) ≥ k− 1. Since

v ∈ S, we deduce that degS(x) ≥ k. But this contradicts the assumption that S is a

totally k-dependent set. Thus, S must be a minimal weak k-star forming set. 2

Corollary 2. For every graph G,

φwkf (G) ≤ itk(G) ≤ αtk(G) ≤ Φwkf (G).

3. Hereditary properties

In this section, we consider five hereditary properties. To avoid unnecessary redun-

dancy, most of the proofs are omitted in this section, as they can be constructed using

the same methods as in the previous section.

3.1. Open Irredundant Sets

Definition 4. A set S ⊂ V is called open irredundant if for every vertex v ∈ S, there
exists a vertex w ∈ V −S for which N(w)∩S = {v}, that is, every vertex v in S has at least
one external private neighbor w. The minimum and maximum cardinalities of a maximal
open irredundant set are denoted oir(G) and OIR(G), respectively.

The concept of irredundant sets in graphs was first introduced in 1978 by Cock-

ayne, Hedetniemi, and Miller [4]. Open irredundance was first studied by Farley and

Shachum in 1983 [6] and by Farley and Proskurowski in 1984 [5]; see also Favaron in

1988 [7].

The property of being an open irredundant set is hereditary since any vertex in a

subset S′ ⊂ S of an open irredundant set S has the same external private neighbor in

S′ that it has in S. Thus, an open irredundant set S is a maximal open irredundant

set if and only if for every vertex w ∈ V −S the set S ∪ {w} is not open irredundant.

This condition is equivalent to saying that for every vertex w ∈ V − S, either (i) w

has no external private neighbor in the set S ∪{w}, or (ii) there exists a vertex v ∈ S
which has an external private neighbor in V −S but does not have an external private
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neighbor in V − (S ∪ {w}), that is, the only external private neighbor that v ∈ S has

is w.

Definition 5. A set S is called open redundant if for every vertex w ∈ V −S, either (i) w
has no external private neighbor in the set S ∪ {w}, or (ii) there exists a vertex v ∈ S which
has an external private neighbor in V −S but does not have an external private neighbor in
V − (S ∪ {w}), that is, the only external private neighbor that v ∈ S has is w. Let or(G)
and OR(G) equal the minimum and maximum cardinalities of a minimal open redundant
set in G.

Proposition 5. If S ⊆ V is a maximal open irredundant set, then S is a minimal open
redundant set.

Proof. Let S be a maximal open irredundant set. By definition S is also an open

redundant set. All that remains is to show that S is a minimal open redundant set.

Suppose not. Then there exists an open redundant set S′ ⊂ S. But this means that

for every vertex w ∈ V −S′, either (i) w has no external private neighbor in V −S′ or

(ii) there exists a vertex v ∈ V −S′ which has an external private neighbor in V −S′
but does not have an external private neighbor in V − (S′ ∪ {w}).
In particular let this vertex w ∈ S−S′ ⊂ V −S′. Since S is maximal open irredundant,

w has an external private neighbor in V −S, and therefore it also has the same private

neighbor in V − S′, which is a contradiction. 2

Corollary 3. For any graph G, or(G) ≤ oir(G) ≤ OIR(G) ≤ OR(G).

3.2. 2-packing Sets

Definition 6. A set S ⊂ V is called a 2-packing if the vertices in S are pairwise at
distance at least three apart in G. The lower 2-packing number ρ2(G) and upper 2-packing
number ρ+2 (G) equal the minimum and maximum cardinalities of a maximal 2-packing in G.

The study of 2-packings in graphs is very well established in graph theory, indeed,

more than 5,000 papers have been published related to packings in graphs. In this

section we develop a domination chain corresponding to 2-packings in graphs.

Note that the property of being a 2-packing is hereditary, and thus a 2-packing is

maximal if and only if for every vertex w ∈ V −S, the set S ∪{w} is not a 2-packing.

This means that vertex w is within distance-2 of at least one vertex in S, leading to

the following, well-known definition.

Definition 7. A set S ⊂ V is called a distance-2 dominating set if every vertex in
V − S is within distance-2 of at least one vertex in S. The minimum cardinality of a
distance-2 dominating set is called the distance-2 domination number and is denoted γ≤2(G).
Similarly the upper distance-2 domination number Γ≤2(G) equals the maximum cardinality
of a minimal distance-2 dominating set in G.
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Clearly, the property of being a distance-2 dominating set is superhereditary, and

hence from the preceding definitions, we have the following result.

Proposition 6. If S is a maximal 2-packing set, then S is a minimal distance-2 domi-
nating set.

Corollary 4. For any graph G, γ≤2(G) ≤ ρ2(G) ≤ ρ+2 (G) ≤ Γ≤2(G).

Since a set S is a minimal distance-2 dominating set if and only if for every vertex

v ∈ S, the set S − {v} is not a distance-2 dominating set, this, in turn, means, as

is discussed by Henning in [12], that for every vertex v ∈ S, either (i) no vertex in

S−{v} is within distance-2 of v, or (ii) there exists a vertex w ∈ V −S that is within

distance-2 of v but is not within distance-2 of any vertex in S − {v}.
These two conditions (i) and (ii) suggest the following definitions.

Definition 8. A set S ⊆ V is called a distance-2 irredundant set if for every vertex v ∈ S,
either (i) no vertex in S−{v} is within distance-2 of v, or (ii) there exists a vertex w ∈ V −S
that is within distance-2 of v but is not within distance-2 of any vertex in S − {v}. Let
ir2(G) and IR2(G) equal the minimum and maximum cardinalities of a maximal distance-2
irredundant set.

In a distance-2 irredundant set S, if a vertex v ∈ S meets condition (i), that no vertex

w ∈ S − {v} is within distance-2 of v, then v is said to be a self distance-2 private

neighbor. If a vertex v ∈ S meets condition (ii), that there exists a vertex w ∈ V − S
that is within distance-2 of v but is not within distance-2 of any vertex in S − {v},
then w is said to be an external distance-2 private neighbor of v.

Thus, an equivalent definition of a distance-2 irredundant set S is a set having the

property that for every vertex v ∈ S, either v is a self distance-2 private neighbor or

v has an external distance-2 private neighbor w ∈ V − S.

Note that the property of being a distance-2 irredundant set is hereditary. Let S be a

distance-2 irredundant set, let S′ ⊂ S and let v ∈ S′. It is easy to see that if v is a self

distance-2 private neighbor in S then it is also a self distance-2 private neighbor in

S′, since it as the same distance to vertices in S′ − {v} as it has to the same vertices

in S − {v}. Similarly, if vertex v has an external distance-2 private neighbor w in

V − S, then vertex w is also an external distance-2 private neighbor in V − S′.
Thus, a set S is a maximal distance-2 irredundant set if and only if for all w ∈ V −S,

S∪{w} is not a distance-2 irredundant set. Accordingly, we have the following result.

Proposition 7. If S is a minimal distance-2 dominating set, then S is a maximal
distance-2 irredundant set.

An immediate consequence of Proposition 7 is the following Distance-2 Domination

Chain involving the well-known 2-packing numbers of a graph.
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Corollary 5. For any graph G,

ir2(G) ≤ γ≤2(G) ≤ ρ2(G) ≤ ρ+2 (G) ≤ Γ≤2(G) ≤ IR2(G).

It is interesting to consider the conditions under which a distance-2 irredundant set

is a maximal distance-2 irredundant set, in the same way that we considered the

maximality conditions of a 2-packing earlier. In this case adding any vertex w ∈ V −S
to a distance-2 irredundant set S creates a set S ∪ {w} that is no longer distance-2

irredundant. This in turn means that there is at least one vertex x ∈ S ∪ {w} that

is neither a self distance-2 private neighbor nor has an external distance-2 private

neighbor. This remains to be considered.

Distance domination was introduced by Slater in 1976 [15]. For an extended treatment

of distance domination in graphs, the reader is referred to two chapters by Henning

[12, 13].

3.3. Enclaveless Sets

Definition 9. A set S ⊂ V is called enclaveless if for every vertex v ∈ S, N(v)∩(V −S) 6=
∅, that is, every vertex v in S has at least one neighbor in V −S. The minimum and maximum
cardinalities of a maximal enclaveless set are denoted ψ(G) and Ψ(G), respectively.

Enclaveless sets were introduced by Slater in 1977 [16]. The property of being an

enclaveless set is clearly hereditary, since if every vertex in a set S has a neighbor

in V − S, then every vertex in a subset S′ ⊂ S will still have the same neighbor in

V − S′. Thus, every subset of an enclaveless set is also an enclaveless set. It follows

therefore from Proposition 1 that a set S is a maximal enclaveless set if and only if

for every vertex w ∈ V − S, the set S ∪ {w} is not an enclaveless set, that is, either

(i) N(w)∩S = N(w), that is, every neighbor of w is in S, or equivalently, N [w] is an

enclave in S ∪ {w}, or

(ii) there is a vertex v ∈ S whose only neighbor in V − S is w.

This leads to the following definition.

Definition 10. A set S ⊂ V is called an enclave dominating set if every vertex w in
V − S creates an enclave in the set S ∪ {w}, and this enclave contains w, which means that
either (i) w is the center of an enclave in S ∪ {w}, that is, N [w] ⊆ S ∪ {w}, or equivalently,
every neighbor of w is in S, or (ii) w is adjacent to a vertex v ∈ S which is the center of an
enclave in S ∪ {w}, that is, w ∈ N [v] ⊆ S ∪ {w}, or equivalently, w is adjacent to a vertex
v ∈ S whose only neighbor in V − S is w. Let γψ(G) and Γψ(G) equal the minimum and
maximum cardinality of a minimal enclave dominating set in G.

It is easy to see that enclave domination is superhereditary, in that every superset

of an enclave dominating set is also an enclave dominating set. Thus, an enclave

dominating set S is a minimal enclave dominating set if and only if for every vertex

v ∈ S, S−{v} is not an enclave dominating set. Consequently, we have the following

result.
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Proposition 8. If S is a maximal enclaveless set, then S is a minimal enclave dominating
set.

Corollary 6. For any graph G, γψ(G) ≤ ψ(G) ≤ Ψ(G) ≤ Γψ(G).

As we noted above, since the property of being an enclave dominating set is super-

hereditary, from Proposition 1-(2) it follows that an enclave dominating set S is a

minimal enclave dominating set if and only if for every vertex v ∈ S, the set S − {v}
is not an enclave dominating set.

4. Conclusions and Open Problems

In this short paper we have shown that for almost any seed hereditary property P, one

can, with care, derive a corresponding domination chain, sometimes with surprises.

For example, in this paper we have illustrated chains containing new results about such

the well-known types of sets as open irredundant sets, enclaveless sets, k-dependent

sets, 2-packings, and distance-2 dominating sets.

Several new or unstudied types of sets are also introduced that bear further study,

including: (i) total irredundance and total redundance, (ii) total k-dependence, (iii)

open redundance, (iv) distance-2 irredundance, and (v) enclave domination.
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