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Abstract: A weak signed total Italian dominating function (WSTIDF) of a graph G
with vertex set V (G) is defined as a function f : V (G)→ {−1, 1, 2} having the property

that
∑

x∈N(v) f(x) ≥ 1 for each v ∈ V (G), where N(v) is the neighborhood of v. The

weight of a WSTIDF is the sum of its function values over all vertices. The weak signed
total Italian domination number of G, denoted by γwstI(G), is the minimum weight

of a WSTIDF in G. We initiate the study of the weak signed total Italian domination

number, and we present different sharp bounds on γwstI(G). In addition, we determine
the weak signed total Italian domination number of some classes of graphs.
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1. Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [9]. Specifically, let G be a graph with vertex set V (G) = V and edge

set E(G) = E. The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the

order and the size of the graph G, respectively. The open neighborhood of vertex v

is NG(v) = N(v) = {u ∈ V (G)|uv ∈ E(G)}, and the closed neighborhood of v is

NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex v is dG(v) = d(v) = |N(v)|.
The minimum and maximum degree of a graph G are denoted by δ(G) = δ and

∆(G) = ∆, respectively. A graph G is regular or r-regular if δ(G) = ∆(G) = r. For

a subset X ⊆ V (G), we use G[X] to denote the subgraph of G induced by X. Let

Kn be the complete graph of order n, Cn the cycle of order n, Pn the path of order

n, and Kp,q the complete bipartite graph with partite sets X and Y , where |X| = p

and |Y | = q. Let S(r, s) be the double star with exactly two adjacent vertices u and v

that are not leaves such that u is adjacent to r ≥ 1 leaves and v is adjacent to s ≥ 1

leaves.
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Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [6] introduced the concept

of Roman domination in graphs, and since then a lot of related variations and gen-

eralizations in graphs have been studied (see, [2–4]). In this paper we continue the

study of Roman and Italian dominating functions in graphs.

A set D of vertices of G is called by Cockayne, Dawes and Hedetniemi [5] a total

dominating set if each vertex in V (G) is adjacent to some vertex of D. The total

domination number γt(G) equals the minimum cardinality of a total dominating set

in G. We note that this parameter is only defined for graphs without isolated vertices.

Total domination is very well studied in the literature. For more details on total

domination, the reader is referred to the two domination books by Haynes, Hedetniemi

and Slater [8, 9], the survey article on total domination by Henning [10] and the book

on total domination by Henning and Yeo [13].

A signed total Roman dominating function (STRDF) on a graph G is defined in [15] as

a function f : V (G)→ {−1, 1, 2} having the property that f(N(v)) =
∑

x∈N(v) f(x) ≥
1 for each v ∈ V (G) and if f(u) = −1, then the vertex u must have a neighbor w

with f(w) = 2. The weight of a signed total Roman dominating function is the value∑
u∈V (G) f(u). The signed total Roman domination number γstR(G) is the minimum

weight of a signed total Roman dominating function on G.

A signed total Italian dominating function (STIDF) of a graph G is defined in [17]

as a function f : V (G) → {−1, 1, 2} having the property that (i) f(N(v)) ≥ 1 for

each v ∈ V (G) and (ii) every vertex u for which f(u) = −1 is adjacent to a vertex v

for which f(v) = 2 or adjacent to two vertices w and z with f(w) = f(z) = 1. The

weight of an STIDF f is the value
∑

v∈V (G) f(v). The signed total Italian domination

number of G, denoted by γstI(G), is the minimum weight of an STIDF in G.

A weak signed total Italian dominating function (WSTIDF) of a graph G is defined

as a function f : V (G) → {−1, 1, 2} having the property that f(N(v)) ≥ 1 for each

v ∈ V (G). The weight of a WSTIDF f is ω(f) =
∑

v∈V (G) f(v). The weak signed

total Italian domination number of G, denoted by γwstI(G), is the minimum weight

of a WSTIDF in G. A γwstI(G)-function is a WSTIDF of weight γwstI(G). For a

WSTIDF f on G, let Vi = {v ∈ V (G) : f(v) = i} for i = −1, 1, 2. A WSTIDF f can

be represented by the ordered partition f = (V−1, V1, V2).

The signed total Roman, signed total Italian and weak signed total Italian domination

numbers are well-defined for graphs G without isolated vertices, since the function

f : V (G) → {−1, 1, 2} with f(x) = 1 for each x ∈ V (G) is an STRDF, an STIDF

as well as a WSTIDF. Thus we assume throughout this paper that δ(G) ≥ 1. The

definitions lead to γwstI(G) ≤ γstI(G) ≤ γstR(G) ≤ n(G). Therefore each lower

bound of γwstI(G) is also a lower bound of γstI(G) and γstR(G).

In this paper we continue the study of signed (total) Roman (Italian) domination

in graphs (see, for example, [1, 7, 11, 12, 14–16]). Our purpose in this work is to

initiate the study of the weak signed total Italian domination number. We present

basic properties and sharp bounds for the weak signed total Italian domination

number of a graph. In particular, we show that many lower bounds on γstI(G) and

on γstR(G) are also valid for γwstI(G). In addition, we prove γwstI(G) ≥ (8n−9m)/3

for connected graphs of order n and size m, and we characterize the graphs achieving



L. Volkmann 3

equality. Furthermore, we observe that the difference γstI(G) − γwstI(G) can be

arbitrarily large, and we determine the weak signed total Italian domination number

of some classes of graphs.

We make use of the following known results.

Proposition 1. [17] If n ≥ 2, then γstI(Kn) = 2 when n is even and γstI(Kn) = 3 when
n is odd.

Proposition 2. [17] If p, q ≥ 2 are integers, then γstI(Kp,q) = 2.

Proposition 3. [17] Let S(r, s) be the double star. If r, s ≥ 3, then γstI(S(r, s)) = 2.
In addition, γstI(S(1, s)) = 2 for s = 1 or s ≥ 3.

Proposition 4. [17] If Cn is a cycle of length n ≥ 3, then γstI(Cn) = n/2 when
n ≡ 0 (mod 4), γstI(Cn) = (n + 3)/2 when n ≡ 1, 3 (mod 4) and γstI(Cn) = (n + 6)/2 when
n ≡ 2 (mod 4).

Proposition 5. [15] Let Pn be a path of order n ≥ 3. Then γstR(Pn) = n/2 when
n ≡ 0 (mod 4) and γstR(Pn) = d(n+ 3)/2e otherwise.

2. Preliminary results and first bounds

In this section we present basic properties and some first bounds on the weak signed

total Italian domination number.

Observation 1. If f = (V−1, V1, V2) is a WSTIDF of a graph G of order n with δ(G) ≥ 1,
then the following holds.

(a) |V−1|+ |V1|+ |V2| = n.

(b) ω(f) = |V1|+ 2|V2| − |V−1|.

(c) V1 ∪ V2 is a total dominating set of G.

Proof. Since (a) and (b) are immediate, we only prove (c). By the definition, each

vertex of V−1 is adjacent to a vertex of V1 ∪ V2. Suppose that G[V1 ∪ V2] has an

isolated vertex v. As δ(G) ≥ 1, the vertex v is adjacent to a vertex in V−1 and all

its neighbors are in V−1. This leads to the contradiction f(N(v)) ≤ −1. Therefore

G[V1∪V2] does not contain an isolated vertex and hence V1∪V2 is a total dominating

set of G.

The proof of the next lower bound is identically with the proof of Proposition 3 in

[17] and is therefore omitted.
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Proposition 6. If G is graph of order n with δ(G) ≥ 1, then

γwstI(G) ≥ max{∆ + 1− n, δ(G) + 3− n}.

Proposition 7. If G is graph of order n with δ(G) ≥ 1, then γwstI(G) ≥ 2γt(G)− n.

Proof. Let f = (V−1, V1, V2) be a γwstI(G)-function. Then it follows from Observa-

tion 1 that

γwstI(G) = |V1|+2|V2|−|V−1| = 2|V1|+3|V2|−n ≥ 2|V1∪V2|−n ≥ 2γt(G)−n, (2.1)

and the desired inequality is proved.

Example 1. Let p ≥ 3 be an integer, and let v1, v2, . . . , vp be the vertex set of the
complete graph Kp. Now let H be the graph consisting of Kp and the p(p − 2) new vertices
w1

i , w
2
i , . . . , w

p−2
i for 1 ≤ i ≤ p such that vi is adjacent to the vertices w1

i , w
2
i , . . . , w

p−2
i

for 1 ≤ i ≤ p. Now define f : V (H) → {−1, 1, 2} by f(vi) = 1 for 1 ≤ i ≤ p and
f(x) = −1 otherwise. Then f is a WSTIDF on H of weight p − p(p − 2) = 3p − p2 and
thus γwstI(H) ≤ 3p − p2. In addition, we observe that γt(H) = p. Combining this with
Proposition 7, we obtain

3p− p2 = 2γt(H)− n(H) ≤ γwstI(H) ≤ 3p− p2

and thus γwstI(H) = 3p− p2 and γwstI(H) = 2γt(H)− n(H).

Example 1 shoes that Proposition 7 is sharp. Example 1 will also demonstrate that

the difference γstI(G)− γwstI(G) can be arbitrarily large.

Example 2. If f is an STIDF on the graph H of Example 1, then we show that f(vj) +∑p−2
i=1 f(wi

j) ≥ 4 − p for 1 ≤ j ≤ p. If f(wi
j) = −1 for an index 1 ≤ i ≤ p − 2, then

f(vj) = 2 and therefore f(vj) +
∑p−2

i=1 f(wi
j) ≥ 2 − (p − 2) = 4 − p. If f(wi

j) ≥ 1 for each
i ∈ {1, 2, . . . , p − 2}, then f(vj) +

∑p−2
i=1 f(wi

j) ≥ 1 + (p − 2) = p − 1 ≥ 4 − p. This leads
to
∑

x∈V (H) f(x) ≥ p(4 − p) = 4p − p2 and thus γstI(H) ≥ 4p − p2. Using the fact that

γwstI(H) = 3p− p2, we observe that γstI(H)− γwstI(H) ≥ 4p− p2 − (3p− p2) = p.

We present a further example which will show that the difference γstI(G)− γwstI(G)

can be arbitrarily large.

Example 3. Let p ≥ 2 be an integer, and let SP2p+1 be the spider with the central
vertex w, the neighbors u1, u2, . . . , up of w and the leaves vi adjacent to ui for 1 ≤ i ≤ p.
If f is a γstI(SP2p+1)-function, then we observe that f(ui) + f(vi) ≥ 1 for 1 ≤ i ≤ p and
f(ui) + f(vi) = 1 if and only if f(w) = 2. Therefore γstI(SP2p+1) ≥ p + 2, and in fact we
observe γstI(SP2p+1) = p+ 2.
On the other hand, the function g defined by g(vi) = −1, g(ui) = 1 for 1 ≤ i ≤ p and
g(w) = 2 is a WSTIDF on SP2p+1 of weight 2 and thus γwstI(SP2p+1) ≤ 2. In fact we have
γwstI(SP2p+1) = 2.
Consequently, we deduce that γstI(SP2p+1)− γwstI(SP2p+1) ≥ p+ 2− 2 = p.
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The proof of the next proposition is identically with the proof of Proposition 8 in [15]

and is therefore omitted.

Proposition 8. Let f = (V−1, V1, V2) be a WSTIDF of a graph G of order n, ∆ = ∆(G)
and δ = δ(G) ≥ 1. Then the following holds.

(a) (2∆− 1)|V2|+ (∆− 1)|V1| ≥ (δ + 1)|V−1|.

(b) (2∆ + δ)|V2|+ (∆ + δ)|V1| ≥ (δ + 1)n.

(c) (∆ + δ)ω(f) ≥ (δ −∆ + 2)n+ (δ −∆)|V2|.

(d) ω(f) ≥ (δ − 2∆ + 2)n/(2∆ + δ) + |V2|.

As an immediate consequence of Proposition 8 (c), we obtain a lower bound on the

weak signed total Italian domination number of regular graphs.

Corollary 1. If G is an r-regular graph of order n with r ≥ 1, then γwstI(G) ≥ dn/re.

Using Corollary 1 and the inequalities γwstI(G) ≤ γstI(G) ≤ γstR(G), we obtain the

next known bounds immediately.

Corollary 2. [15, 17] If G is an r-regular graph of order n with r ≥ 1, then γstR(G) ≥
γstI(G) ≥ dn/re.

In the case that G is not regular, Proposition 8 (c) and (d) lead to the following lower

bound.

Corollary 3. Let G be a graph of order n, maximum degree ∆ and minimum degree
δ ≥ 1. If δ < ∆, then

γwstI(G) ≥
⌈
−2∆ + 2δ + 3

2∆ + δ
n

⌉
.

Proof. Multiplying both sides of the inequality in Proposition 8 (d) by ∆ − δ and

adding the resulting inequality to the inequality in Proposition 8 (c), we obtain the

desired lower bound.

Corollary 3 leads to the next known results.

Corollary 4. [15, 17] Let G be a graph of order n, maximum degree ∆ and minimum
degree δ ≥ 1. If δ < ∆, then

γstR(G) ≥ γstI(G) ≥
⌈
−2∆ + 2δ + 3

2∆ + δ
n

⌉
.
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The examples in [15, 17] which show the sharpness of Corollary 4 yield to the sharpness

of Corollary 3.

Theorem 2. If G is a graph with δ(G) ≥ 2, then γwstI(G) = γstI(G).

Proof. Clearly, γwstI(G) ≤ γstI(G). Let now f be a γwstI(G)-function. Then∑
x∈N(v) f(x) ≥ 1 for each vertex v ∈ V (G). If f(u) = −1, then it follows from

d(u) ≥ 2 and
∑

x∈N(u) f(x) ≥ 1 that u is adjacent to a vertex v with f(v) = 2 or u

is adjacent to two vertices w and z with f(w) = f(z) = 1. Hence f is also an STIDF

on G and thus γstI(G) ≤ γwstI(G). This leads to γwstI(G) = γstI(G).

3. Special classes of graphs

In this section, we determine the weak signed total italian domination number for

special classes of graphs. Since γwstI(K2) = 2, Theorem 2 and Proposition 1 lead to

the first result in this section immediately.

Proposition 9. If n ≥ 2, then γwstI(Kn) = 2 when n is even and γwstI(Kn) = 3 when
n is odd.

For even n, Proposition 9 shows that Proposition 6 is sharp.

Proposition 10. If n ≥ 3, then γwstI(K1,n−1) = 2.

Proof. Let G = K1,n−1, and let f be a γwstI(G)-function. If w is the central vertex

of the star G, then clearly f(w) ≥ 1. This implies γwstI(G) = f(w) + f(N(w)) ≥
1 + 1 = 2.

Now let v1, v2, . . . , nn−1 be the neighbors of w. If n is even, then define g by g(w) =

g(v1) = g(v2) = . . . = g(vn/2) = 1 and g(vn/2+1) = g(vn/2+2) = . . . = g(vn−1) = −1.

Then g(N(w)) = n
2 − (n

2 − 1) = 1 and hence g is a WSTIDF on G of weight 2 and

thus γwstI(G) ≤ 2. If n is odd, then define g by g(v1) = 2, g(w) = g(v2) = g(v3) =

. . . = g(v(n−1)/2) = 1 and g(v(n+1)/2) = g(v(n+3)/2) = . . . = g(vn−1) = −1. Then

g(N(w)) = 2 + n−1
2 −1− n−1

2 = 1. Therefore g is a WSTIDF on G of weight 2 and so

γwstI(G) ≤ 2. In both cases we obtain γwstI(G) = 2, and the proof is complete.

Theorem 2 and Proposition 2 yield to the next result immediately.

Proposition 11. If p, q ≥ 2 are integers, then γwstI(Kp,q) = 2.

Proposition 12. If S(r, s) is the double star, then γwstI(S(r, s)) = 2.
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Proof. Let u and v be two adjacent vertices of S(r, s) such that u is adjacent to r

leaves and v is adjacent to s leaves. If f is a γwstI(S(r, s))-function, then the definition

implies γwstI(S(r, s)) = ω(f) = f(N(u)) + f(N(v)) ≥ 2.

Assume, without loss of generality, that r ≤ s. If r ≥ 3, then if follows from Propo-

sition 3 that γwstI(S(r, s)) ≤ γstI(S(r, s)) = 2 and thus γwstI(S(r, s)) = 2 in this

case.

Assume next that r = 2 and let u be adjacent to the leaves x and y, and let v be

adjacent to the leaves w1, w2, . . . , ws. If s = 2q is even, then define g by g(u) =

g(v) = g(x) = g(w1) = g(w2) = . . . = g(wq) = 1 and g(y) = g(wq+1) = g(wq+2) =

. . .− g(w2q) = −1. Then g is a WSTIDF on S(2, s) of weight q+ 3− (q+ 1) = 2 and

so γwstI(S(2, s)) ≤ 2. If s = 2q + 1 is odd, then define g by g(w1) = 2, g(u) = g(v) =

g(x) = g(w2) = g(w3) = . . . = g(wq) = 1 and g(y) = g(wq+1) = g(wq+2) = . . . −
g(w2q+1) = −1. Then g is a WSTIDF on S(2, s) of weight 2+3+(q−1)−(q+1)−1 = 2

and so γwstI(S(2, s)) ≤ 2. This leads to γwstI(S(r, s)) = 2 in both cases.

Finally, assume that r = 1. If s = 1 or s ≥ 3, then Proposition 3 yiels the desired

result. If s = 2, then let u be adjacent to the leaf x and v be adjacent to the leaves

w and z. Define g by g(v) = 2, g(u) = g(w) = 1 and g(x) = g(z) = −1. Obviously, g

is a WSTIDF on S(1, 2) of weight 2 and consequently γwstI(S(1, 2)) = 2.

We obtain the weak signed total Italian domination number of cycles from Theorem

2 and Proposition 4.

Proposition 13. If Cn is a cycle of length n ≥ 3, then γwstI(Cn) = n/2 when n ≡
0 (mod 4), γwstI(Cn) = (n + 3)/2 when n ≡ 1, 3 (mod 4) and γwstI(Cn) = (n + 6)/2 when
n ≡ 2 (mod 4).

The next lemma is easy to prove but useful.

Lemma 1. Let G be a graph without isolated vertices, and let f be a WSTIDF on G. If
v1v2v3v4 is a path of G with d(v2) = d(v3) = 2, then f(v1) + f(v2) + f(v3) + f(v4) ≥ 2.

Proof. Since f is a WSTIDF on G and d(v2) = d(v3) = 2, we observe that f(v1) +

f(v2) + f(v3) + f(v4) = f(N(v2)) + f(N(v3)) ≥ 2.

Proposition 14. Let Pn be a path of order n ≥ 4. Then γwstI(Pn) = n/2 when
n ≡ 0 (mod 4) and γwstI(Pn) = (n+ 2)/2 when n ≡ 2 (mod 4), γwstI(Pn) = (n+ 3)/2 when
n ≡ 3 (mod 4), γwstI(Pn) = (n+ 1)/2 when 9 ≤ n ≡ 1 (mod 4) and γwstI(P5) = 2.

Proof. Let Pn = v1v2 . . . vn and let f be a γwstI(Pn)-function.

Since f(v2) ≥ 1 and f(N(v2)) ≥ 1, we deduce that A = f(v1) + f(v2) + f(v3) ≥ 2.

Analogously we have B = f(vn) + f(vn−1) + f(vn−2) ≥ 2.
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Assume first that n ≡ 0 (mod 4). Let n = 4t for an integer t ≥ 1. Using Lemma 1, we

obtain

γwstI(Pn) = γwstI(P4t) =

t−1∑
i=0

(f(v4i+1) + f(v4i+2) + f(v4i+3) + f(v4i+4)) ≥ 2t =
n

2
.

On the other hand define g by g(v4i+1) = g(v4i+4) = −1 and g(v4i+2) = g(v4i+3) = 2

for 0 ≤ i ≤ t−1. Then g is a WSTIDF on Pn of weight 2t, and therefore γwstI(Pn) =

n/2 in this case.

Assume second that n ≡ 2 (mod 4). Let n = 4t+2 for an integer t ≥ 1. Using Lemma

1, we obtain

γwstI(Pn) = A+B +

t−1∑
i=1

(f(v4i) + f(v4i+1) + f(v4i+2) + f(v4i+3))

≥ 2 + 2 + 2(t− 1) = 2t+ 2 =
n+ 2

2
.

On the other hand define g by g(v4i) = g(v4i−1) = 2 for 1 ≤ i ≤ t, g(v4i+1) =

g(v4i+2) = −1 for 1 ≤ i ≤ t − 1, g(v1) = g(v4t+2) = −1 and g(v2) = g(v4t+1) = 1.

Then g is a WSTIDF on Pn of weight 2t+ 2, and therefore γwstI(Pn) = (n+ 2)/2 in

this case.

Assume third that n ≡ 3 (mod 4). Let n = 4t + 3 for an integer t ≥ 1. Assume

next that f(v4) = −1. It follows that f(v2) = 2. If f(v3) = 2, then A = f(v1) +

f(v2) + f(v3) ≥ 3, if f(v3) = 1, then f(v1) ≥ 1 and so A ≥ 4, and if f(v3) = −1 then

f(v1) = 2 and thus A ≥ 3. Therefore Lemma 1 implies

γwstI(Pn) = A+

t∑
i=1

(f(v4i) + f(v4i+1) + f(v4i+2) + f(v4i+3)) ≥ 3 + 2t =
n+ 3

2
.

Let now f(v4) ≥ 1. Then A+ f(v4) ≥ 3, and we obtain

γwstI(Pn) = A+ f(v4) +

t−1∑
i=1

(f(v4i+1) + f(v4i+2) + f(v4i+3) + f(v4i+4)) +B

≥ 3 + 2(t− 1) + 2 = 2t+ 3 =
n+ 2

2
.

Conversely, Proposition 5 implies γwstI(Pn) ≤ γstR(Pn) = (n + 3)/2 and thus

γwstI(Pn) = (n+ 3)/2 when n ≡ 3 (mod 4).

Finally, assume that 9 ≤ n ≡ 1 (mod 4). Let n = 4t + 1 for an integer t ≥ 2. If

f(v5) ≥ 1, then f(v1)+f(v2)+f(v3)+f(v4)+f(v5) ≥ f(N(v2))+f(N(v3))+f(v5) ≥ 3

and thus

γwstI(Pn) =

5∑
i=1

f(vi) +

t−1∑
i=1

(f(v4i+2) + f(v4i+3) + f(v4i+4) + f(v4i+5))

≥ 3 + 2(t− 1) = 2t+ 1 =
n+ 1

2
.
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Let now f(v5) = −1. This leads to f(v3) = f(v7) = 2. If f(v4) = 2, then again

f(v1) + f(v2) + f(v3) + f(v4) + f(v5) ≥ 3 and we arrive at γwstI(Pn) ≥ (n+ 1)/2 as

in the last case. If f(v4) = −1, then we see that f(v2) = f(v6) = 2. This leads to∑7
i=1 f(vi) ≥ 5. Since f(v4t) + f(v4t+1) ≥ 0, we deduce that

γwstI(Pn) =

7∑
i=1

f(vi) +

t−1∑
i=2

(f(v4i) + f(v4i+1) + f(v4i+2) + f(v4i+3)) + f(v4t) + f(v4t+1)

≥ 5 + 2(t− 2) = 2t+ 1 =
n+ 1

2
.

If f(v4) = 1, then we observe f(v6) ≥ 1. Since f(v2) ≥ 1, we again have
∑7

i=1 f(vi) ≥
5, and hence we deduce γwstI(Pn) ≥ (n+ 1)/2 as in the last case.

On the other hand define g by g(v4i) = g(v4i+3) = 2 and g(v4i+1) = g(v4i+2) = −1

for 1 ≤ i ≤ t− 1, g(v1) = g(v4t+1) = −1, g(v2) = 1 and g(v3) = g(v4t) = 2. Then g is

a WSTIDF on Pn of weight 2t+ 1, and therefore γwstI(Pn) = (n+ 1)/2 in this case.

Clearly, γwstI(P5) ≥ A+f(v4)+f(v5) ≥ 2 and thus γwstI(P5) ≥ 2. Conversely, define

g by g(v1) = g(v5) = −1, g(v2) = g(v4) = 1 and g(v3) = 2. Then g is a WSTIDF on

P5 of weight 2, and therefore γwstI(P5) = 2.

Proposition 15. If G = Kn1,n2,....,np is a complete p-partite graph with n1 ≤ n2 ≤
. . . ≤ np, p ≥ 3 and np ≥ 2, then γwstI(G) = 2.

Proof. Let X1, X2, . . . , Xp be the partite sets of G with |Xi| = ni for 1 ≤ i ≤ p, and

let f be a γwstI(G)-function. If we suppose that f(Xi) ≤ 0 for each i ∈ {1, 2, . . . , p},
then we obtain the contradiction f(N(v)) =

∑p
i=2 f(Xi) ≤ 0 when v ∈ X1. Hence

there exists a partite set, say X1, with f(X1) ≥ 1. If v ∈ X1, then we deduce that

γwstI(G) = f(X1) + f(N(v)) ≥ 2.

If |Xi| = |{v1, v2, . . . , vs}| ≥ 2, then we show next that we can define a function

g : Xi → {−1, 1, 2} with g(Xi) = 0 or g(Xi) = 1. Let first s = 2k be even. If we

define g by g(v1) = 2, g(v2) = g(v3) = . . . = g(vk) = 1 and g(vk+1) = g(vk+2) =

. . . = g(v2k) = −1, then g(Xi) = 1. If we define g by g(v1) = g(v2) = . . . = g(vk) = 1

and g(vk+1) = g(vk+2) = . . . = g(v2k) = −1, then g(Xi) = 0. Let second s = 2k + 1

be odd. If we define g by g(v1) = g(v2) = . . . = g(vk+1) = 1 and g(vk+2) =

g(vk+3) = . . . = g(v2k+1) = −1, then g(Xi) = 1. If we define g by g(v1) = 2,

g(v2) = g(v3) = . . . = g(vk) = 1 and g(vk+1) = g(vk+2) = . . . = g(v2k+1) = −1, then

g(Xi) = 0.

Now assume that n1 ≥ 2. Define g such that g(X1) = g(X2) = 1 and g(Xi) = 0

for 3 ≤ i ≤ p. We observe that g(N(w)) = 1 for w ∈ X1 ∪ X2 and g(N(w)) = 2

for w ∈ X3 ∪ X4 ∪ . . . ∪ Xp. Therefore g is a WSTIDF on G of weight 2 and thus

γwstI(G) ≤ 2 and so γwstI(G) = 2 if n1 ≥ 2.
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Assume next that n1 = n2 = . . . = ns = 1 for an integer s ≥ 1 and

ns+1, ns+2, . . . , np ≥ 2. Let Xi = {xi} for 1 ≤ i ≤ s.
If s = 2k is even, then define g by g(x1) = g(x2) = . . . g(xk+1) = 1, g(xk+2) =

g(xk+3) = . . . = g(x2k) = −1 and g(Xi) = 0 for s + 1 ≤ i ≤ p. We note that

g(N(xi)) = 1 for 1 ≤ i ≤ k + 1, g(N(xi)) = 3 for k + 2 ≤ i ≤ 2k and g(N(x)) = 2

for x ∈ Xs+1 ∪ Xs+2 ∪ . . . ∪ Xp. Hence g is a WSTIDF on G of weight 2 and thus

γwstI(G) ≤ 2 and so γwstI(G) = 2 in this case.

If s = 2k + 1 is odd, then define g by g(x1) = g(x2) = . . . g(xk+1) = 1, g(xk+2) =

g(xk+3) = . . . = g(x2k+1) = −1, g(X2k+2) = 1 and g(Xi) = 0 for s + 2 ≤ i ≤ p.

We note that g(N(xi)) = 1 for 1 ≤ i ≤ k + 1, g(N(xi)) = 3 for k + 2 ≤ i ≤ 2k + 1,

g(N(x)) = 1 for x ∈ X2k+2 and g(N(x)) = 2 for x ∈ Xs+2 ∪Xs+3 ∪ . . . ∪Xp. Hence

g is a WSTIDF on G of weight 2 and thus γwstI(G) ≤ 2 and so γwstI(G) = 2 in the

last case.

Theorem 2 shows that Proposition 15 is also valid for the signed total Italian domi-

nation number.

Corollary 5. If G = Kn1,n2,....,np is a complete p-partite graph with n1 ≤ n2 ≤ . . . ≤ np,
p ≥ 3 and np ≥ 2, then γstI(G) = 2.

4. Further lower bounds

Theorem 3. Let T be a tree of order n ≥ 4. If T is not a star, then

γwstI(T ) ≥ ∆(T ) + 4− n.

Proof. Let f be a γwstI(T )-function, and let v be a vertex of maximum degree

∆ = ∆(T ). If f(v) ≥ 2, then

γwstI(T ) = f(v) + f(N(v)) +
∑

x∈V (T )\N [v]

f(x) ≥ 2 + 1 + (∆ + 1− n) = ∆ + 4− n.

If f(v) = −1, then v has a neighbor u with f(u) ≥ 1. As T is a tree, u has a neighbor

w 6∈ N [v] with f(w) = 2 or u has two neighbors a, b 6∈ N [v] with f(a) = f(b) = 1.

This leads to

γwstI(T ) = f(v) + f(N(v)) + f(w) +
∑

x∈V (T )\(N [v]∪{w})

f(x)

≥ −1 + 1 + 2 + (∆ + 2− n) = ∆ + 4− n

or

γwstI(T ) = f(v) + f(N(v)) + f(a) + f(b) +
∑

x∈V (T )\(N [v]∪{a,b})

f(x)

≥ −1 + 1 + 1 + 1 + (∆ + 3− n) = ∆ + 5− n.
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Let now f(v) = 1. Since T is not a star, there exists a vertex w 6∈ N [v] adjacent to a

neighbor u of v. If f(w) ≥ 1, then it follows that

γwstI(T ) = f(v) + f(N(v)) + f(w) +
∑

x∈V (T )\(N [v]∪{w})

f(x)

≥ 1 + 1 + 1 + (∆ + 2− n) = ∆ + 5− n.

However, if f(w) = −1, then u has a further neighbor z 6∈ (N [v]∪{w}) with f(z) ≥ 1,

and we obtain again γwstI(T ) ≥ ∆ + 5− n.

If T is a star, then Proposition 10 inplies γwstI(T ) = 2 = ∆(T ) + 3− n(T ). The next

example will demonstrate that Theorem 3 is sharp.

Example 4. Let T3p be the wounded spider by subdividing p of the edges of the star
K1,2p−1 for p ≥ 2. Let w be the center of the star, v1, v2, . . . , vp be the vertices of degree
two, ui be the neighbor of vi for 1 ≤ i ≤ p and y1, y2, . . . , yp−1 be the leaves adjacent to
w. Define the function f by f(w) = 2, f(v1) = f(v2) = . . . = f(vp) = 1 and f(x) = −1
otherwise. Then f is a WSTIDF on T3p of weight 3 − p = ∆(T3p) + 4 − n(T3p). Therefore
γwstI(T3p) ≤ ∆(T3p) + 4− n(T3p) and thus γwstI(T3p) = ∆(T3p) + 4− n(T3p) by Theorem 3.

For p ≥ 2, let T3p be the wounded spider of Example 4. Let T = {T3p | p ≥ 2}.

For a subset S ⊆ V (G), we let dS(v) denote the number of vertices in S that are

adjacent to the vertex v. For disjoint subsets U and W of vertices, we let [U,W ]

denote the set of edges between U and W . Now let f = (V−1, V1, V2) be a WSTIDF.

For notational convenience, we let V12 = V1∪V2, |V12| = n12, |V1| = n1 and |V2| = n2.

Furthermore, let |V−1| = n−1 and so n−1 = n−n12. Let G12 = G[V12] be the subgraph

induced by V12 and let G12 have size m12. For i = −1, 1, 2, if Vi 6= ∅, let Gi = G[Vi] be

the subgraph induced by Vi and let Gi have size mi. Hence m12 = m1+m2+|[V1, V2]|.

Theorem 4. If G is a connected graph of order n ≥ 4 and size m, then

γwstI(G) ≥ 8n− 9m

3
,

with equality if and only if T ∈ T .

Proof. Let f = (V−1, V1, V2) be a γwstI(G)-function. Since each vertex of V−1 has

at least one neighbor in V1 ∪ V2, we observe that

|V−1| ≤ |[V−1, V1 ∪ V2]| =
∑
v∈V1

dV−1
(v) +

∑
v∈V2

dV−1
(v).
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For each v ∈ V1 ∪ V2, we have 1 ≤ f(N(v)) = 2dV2
(v) + dV1

(v) − dV−1
(v) and so

dV−1(v) ≤ 2dV2(v) + dV1(v)− 1. Hence we obtain

n−1 = |V−1| ≤
∑
v∈V1

dV−1
(v) +

∑
v∈V2

dV−1
(v)

≤
∑
v∈V1

(2dV2
(v) + dV1

(v)− 1) +
∑
v∈V2

(2dV2
(v) + dV1

(v)− 1)

= 2|[V1, V2]|+ 2m1 − n1 + 4m2 + |[V1, V2]| − n2
= 4m12 − 4m1 − 4|[V1, V2]|+ 2m1 + 3|[V1, V2]| − n1 − n2
= 4m12 − 2m1 − |[V1, V2]| − n1 − n2

= 4m12 +
1

2
m12 −

1

2
m1 −

1

2
m2 −

1

2
|[V1, V2]| − 2m1 − |[V1, V2]| − n1 − n2

≤ 9

2
m12 −

5

2
m1 −

3

2
|[V1, V2]| − n1 − n2 (4.1)

and so

m12 ≥
2

9

(
n−1 + n1 + n2 +

5

2
m1 +

3

2
|[V1, V2]|

)
.

Hence we deduce that

m ≥ m12 + |[V−1, V12]| ≥ m12 + n−1

≥ 2

9

(
11

2
n−1 + n1 + n2 +

5

2
m1 +

3

2
|[V1, V2]|

)
=

2

9

(
11

2
n− 9

2
n12 +

5

2
m1 +

3

2
|[V1, V2]|

)
. (4.2)

This yields

n12 ≥
11

9
n−m+

1

9
(5m1 + 3|[V1, V2]|)

and thus

γwstI(G) = 2n2 + n1 − n−1 = 3n2 + 2n1 − n = 3n12 − n− n1

≥ 11

3
n− 3m− n+

1

3
(5m1 + 3|[V1, V ]− 3n1)

=
8n− 9m

3
+

1

3
(5m1 + 3|[V1, V2]| − 3n1) .

Let φ(n1) = 5m1 + 3|[V1, V2]| − 3n1. It suffices to show that φ(n1) ≥ 0, since then

γwstI(G) ≥ (8n− 9m)/3, which is the desired bound. If n1 = 0, then φ(n1) = 0, and

we are done. Assume now that n1 ≥ 1. Let H1, H2, . . . ,Ht be the components of

the induced subgraph G[V1] of order h1, h2, . . . , ht and size p1, p2, . . . , pt. Since G is

connected, each component Hi contains a vertex adjacent to a vertex of V2 or to a

vertex of V−1 for 1 ≤ i ≤ t. Assume that H1, H2, . . . ,Hs are the components which
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does not contain a vertex adjacent to a vertex of V2 and that Hs+1, Hs+2, . . . ,Ht

are the components which contain a vertex adjacent to a vertex in V2. Let n11 =

h1 + h2 + . . . + hs, n
2
1 = n1 − n11, m1

1 = p1 + p2 + . . . + ps and m2
1 = m1 −m1

1. We

observe that hi ≥ 3 for 1 ≤ i ≤ s and thus n11 ≥ 3s. This leads to

m1
1 = p1 + p2 + . . .+ ps ≥ (h1 − 1) + (h2 − 1) + . . .+ (hs − 1) = n11 − s ≥

2

3
n11. (4.3)

In addition, we observe that

m2
1 + |[V1, V2]| ≥ (hs+1 − 1) + (hs+2 − 1) + . . .+ (ht − 1) + (t− s) = n21. (4.4)

Combining the inequalities (4.3) and (4.4), we obtain

φ(n1) = 5m1 + 3|[V1, V2]| − 3n1

= 5m1
1 + 5m2

1 + 3|[V1, V2]| − 3n11 − 3n21

≥
(

5m1
1 −

10

3
n11

)
+
(
3m2

1 + 3|[V1, V2]| − 3n21
)
≥ 0, (4.5)

and the desired bound is proved,

Assume now that γwstI(G) = 8n−9m
3 . Then all inequalities above must be equalities.

In particular, m2 = 0 (according to (4.1)), m−1 = 0 (according to (4.2)), n11 = 0,

m2
1 = 0 (according to (4.5)), m1

1 = 0 and so m1 = 0 and n21 = n1. In addition,

(4.2) yields |[V−1, V12]| = n−1 and hence each vertex of V−1 is a leaf of G. Now the

condition φ(n1) = 5m1 + 3|[V1, V2]| − 3n1 = 0, leads to |[V1, V2]| = n1. Since G is

connected, G12 is connected and thus m12 = |[V1, V2]| ≥ n1 + n2 − 1 ≥ n1 + 1 when

n2 ≥ 2. Consequently, n2 = 1. The condition f(N(v)) ≥ 1 for each vetex v leads

to |[V−1, V1]| ≤ n1 and |[V−1, V2]| ≤ n1 − 1. Using the identity n−1 = 3|[V1, V2]| −
n1 − n2 = 3n1 − n1 − 1 = 2n1 − 1 (see (4.1)), it follows that |[V−1, V1]| = n1 and

|[V−1, V2]| = n1 − 1. All together, we note that G ∈ T with p = n1.

Conversely, it is easy to see that γwstI(T3p) =
8n(T3p)−9m(T3p)

3 = 24p−37p+9
3 = 3−p.
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