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Abstract: Consider a graph Ω = (V, E) that is simple, and let ϑ1 and ϑ2 be elements

of V(Ω) suth that ϑ1ϑ2 ∈ E(Ω). Then, ϑ1 is said to strongly dominate ϑ2 if deg (ϑ1) ≥
deg (ϑ2). A set K of V(Ω) is identified as a strong dominating set (sd-set) if every vertex
ϑ2 outside of K is strongly dominated by at least one node ϑ1 within K. The concept of

strong domination integrity for Ω is defined as S̃DI(Ω) = minK⊆V{|K|+m(Ω−K) : K

is a sd-set of Ω}. Similarly, the set K ⊆ V(Ω) is identified as a geodetic dominating set
(gd-set) if K is both geodetic and dominating set. The geodetic domination integrity

of Ω is defined as G̃DI(Ω) = min{|K| + m(Ω −K) : K is a gd-set of Ω}. This paper
delves into the study of strong and geodetic domination integrity sets, as well as the
impact of node removal on these sets. Additionally, it introduces the concepts of S̃DI-
Excellent and G̃DI-Excellent graphs, provides examples, and derives theorems from
these graphs.
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1. Introduction

Graph theory stands as a crucial mathematical concept with broad use in various

fields, such as Operations Research, Physics, Chemistry, Biology, Electrical Engineer-

ing, Sociology, Architecture, and many others. A key feature of a communication

network is its ability to function well even when some nodes or connections are not

working. The vulnerability of a network, starting with its connectivity, offers numer-

ical assessments of how well the network can withstand difficult situations. These

assessments aim to explain how the network behaves when a part of its nodes or

connections is removed. In this scenario, domination measures how connected a cho-

sen group of nodes remains with the rest of the network. A lower domination value

suggests a higher potential for efficient communication among most nodes, with only

a few exceptions. Examining the effects of removing a node or a dominating group

from a network is particularly interesting, as it shows that the network experiences

greater harm when its critical components are impacted.

Ore and Berge [26] laid the groundwork for understanding domination in graphs, while

Cockayne and Hedetniemi [12] expanded on this by introducing the notions of dom-

ination number and independent domination number. Sampathkumar and Pushpa

Latha [28] further developed the concept of strong (weak) domination. Hattingh et al.

provided an in-depth analysis of the strong domination number in [19, 20, 27]. The

notion of the connected domination number in graph theory was examined by Sam-

pathkumar and Walikar [29]. Somasundaram et al. [31, 32] examined the concepts

of domination within fuzzy graphs by employing effective arcs. Within the realm of

network design, the concepts of geodesic and domination have gained recognition and

have been applied in a variety of contexts. It’s evident that in most graphs, a geodesic

set does not dominate, and similarly, a dominating set does not necessarily have a

geodesic. Harary et al. [7, 8, 17] defined the geodetic number for graphs, while San-

thakumaran and John [30] and Atici [1] provided formal definitions for the geodetic

number of graphs with edges. Mariano and Canoy [25] conducted further research on

edge geodetic coverings for graphs. Talebiy and Rashmanlouz presented the notions

of dominating set, perfect dominating set, minimal perfect dominating set, and inde-

pendent dominating set within the context of vague graphs [35, 36]. The concept of

graph integrity, which has been extensively explored, was first introduced by Bare-

foot et al. [4]. Sundareswaran and Swaminathan [33, 34], who defined domination

integrity in graphs. The notion of connected domination integrity was examined by

Harisaran et al. [18]. In 2022, Balaraman et al. [16] delved into the study of strong

domination integrity and introduced the concepts of geodetic domination integrity,

expanding on this research [3, 15].

2. Basic Definitions

Let Ω = (V, E) be a graph with node set V(Ω) and the edge set E(Ω). The number

of nodes within V(Ω) is referred to as the graph’s order and is denoted by O(Ω),
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whereas the number of edges within E(Ω) is referred to as the graph’s size. A graph is

considered connected if there exists a path between any two distinct nodes within Ω.

A maximal connected subgraph of Ω is identified as a component of Ω. The distance,

denoted as d(ϑ1, ϑ2), between two nodes ϑ1 and ϑ2 in V(Ω), is defined as the length

of the shortest path (geodesic) between ϑ1 and ϑ2 within Ω. The length of the longest

geodesic path, referred to as its diameter diam(Ω). The open neighborhood of a node

ϑ within Ω is defined as the set of all nodes adjacent to ϑ. Conversely, the closed

neighborhood of ϑ, denoted as N [ϑ], is defined as the set N(ϑ) ∪ {ϑ}. A subset

K ⊆ V(Ω) is identified as a dominating set (d-set) if for every node ϑ2 ∈ V −K, there

exists a node ϑ1 ∈ K such that ϑ2 is dominated by ϑ1. A d-set K ⊆ V(Ω) is minimal

if K−ϑ is not a d-set for any ϑ in K. The size of the smallest minimal d-set is known

as domination number γ(Ω).

Let ϑ1, ϑ2 ∈ V(Ω). Suppose ϑ1ϑ2 ∈ E(Ω), and deg(ϑ1) ≥ deg(ϑ2). In this case,

ϑ1 is said to strongly dominate ϑ2. A subset K ⊆ V(Ω) is referred to as a strong

dominating set (sd-set) if every node ϑ2 ∈ V − K is strongly dominated by some

ϑ1 ∈ K. A sd-set is minimal if K − {ϑ} is not a sd-set for each ϑ in K. The strong

domination number γs(Ω) is the smallest cardinality of a sd-set. A set K ⊆ V(Ω) is

considered a geodetic set if I[K] = V(Ω). The geodetic number g(Ω) is the smallest

possible cardinality of a geodetic set of Ω. A geodetic set K is minimal if no proper

subset of K is geodetic set of Ω. A set K ⊆ V(Ω) is geodetic dominating set (gd-set)

if K is both a geodetic and a dominating set of Ω. The geodetic domination number

γg(Ω), is the smallest possible cardinality of a gd-set.

3. Vulnerability parameters

The analysis of vulnerability can be approached from multiple perspectives within

the field of Graph Theory. It is essential to take into account specific factors to

evaluate the network’s vulnerability.

The variables involved in assessing vulnerability include:

1. Group of nodes or links that are broken: |K|, K ⊆ V(Ω)

2. Quantity of components still present: ω(Ω−K)

3. Largest order of components: m(Ω−K)

Various graph theorists have devised unique metrics to measure vulnerability based

on these variables.

• Connectivity : κ(Ω) = min{|K| : K ⊆ V(Ω), ω(Ω−K) > 1}.

• Toughness [5, 10]: t(Ω) = min{ |K|
ω(Ω−K) : K ⊆ V(Ω), ω(Ω−K) > 1}.

• Scattering number [21]: sc(Ω) = max{ω(Ω−K)− |K| : K ⊆ V(Ω), ω(Ω−K) >

1}.

• Integrity [4]: I(Ω) = min{|K|+m(Ω−K) : K ⊆ V(Ω)}.
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• Edge-Integrity [2]: I ′(Ω) = min{|K|+m(Ω−K) : K ⊆ E(Ω)}.

• Tenacity [13, 14]: T (Ω) = min{ |K|+m(Ω−K)
ω(Ω−K) : K ⊆ V(Ω), ω(Ω−K) > 1}.

• Weak Integrity [22]: Iw(Ω) = min{|K| + me(Ω − K) : K ⊆ V(Ω)}, where

me(Ω−K) denotes the number of edges of a largest component of Ω−K.

• Rupture degree [23, 24]: r(Ω) = max{ω(Ω − K) − |K| − m(Ω − K) : K ⊆
V(Ω), ω(Ω−K) > 1}.

• Domination Integrity [33]: DI(Ω) = min{|K|+m(Ω−K) : K ⊆ V(Ω) and K

is a d-set of Ω}.

• Strong domination integrity [16]: S̃DI(Ω) = min{|K| + m(Ω − K) : K is a

sd-set of Ω}

• Geodetic domination integrity [3]: G̃DI(Ω) = min{|K| + m(Ω − K) : K is a

gd-set of Ω}.

4. The dynamics of strong and geodetic domination integrity:
An exploration of change and constancy

Fault tolerance plays a crucial role in the development of a network topology, referring

to the network’s ability to continue providing services despite the presence of malfunc-

tioning components. To assess the network’s performance in the face of a fault, one

may investigate the consequences of eliminating either an edge (for example, a link

failure) or a node (for instance, a processor malfunction) within the network graph,

in relation to the established fault tolerance criteria. This research delves into the

analysis of strong domination integrity sets and geodetic domination integrity sets.

Additionally, it examines the effect of node removal on the values of the strong and

geodetic domination integrity sets.

Definition 1. A subset K ⊆ V(Ω) is a Strong Domination Integrity set (S̃DI-set) of Ω

if S̃DI(Ω) = |K|+m(Ω−K).

Definition 2. The smallest cardinality of a minimal S̃DI-set is called S̃DI-set number

and is represented by SDI←−→(Ω). The maximum cardinality of a minimal S̃DI-set is known

as upper S̃DI-set number and is represented by
←−→
SDI(Ω).
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Remark 1.

• γs(Ω) ≤ SDI←−→(Ω) ≤
←−→
SDI(Ω).

• SDI←−→(Ω) =
←−→
SDI(Ω) = p iff Ω is totally disconnected.

• For a non-complete graph Ω, every S̃DI-set related to Ω forms a cut-set of Ω,

which means it has a cardinality of at least κ(Ω). Therefore, we can conclude

that SDI←−→(Ω) ≥ κ(Ω).

• SDI←−→(Kp) = 1 and
←−→
SDI(Kp) = p.

• For Kp,q, p ≥ q, SDI←−→(Kp,q) =
←−→
SDI(Kp,q) = q.

Definition 3. Consider a simple graph denoted as Ω. The node set V(Ω) can be divided
into three distinct subsets.
S̃DI

+
(Ω) = {ϑ ∈ V(Ω) : S̃DI(Ω− ϑ) > S̃DI(Ω)}

S̃DI
0
(Ω) = {ϑ ∈ V(Ω) : S̃DI(Ω− ϑ) = S̃DI(Ω)}

S̃DI
−

(Ω) = {ϑ ∈ V(Ω) : S̃DI(Ω− ϑ) < S̃DI(Ω)}.

Example 1. A simple graph Ω = (V, E) is given in Figure 1. Assume k ≥ 3. S̃DI(Ω) = 3.

S̃DI
0
(Ω) = {ϑi : 1 ≤ i ≤ k} ∪ {ζ2}, S̃DI

+
(Ω) = {ζ1} and S̃DI

−
(Ω) = {ζ3}.

Figure 1. Example of changing and unchanging of S̃DI(Ω)

Theorem 1. If ϑ is an isolate node of Ω, then ϑ ∈ S̃DI
−

(Ω).

Proof. Let ϑ be an isolate node, then ϑ ∈ I, where I is a sd-set of Ω. Let I be any

S̃DI-set of Ω. Let K = I − {ϑ}. Then K is a sd-set of Ω− ϑ. S̃DI(Ω− ϑ) ≤ |K|+
m(Ω−ϑ)−K) = |I|−1+m(Ω−I) = S̃DI(Ω)−1. Therefore, S̃DI(Ω−ϑ) < S̃DI(Ω).

Hence ϑ ∈ S̃DI
−

(Ω).

Remark 2. The converse is not true. Consider Ω = C4 is shown in the Figure 2.

S̃DI(Ω) = 3, S̃DI(Ω− ϑi) = 2, 1 ≤ i ≤ 4.
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Figure 2. The cycle graph C4

Theorem 2. Let ϑ ∈ V(Ω). If there is no S̃DI-set I within Ω that includes ϑ and for

which the set I − {ϑ} is a sd-set of Ω− ϑ, it follows that ϑ /∈ S̃DI
−

(Ω).

Proof. Assuming the hypothesis is valid, let K represent a S̃DI-set of Ω− ϑ. It is

evident that K ∪ {ϑ} constitutes a sd-set of Ω that includes ϑ. Given that K serves

as a sd-set for Ω− ϑ, it follows that K ∪ {ϑ} cannot be classified as a S̃DI-set of Ω.

Consequently,

S̃DI(Ω) < |K ∪ {ϑ}|+m(Ω− (K ∪ {ϑ}))
= |K|+ 1 +m((Ω− ϑ)−K)

= S̃DI(Ω− ϑ)− 1.

Therefore, S̃DI(Ω− ϑ) ≥ S̃DI(Ω). We have ϑ /∈ S̃DI
−

(Ω).

Theorem 3. If ϑ is not a member of any S̃DI-set within Ω, it follows that ϑ is an

element of S̃DI
0
(Ω).

Proof. Assume that ϑ is not a member of any S̃DI-set associated with Ω. Let K

represent a S̃DI-set of Ω− ϑ. Then K − {ϑ} is a dominating set of Ω. According to

the given hypothesis, the union K ∪ {ϑ} is not a S̃DI-set of Ω. Thus,

S̃DI(Ω) < |K ∪ {ϑ}|+m(Ω− (K ∪ {ϑ}))
< |K|+ 1 +m(Ω− ϑ)−K)

S̃DI(Ω)− 1 < S̃DI(Ω− ϑ)

S̃DI(Ω) ≤ S̃DI(Ω− ϑ) −→ (1)

Let I be a S̃DI-set of Ω. Then ϑ /∈ I. Therefore, I ⊆ V(Ω − ϑ) and I is a sd-set of

Ω− ϑ.

Case (i): Assume that Ω − I contains a unique component of maximum order K,

and let ϑ be an element of K. In this case, the union of the set I with the singleton

set {ϑ} forms a S̃DI-set within Ω, which leads to a contradiction.
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Case (ii) : Assume that Ω− I contains a minimum of two components of maximum

order. In this case, m((Ω− ϑ)− I) = m(Ω− I).

S̃DI(Ω) = |I|+m(Ω− I)

= |I|+m((Ω− ϑ)− (I − ϑ))

= |I|+m((Ω− ϑ)− I)

≥ S̃DI(Ω− ϑ).

Therefore, S̃DI(Ω) ≥ S̃DI(Ω− ϑ) −→ (2).

From (1) and (2), S̃DI(Ω) = S̃DI(Ω− ϑ). Hence ϑ ∈ S̃DI
0
(Ω).

Theorem 4. Assume ϑ ∈ S̃DI
+

(Ω). Let I represent a sd-set with the condition that

ϑ /∈ I. Under these circumstances, it follows that I cannot be classified as a S̃DI-set of Ω.

Proof. Assume I is a S̃DI-set. Then |I| + m(Ω − I) = S̃DI(Ω). Therefore, |I| +
m((Ω − ϑ) − I) ≤ |I| + m(Ω − I) = S̃DI(Ω). Thus, S̃DI(Ω − ϑ) ≤ S̃DI(Ω), a

contradiction.

Corollary 1. Let ϑ ∈ S̃DI
+

(Ω). Then ϑ is a member of every S̃DI-set of Ω.

Proof. Let us consider a S̃DI-set I with the condition that ϑ is not an element of

I. Under these circumstances, it follows that I also constitutes a sd-set of Ω, while

still excluding ϑ. According to Theorem 4, this implies that I cannot be classified as

a S̃DI-set of Ω, leading to a contradiction. Therefore, we conclude that ϑ must be

an element of every S̃DI-set of Ω.

Remark 3. Assume that I ⊂ V(Ω) and ϑ ∈ I. We have m((Ω− ϑ)− I) = m(Ω− I).

Theorem 5. |S̃DI
+

(Ω)| ≤ SDI←−→(Ω), where Ω is any graph.

Proof. Let I be any S̃DI-set of Ω. Let ϑ ∈ V − I. Then

S̃DI(Ω− ϑ) ≤ |I|+m((Ω− ϑ)− I) (since I is a sd− set of Ω− ϑ)

≤ |I|+m(Ω− I) = S̃DI(Ω).

Therefore, ϑ /∈ S̃DI
+

(Ω).

Thus, |S̃DI(Ω)| ≤ |I|, for any S̃DI-set I of Ω.

Hence |S̃DI
+

(Ω)| ≤ SDI←−→(Ω).
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Definition 4. Let K ⊆ V(Ω). Then K is a Geodetic Domination Integrity set (G̃DI-set)

if G̃DI(Ω) = |K|+m(Ω−K).

Definition 5. G̃DI-set number is defined as the minimum cardinality of a minimal G̃DI-

set and is denoted by GDI←−→(Ω). The upper G̃DI-set number is the maximum cardinality of

a minimal G̃DI-set and is denoted by
←−→
GDI(Ω).

Remark 4.

• γ(Ω) ≤ γg(Ω) ≤ GDI←−→(Ω) ≤
←−→
GDI(Ω).

• κ(Ω) ≤ GDI←−→(Ω) ≤
←−→
GDI(Ω).

• For Kp,q, p ≥ q ≥ 2, GDI←−→(Kp,q) =
←−→
GDI(Kp,q) = q.

Definition 6. The node set V(Ω) of Ω can be divided into the three sets.

G̃DI
+

(Ω) = {ϑ ∈ V(Ω) : G̃DI(Ω− ϑ) > G̃DI(Ω)}
G̃DI

0
(Ω) = {ϑ ∈ V(Ω) : G̃DI(Ω− ϑ) = G̃DI(Ω)}

G̃DI
−

(Ω) = {ϑ ∈ V(Ω) : G̃DI(Ω− ϑ) < G̃DI(Ω)}.

Example 2. Consider a graph Ω = (V, E) is shown in Figure 3. G̃DI(Ω) = 6. G̃DI
0
(Ω) =

{ϑi, ζi : 1 ≤ i ≤ 3}, G̃DI
+

(Ω) = {r} and G̃DI
−

(Ω) = {s}.

Figure 3. Illustration of changes in G̃DI(Ω)

Theorem 6. Any G̃DI− set of a connected graph Ω with O(Ω) = p contains the extreme
nodes of Ω.

Proof. Let us consider ϑ as an extreme node and K as a G̃DI-set of Ω. If it is the

case that ϑ does not belong to K, then K is not a geodetic set of Ω. As a result,

K cannot be recognized as a G̃DI-set of Ω. This situation presents a contradiction.

Hence, it can be inferred that every extreme node of Ω must be included in every

G̃DI-set of Ω.
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Corollary 2. Every terminal node of a connected graph Ω is a member of every G̃DI-set
of Ω.

Theorem 7. Let Ω = Kp is complete graph with O(Ω) = p then GDI←−→(Ω) =
←−→
GDI(Ω) = p.

Proof. In a complete graph Kp, each node is classified as an extreme node, which

means that the set of nodes V(Kp) constitutes the unique G̃DI-set of Ω. Consequently,

we have GDI←−→(Ω) =
←−→
GDI(Ω) = p.

Theorem 8. In a connected graph Ω with k extreme nodes, any G̃DI-set must contain
at least k elements.

Proof. Consider a connected graph Ω that contains k extreme nodes. According

to Theorem 6, every extreme node in Ω is included in every G̃DI-set of the graph.

Consequently, a G̃DI-set must contain at least k elements. This condition is satisfied

with equality in the case of a complete graph Kp.

Theorem 9. For a connected graph Ω, GDI←−→(Ω) =
←−→
GDI(Ω) = p if and only if Ω = Kp

Proof. Let Ω represent any connected graph with order p, where it holds that

GDI←−→(Ω) =
←−→
GDI(Ω) = p. Consider a G̃DI-set I consisting of p elements. If Ω is not

equal to Kp, it follows that there exist two vertices, ϑ1 and ϑ2, such that the distance

d(ϑ1, ϑ2) ≥ 2. Given the connectivity of Ω, there exists a geodesic path M connecting

ϑ1 and ϑ2. Consequently, there exists a vertex η along this geodesic path such that

η 6= ϑ1, ϑ2 and is adjacent to either ϑ1 or ϑ2. For the sake of argument, let us assume

that η is adjacent to ϑ1. Define K = V(Ω)−{η}. It follows that η ∈ I[ϑ1, ϑ2] ⊂ I[K]

and η ∈ N [ϑ1] ⊂ N [K]. Thus, K serves as a gd-set and also a G̃DI-set. Since

|K| = p − 1 < |I|, this leads to a contradiction. Conversely, if we let Ω = Kp, then

according to Theorem 7, we can conclude that GDI←−→(Ω) =
←−→
GDI(Ω) = p.

Theorem 10. For any connected graph Ω, the geodetic number g(Ω) = p if and only if
Ω = Kp[6]

Theorem 11. For any connected graph Ω with order p, GDI←−→(Ω) =
←−→
GDI(Ω) = p if and

only if g(Ω) = p

Proof. Consider a connected graph Ω with order p. If it holds that GDI←−→(Ω) =
←−→
GDI(Ω) = p, then according to Theorem 9, it follows that Ω must be isomorphic to the

complete graph Kp. In the case of a complete graph, the geodetic number is given by

g(Ω) = p. Conversely, if we have g(Ω) = p, then by Theorem 10, it can be concluded

that Ω is indeed Kp, which leads to the result that GDI←−→(Ω) =
←−→
GDI(Ω) = p.
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Theorem 12. Let Ω be a connected graph with a diameter of at most 3. Then no cut
node of Ω is included in any minimum gd-set of the graph Ω [9].

Theorem 13. Let Ω = T be a tree with p ≥ 3 nodes. Then GDI←−→(Ω) = p− 1 if and only
if Ω is a star.

Proof. Let Ω = T be a tree with p ≥ 3 and GDI←−→(Ω) = p − 1. If Ω is not a star, it

follows that diam(Ω) ≥ 3. As Ω is a tree, it must possess at least two terminal nodes,

denoted as ϑ1 and ϑ2.

Case (i): Assume diam(Ω) = 3. In this scenario, it is evident that Ω contains

precisely two cut nodes. According to Theorem 12, no cut node of Ω can be part of

any geodetic dominating set of Ω. Consequently, this implies that GDI←−→(Ω) ≤ p − 2,

leading to a contradiction.

Case (ii): In the case where the diameter of Ω = T exceeds 3, it follows that

there exist two nodes ϑ1 and ϑ2 within the vertex set V(Ω) such that the distance

d(ϑ1, ϑ2) is greater than 3. The geodesic connecting ϑ1 and ϑ2 can be represented

as ϑ1, η1, η2, . . . , ϑ2. Consequently, this geodesic path contains at least three internal

nodes. Given that η1 and η2 belong to the interval I[ϑ1, η3], with η1 being a neighbor

of ϑ1 and η2 being adjacent to η3, it follows that the set V(Ω)− {η1, η2} constitutes

a gd-set for Ω. If this set is classified as a G̃DI-set, it leads to the conclusion that

GDI←−→(Ω) ≤ p− 2, which presents a contradiction.

Thus, in both cases, it can be concluded that Ω must be a star. Conversely, if Ω is

indeed a star, specifically K1,p−1, then it holds that GDI←−→(Ω) = p− 1.

Theorem 14. Consider a connected graph Ω that includes a cut node denoted as ϑ. Let

K represent a G̃DI-set associated with Ω. It follows that each component of the graph Ω−ϑ
must contain at least one element from the set K.

Proof. Let ϑ represent a cut node within a connected graph Ω, and let K denote

a G̃DI-set associated with Ω. It follows that K includes its extreme nodes from Ω.

Conversely, assume there exists a component B of Ω − ϑ that does not contain any

nodes from K. Given that K encompasses its extreme nodes, it follows that B does

not contain any extreme nodes of Ω. Let us consider a node η ∈ V(B). Since K is a

G̃DI-set, there must exist a pair of nodes x, y ∈ K such that η ∈ I[x, y] and η ∈ N [K].

Denote the x − y geodesic in Ω as P : x = η0, η1, η2, . . . , ηn = y. Because ϑ is a cut

node of Ω, both the x− η subpath and the η− y subpath of P must include ϑ, which

implies that P cannot be a valid path. This leads to a contradiction. Therefore, it

can be concluded that every component of Ω − ϑ must contain at least one element

from K.
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5. S̃DI-excellent and G̃DI-excellent graphs

In this section we define and studied S̃DI-excellent (S̃DI-Ext) and G̃DI-excellent

(G̃DI-Ext) graphs with examples and theorems derived from S̃DI-excellent (S̃DI-

Ext) and G̃DI-excellent (G̃DI-Ext) graphs.

Definition 7. Let Ω = (V, E) be a graph. A node ϑ ∈ V(Ω) is a S̃DI-good node if it a

member of some S̃DI-set of Ω and ϑ is S̃DI-bad if ϑ is not a member of any S̃DI-set of Ω.

Example 3. Consider the Figure 4. In Ω1 all the nodes are S̃DI-good nodes, but in

Ω2 the nodes ϑ1, ϑ2, ϑ3, ϑ4, ζ4, ζ5 are S̃DI-good nodes and ζ1, ζ2, ζ3, ζ6, ζ7, ζ8 are S̃DI-bad
nodes.

Figure 4. S̃DI-good nodes, S̃DI-bad nodes

Definition 8. A graph Ω is said to be a S̃DI-Ext graph if every node of Ω is S̃DI-good
nodes.

Example 4. Consider the following Figure 5. Here Ω1 is γs-excellent and S̃DI-Ext graph.

Ω2 is not γs-excellent and not S̃DI-Ext. Ω3 is not γs-excellent but S̃DI-Ext graph.

Figure 5. Illustration of S̃DI-Ext graphs

Theorem 15. Every graph Ω can be considered an induced subgraph of a S̃DI-Ext graph.
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Proof. Consider the node set of Ω denoted as V(Ω) = {ϑ1, ϑ2, ϑ3, ..., ϑp}. We intro-

duce an additional set of nodes {ζ1, ζ2, ζ3, ..., ζp} to V(Ω). Each node ζi is connected

to ϑj and ζj for all j 6= i, where 1 ≤ j ≤ p. Let the resulting graph be represented as

K. Consequently, the S̃DI-sets are defined as {ϑi, ζi} for each i, where 1 ≤ j ≤ p. It

follows that K qualifies as an S̃DI-Ext graph. Thus, Ω is established as an induced

subgraph of K.

Proposition 1. Every graph with order p can be considered an induced subgraph of a
S̃DI-Ext graph that has an order of 2p.

Theorem 16. The cycle Ω = Cp is S̃DI-Ext graph.

Proof. Every γs-set qualifies as a S̃DI-set of Ω = Cp. Given that Cp is γs-excellent

for all values of p, it follows that Cp is also classified as a S̃DI-excellent graph.

Theorem 17. In the context of any S̃DI-Ext graph Ω, it can be stated that each pendant
node belongs to at least one S̃DI-set of Ω, while simultaneously, no pendant node is included
in every S̃DI-set of Ω.

Proof. Given that Ω is classified as a S̃DI-Ext graph, it follows that every node,

including each pendant node of Ω, is included in some S̃DI-set associated with Ω.

Let us denote a pendant node of Ω as ϑ, and assume that ϑ ∈ K, where K represents

a S̃DI-set of Ω. Define ζ as the support of ϑ. If it holds that ζ ∈ K, then the

equation |K − {ϑ}| + m(Ω − (K − {ϑ})) = |K| − 1 + m(Ω − K) < S̃DI(Ω) would

yield a contradiction. Consequently, we conclude that ζ /∈ K. We can then define a

new set K1 = K ∪ {ζ} − {ϑ}. It is evident that K1 constitutes a sd-set for Ω, and

it follows that m(Ω−K1) = m(Ω−K). Thus, K1 qualifies as an S̃DI-set of Ω that

does not include ϑ.

Theorem 18. Consider a tree K with an order of at least 3, and let ϑ represent a pendant
node of K that is situated within a S̃DI-set of K. Define ζ as the support associated with
ϑ. If the intersection of K and the neighborhood of ζ satisfies the condition |K ∩N(ζ)| ≥ 2,

it follows that there exists a S̃DI-set of K that is not independent.

Proof. Assume that the cardinality of the vertex set |V(K)| is at least 3. Let ϑ

represent a pendant node in the graph K, located within a S̃DI-set I of K. If the

set I is not independent, we can conclude our analysis at this point. On the other

hand, if I is independent, our assumptions imply that the intersection |I ∩N(ζ)| is at

least 2, where ζ denotes the support of the node ϑ (notably, since I is independent,

it follows that ζ /∈ I). We can choose an element t from the intersection I ∩ N(ζ),

ensuring that t 6= ϑ. We then define a new set I1 = (I − {ϑ}) ∪ {ζ}, which qualifies

as a S̃DI-set of K. This is valid because removing ϑ and adding ζ ensures that ϑ

remains a singleton in the complement. It is clear that I1 is not independent.
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Theorem 19. If K is an S̃DI-Ext tree. Then there exists an S̃DI-set I such that I is
not independent.

Proof. Without loss of generality, we can assert that |V(K)| ≥ 3. Let ϑ represent a

pendant node of the graph K, while ζ denotes its support. Given that |V(K)| ≥ 3,

it follows that there exists a node t that is adjacent to ζ. Since K is classified as

S̃DI-Ext, there exists a S̃DI-set I within K that includes the node t. It is important

to note that exactly one of the nodes ϑ or ζ is a member of the set I. If ζ is included

in I, it is evident that I cannot be independent. Conversely, if ϑ is part of I, then by

applying Theorem 18, we can conclude that there exists a S̃DI-set of K that is not

independent.

Theorem 20. Consider a tree denoted as K and an S̃DI-set represented by I within
this tree. If we identify ϑ as a pendant node that has a support denoted by ζ, it follows that
the pair consisting of ϑ and ζ cannot simultaneously be elements of the set I.

Proof. Suppose ϑ and ζ are elements in I, then |I − {ϑ}| + m(Ω − (I − {ϑ})) <
|I|+m(Ω− I), a contradiction.

Theorem 21. Let Ω represent a graph that is classified as S̃DI-non excellent, containing
a single S̃DI-bad node, denoted as ζ. If there exists a node ϑ within Ω such that ϑ is adjacent
to ζ and the degree of ϑ exceeds that of ζ, then it follows that there exists a graph K for
which Ω serves as an induced subgraph of K, and the relationship S̃DI(K) = S̃DI(Ω) + 1
holds true.

Proof. Introduce a new node w into the graph Ω and connect it to the node ζ.

Let the resulting graph be denoted as K. It is evident that Ω serves as an induced

subgraph of K, and the relationship S̃DI(K) = S̃DI(Ω) + 1 holds. Consider any

S̃DI-set I within Ω. The union S ∪ {ζ} constitutes a S̃DI-set for the graph K.

Consequently, every node in Ω is classified as S̃DI-good within the context of K. Let

I1 represent a S̃DI-set of Ω that includes the node ϑ. The set I1 ∪{w} then qualifies

as a S̃DI-set for K, indicating that the node w is also a good node in K. Thus, it

can be concluded that K is classified as a S̃DI-Ext graph.

Definition 9. Consider a connected graph denoted as Ω = (V, E). A node ϑ ∈ V(Ω) is

classified as a G̃DI-good node if it is a member of at least one G̃DI-set associated with Ω.

Conversely, ϑ is termed a G̃DI-bad node if it is not included in any G̃DI-set of Ω.

Example 5. Figure 6 shows the graph K2,3 . In K2,3 the nodes {ϑ1, ϑ2} are G̃DI-good

nodes, and {ζ1, ζ2, ζ3} are G̃DI-bad nodes.
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Figure 6. G̃DI-good nodes, G̃DI-bad nodes

Definition 10. A graph Ω is G̃DI-Ext graph if every node of Ω is G̃DI-good nodes.

Example 6. Consider the graphs in the Figure 7. Here Ω1 is S̃DI-Ext and G̃DI-Ext

graph. Ω2 is not S̃DI-Ext and G̃DI-Ext. Ω3 is not S̃DI-Ext and not G̃DI-Ext graph.

Figure 7. Illustration of S̃DI-Ext and G̃DI-Ext graphs

Theorem 22. The cycle Cp is G̃DI-Ext graph.

Proof. In a cycle graph Cp, every γg-set is a G̃DI-set. Hence Cp is G̃DI-Ext.

Theorem 23. Kp is G̃DI-Ext.
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Proof. Since γg(Kp) = p and the entire set is the only G̃DI-set. Hence Kp is

G̃DI-Ext graph.

Theorem 24. The complete bipartite graph Kp,p is G̃DI-Ext.

Proof. Given that G̃DI(kp,p) = p + 1, it follows that each partite set of V(Kp,p)

qualifies as a G̃DI-set for the graph Kp,p.

Theorem 25. If Pp is the path with O(Pp) = p. Then G̃DI(Pp) = p − 1, p > 5 where
Pp is the complement of Pp.

Proof. Let p > 5. We denote the endpoints of the path Pp as ϑ and ζ. In the

complement graph Pp, the nodes ϑ and ζ are connected to p − 2 other nodes, while

the other nodes are connected to p − 3 nodes. It is clear that the diameter of Pp

is 2. Choose a node t that is adjacent to ζ but not to ϑ. As a result, there are

p − 3 nodes located on the geodesic between ϑ and t, which are dominated by both

ϑ and t in Pp. This indicates the presence of a node x ∈ V such that x /∈ I[ϑ, t].

Therefore, the pair {ϑ, t} does not form a geodetic dominating set for Pp. Since it

is impossible to create a gd-set with only two nodes, we conclude that K = {ϑ, t, x}
is a minimal gd-set of Pp. Thus, we establish that γg(Pp) = 3. Furthermore, we

find that m(Pp − K) = p − 4. Consequently, the value of G̃DI(Pp) is computed as

|K|+m(Pp−K) = 3 + (p− 4) = p− 1. This concludes the proof of the theorem.

Theorem 26. If Cp is the Cycle graph of order p. Then G̃DI(Cp) = p− 1, p > 5 where
Cp is the complement of Cp.

Proof. For any integer p greater than 5, it is demonstrated that Cp constitutes a

2-regular graph, while its complement Cp is characterized as a p−3 regular graph with

a diameter of 2. It is clear that in Cp, each node is connected to p−3 other nodes, and

any two nodes, denoted as ϑ and ζ, that are not directly connected share p−4 common

neighbors. As a result, there are p− 4 nodes located along the geodesic connecting ϑ

and ζ, which are dominated by both ϑ and ζ. The pair {ϑ, ζ} does not form a geodetic

dominating set. Next, a node t is chosen such that it is adjacent to ζ but not to ϑ. The

remaining nodes are then aligned along the geodesic from ϑ to t. Consequently, the

set K = {ϑ, ζ, t} is identified as the minimal geodetic dominating set of Cp, yielding

γg(Cp) = 3. It follows that m(Cp−K) = p− 4. The geodetic domination integrity of

Cp is computed as G̃DI(Cp) = |K|+m(Cp−K) = 3+(p−4) = p−1. This concludes

the proof of the theorem.

Remark 5. The decision problem G̃DI(Ω) is formulated as follows:

Input: Given a connected graph Ω = (V, E) with an integer k

Question: Is it true that G̃DI(Ω) ≤ k?
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For a connected graph Ω = (V, E) and any specified subset K ⊆ V(Ω), it is possible to

verify in polynomial time whether K constitutes a gd-set. Additionally, there exists a

polynomial time algorithm capable of computing m(Ω−K) for any subset K of V(Ω).

Consequently, the decision problem G̃DI(Ω) is classified within the complexity class

NP .

Theorem 27. Let Ω be a connected graph with O(Ω) = p. Then γg(M(Ω)) = p, where
M(Ω) is the middle graph of Ω.[9]

Theorem 28. G̃DI(Ω) is NP-complete.

Proof. Consider a connected graph Ω characterized by an order of p and a size of

q. Denote the vertex set of Ω as V(Ω) = {ϑ1, ϑ2, . . . , ϑp}. The middle graph, denoted

as Ω′ = M(Ω), is defined to have an order of p + q and a size of 2q + |E(L(Ω))|.
This graph is constructed by subdividing each edge of Ω exactly once and linking all

adjacent edges within Ω in the resulting graph M(Ω). Notably, the line graph L(Ω) is

inherently included as an induced subgraph of M(Ω). According to Theorem 27, the

extreme vertices of Ω′ constitute a minimum gd-set, leading to the conclusion that

γg(Ω′) = p. Let H represent the graph formed by the exclusion of all extreme nodes

from Ω′. Consequently, we find that G̃DI(Ω) = γg(Ω′) + I(H) = p + I(H). The

determination of I(H) is known to be NP -complete[11], which implies that G̃DI(Ω)

is also NP -complete.

6. Conclusion

A network used for transferring information between different nodes (such as com-

puters, servers, or devices). It could be a physical or a virtual network. A crucial

characteristic of any robust network is its ability to continue functioning effectively

even if some parts of the network fail (nodes or links become inactive). For instance,

in a communication system, there might be temporary failures or disconnections in

some devices (nodes) or transmission paths (links), but the network should still be

able to maintain its functionality. The idea is to ensure that the failure of one or

more parts does not cause a catastrophic breakdown in the whole system. This is

critical in applications like the internet, communication infrastructure, or transporta-

tion networks, where reliability and uptime are essential. Vulnerability metrics are

used to quantify how vulnerable or robust a network is to failures. Vulnerability met-

rics help in assessing how well a network can withstand disruptions or faults, and how

it performs when parts of the system are no longer operational.

A strong domination set is a more restrictive form where each node in the set must

be strongly connected to every other node in the network. The geodetic domination

integrity set takes into account how the removal of nodes affects the geodetic dis-

tance between the remaining nodes. Essentially, these sets help analyze the system’s
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integrity when parts of the network fail. In this study, we examined strong domina-

tion integrity sets, along with the changes and stability in their strong domination

integrity values. Additionally, we investigated geodetic domination integrity sets and

the variations or stability in their geodetic domination integrity values. Moreover, we

analyzed the effects of node removal on both strong and geodetic domination integrity.

We proposed new graph types, S̃DI-Ext and G̃DI-Ext, and developed theorems to

enhance the modeling and assessment of the network’s robustness in the event of

partial failures.
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