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Abstract: Graph pebbling is a network optimization technique for the movement of

resources in transit. A pebbling move in a connected graph G can be defined as a distri-

bution of pebbles on the vertices of a graph, which involves removing two pebbles from
a vertex, placing one pebble on one of its adjacent vertices, and discarding the other

pebble. For a graph G, the pebbling number f(G) is the minimum number of pebbles

required such that one pebble is moved to any arbitrary vertex of the graph G. Fractals
are described as intricate patterns that are identical at different dimensions or identical

in all dimensions. In this paper, the strategy of pebbling is applied to Sierpiński graphs
which are well known fractals and several critical points are scrutinized and verified

for Generalized Sierpiński graph S(G, t), t ≥ 2, Sierpiński graph S(Kn, t), t ≥ 1, n ≥ 2

and Sierpiński triangle graph Sm, m ≥ 2.
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1. Introduction

Graph pebbling is a combinatorial game played on graphs. The technique of pebbling

can be used to minimize memory traffic in computers, solve the register allocation

problem and transmit data from one directory to another. The pebbling steps examine

the cost of pebble loss and have been the focus of substantial research in the context

of proving lower bounds for computation on graphs. Chung was the first to establish

the idea of graph pebbling and found the pebbling number of hypercubes [3]. For a

graph G, consider a distribution of p pebbles over the vertices of G. A pebbling move

from a vertex u1 to an adjacent vertex v1 is defined as the removable of two pebbles

from u1 and placing one pebble on v1. The pebbling number f(G) is the minimum
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number of pebbles which ensures that every vertex of G can be pebbled through a

sequence of pebbling move. The lower bound obtained in the pebbling number of a

graph satisfies the condition f(G) ≥ max{n(G), 2d}, where n(G) is the number of

vertices of G and d is the diameter of G. A path v0, v1, v2 . . . vn is a transmitting

subgraph if it has one pebble transmitted from v0 to vn, distributed as two pebbles in

v0 and at least one pebble on each of the other vertices in the path, perhaps excluding

vn. This pebble distribution allows a pebble to be transferred from v0 to vn.

In recent years, there have been multiple variants to the pebbling moves, which have

stimulated the curiosity of many scholars who want to extend their relevance to diverse

graph theoretic concepts. For a general background on pebbling, the reader is invited

to read [1, 2, 4, 7–9, 12–14, 16] and references therein. In this paper, the concept of

pebbling is applied to fractals, in particular to the class of Sierpiński graphs. These

graphs are generalizations of the graphs of Tower of Hanoi problem. Interesting

pebbling bounds are obtained for the Generalized Sierpiński graph S(G, t), t ≥ 2,

Sierpiński graph S(Kn, t), t ≥ 1, n ≥ 2 and Sierpiński triangle graph Sm, m ≥ 2.

2. Sierpiński graphs

Motivated by the topological studies of Limpscomb’s space [11] it was Klavzar and

Milutinovic [10] who introduced the graphs S(Kn, t) in 1997. The construction was

then generalized by Gravier et.al.in [5] for any graph G. The Generalized Sierpiński

graph S(G, t), is a graph G of dimension n with vertex set as {1, 2, . . . , n}t. The

letters of a word u of {1, 2, . . . , n}tare denoted by u = u1, u2, . . . , ut. The edge set is

defined by {u, v} is an edge if and only if there exists i ∈ {1, 2, . . . , t} such that

• uj = vj if j < i

• ui 6= vi and {ui, vi} ∈ E(G)

• uj = vi and vj = ui if j > i.

Figure 1. Generalized Sierpiński graph S(C4, 3)
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The graphs S(G, t) can be recursively constructed. It is to note that, S(G, 1) is isomor-

phic to the graph G and we construct S(G, t+1) by copying n times S(G, t) and adding

one edge between a copy x and a copy y of S(G, t) whenever (x, y) is an edge of G. See

Figure 1. Each copy of S(G, t) can be referred as S1(G, t), S2(G, t), . . . , Sn(G, t). Refer

each vertex (u1, u2, . . . , ut) of S(G, t) as u1u2 . . . ut. The vertices 1 . . . 1, 2 . . . 2, n . . . n

of S(G, t) are called extreme vertices and the remaining vertices are called inner

vertices. For any u and v with u 6= v, (uvv . . . v, vv . . . vu) ∈ E(S(G, t)) with

uvv . . . v ∈ V (Su(G, t)) and vv . . . vu ∈ V (Sv(G, t)). These vertices are referred as

binding vertices. For S(K5, 2) shown in Figure 2, vertices with labels 12 and 21 are

a pair of binding vertices.

Figure 2. Sierpiński graph S(K5, 2)

3. Pebbling number of Sierpiński graph

Theorem 1. For any x, y ∈ V (S(G, t)) and any integer t ≥ 2, f(S(G, t)) ≥
2(2

t−1)dG(x,y) + nt−2f(G).

Proof. Let f(S(G, 1)) = f(G). Choose the target vertex as 11 . . . 1 ∈ S1(G, t). For

the reason S(G, t), t ≥ 2 is recursively constructed the result holds true for any vertex

u ∈ Su(G, t) chosen as target vertex. If at least nt−2f(G) pebbles are distributed on

S1(G, t) then the target can be pebbled from any vertex 1jj . . . j ∈ S1(G, t). Now

excluding this trivial case consider the possibility when the target has to be pebbled

from some vertex ijj . . . j ∈ Si(G, t). To begin with, assume that f(S1(G, t)) <

nt−2f(G).

If dG(x, y) is the distance between the vertices x and y in G then the distance between

the corresponding vertices xt and yt at level t is dG(xt, yt) = (2t − 1)dG(x, y). This
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infers that, the atmost distance to reach the corresponding vertex in the xth copy

of S(G, t) from the corresponding vertex in yth copy of S(G, t) is (2t − 1)dG(x, y).

At this moment, excluding the pebbles considered on S1(G, t) there are 2(2
t−1)dG(x,y)

remaining pebbles. Distribute 2(2
t−1)dG(x,y) pebbles over the vertices of S(G, t) in

such a way that each Si(G, t) has at least nt−2f(G) + 1 pebbles. Consequently af-

ter a pebbling move at least two pebbles can be placed on every binding vertex of

Si(G, t), i ∈ {2, 3, . . . , n}. This allows to transmit pebbles from some Si(G, t) to

Sk(G, t) and sequentially a pebble is moved to the target by pebbling moves.

Suppose f(Si(G, t)) < nt−2f(G) + 1, i ∈ {2, 3, . . . , n}. For instant, consider the worst

case possibility where there are no pebbles on any copy of Sj(G, t), j 6= 1. If dG(x, y)

is the distance between the vertices x and y in G then dG(xt, yt) = (2t − 1)dG(x, y).

Let us place 2(2
t−1)dG(x,y) pebbles on some vertex xt ∈ Si(G, t). By a sequence of

pebbling moves one pebble is moved to the vertex yt ∈ S1(G, t). Further to place a

pebble on the target consider the pebbles on S1(G, t). It is concluded that with at

least 2(2
t−1)dG(x,y) + nt−2f(G) pebbles it is always possible to pebble the target.

In Generalized Sierpiński graphs S(G, t) when G is a complete graph we obtain

Sierpiński graphs S(Kn, t). Sierpiński graphs have some interesting structural proper-

ties such as planarity, hamiltonicity and connectivity. There are also findings related

to the existence of perfect codes, crossing number, metric properties, domination,

number of spanning trees and matchings [6]. In this paper, we obtain a sharp bound

for pebbling number of Sierpiński graphs based on its topological properties.

Theorem 2. For t = 2 and n ≥ 3, f(S(Kn, 2)) = nf(Kn).

Proof. The Sierpiński graphs S(Kn, 2) contains n copies of S(Kn, 1) which are re-

ferred as S1(Kn, 2), S2(Kn, 2), . . . , Sn(Kn, 2). Without loss of generality, we assume

x = 11 ∈ V (S1(Kn, 2)) to be the target vertex. Let p(u) denote the number of peb-

bles on the vertex u, for u ∈ Si(Kn, 2), 1 ≤ i ≤ n. Let pi be the pebbling number of

Si(Kn, 2) for 1 ≤ i ≤ n. Since each Si(Kn, 2) for 1 ≤ i ≤ n is a complete graph on n

vertices it follows that pi = f(Si(Kn, 2)) = f(Kn), 1 ≤ i ≤ n.

Initially if n = 3, let p1 = 2, p2 = 1, p3 = 1 be the distribution of pebbles on S(K3, 2).

This means that pebbles from S2(K3, 2) and S3(K3, 2) cannot be transmitted to the

target vertex in S1(K3, 2). It implies that if f(S(Kn, 2)) < nf(Kn) then pebbling the

target is not possible. Therefore, f(S(Kn, 2)) ≥ nf(Kn).

By distributing nf(Kn) pebbles on the vertices of S(Kn, 2) there are various possibil-

ities which arise due to the pebbling move. We discuss elaborately these possibilities.

If p1 ≥ f(Kn) or p(x) = 1, then it is trivial to see that the target can be pebbled.

We now assume that p1 < f(Kn) and p(x) = 0. Assume that the least possibility

of distribution p1 = 1 and that one pebble is placed on any of the binding vertex of

S1(Kn, 2) in order to facilitate the pebbling move. Since p1 < f(Kn), pebbling move

is not possible in S1(Kn, 2). In this case, pebbles have to be extracted from the sets

S2(Kn, 2), S3(Kn, 2) . . . Sn(Kn, 2) to pebble the target vertex x.
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Suppose there are (n−1)f(Kn) pebbles which are distributed over the vertices of the

Sierpiński graphs S2(Kn, 2), S3(Kn, 2), . . . , Sn(Kn, 2), such that p2 + p3 + · · ·+ pn ≥
(n−1)f(Kn). Now assume pi > f(Kn) for every pi, 2 ≤ i ≤ n. Then subsequently two

pebbles are moved to the vertex i1 ∈ Si(Kn, 2), for 2 ≤ i ≤ n and as a consequence

one pebble is transmitted from every binding vertices of Si(Kn, 2) to the binding

vertices of S1(Kn, 2) so that the target can be pebbled.

Next assume that there are some vertices in Si(Kn, 2), 2 ≤ i ≤ n, for which pi is not

greater than f(Kn). But p2+p3+ · · ·+pn ≥ (n−1)f(Kn). Hence it can be concluded

that there exists at least one pi, 2 ≤ i ≤ n such that pi = f(Kn). Hence with this

n pebbles in Si(Kn, 2) one pebble is moved to the vertex i1 ∈ Si(Kn, 2). Further

pebbling move from Si(Kn, 2) to S1(Kn, 2) is not possible. Excluding the pebbles

considered on Si(Kn, 2) and S1(Kn, 2), there are at least (n − 1)f(Kn) − pi pebbles

distributed over the vertices of S(Kn, 2). Therefore it is possible to move at least four

pebbles to some vertex say lj of Sl(Kn, 2), l ∈ 2, 3 . . . i− 1, i+ 1 . . . n, 2 ≤ j ≤ n, l 6= j.

It implies that p(lj) ≥ 4. Since each Sl(Kn, 2) is a complete graph, it is easy to

move two pebbles to l1 ∈ Sl(Kn, 2) such that p(l1) = 2. Now through a transmitting

subgraph {lj, l1, 1l, 11} one pebble is transmitted from the binding vertex of Sl(Kn, 2)

to the corresponding binding vertex of S1(Kn, 2) which has already a pebble on it. On

the other hand, there is another possibility of pebbling move which occurs between

the binding vertices of Sl(Kn, 2) to some Sj(Kn, 2) and to S1(Kn, 2) which can be

exhibited through the transmitting subgraph {lj, jl, j1, 1j, 11}, for l 6= j, 2 ≤ j ≤ n

and so the target x is pebbled.

Now assume that the distribution has some pi < f(Kn), 2 ≤ i ≤ n. From our

initial assumption there should exists some subgraphs of S(Kn, 2) with pi > f(Kn).

Consider there are at most two subgraphs say Si1(Kn, 2) and Si2(Kn, 2) with pi1 +

pi2 ≥ 2(f(Kn) + 1) for i1, i2 ∈ 2, 3 . . . i− 1, i+ 1 . . . n. By using pi1 ≥ f(Kn) +

1 pebbles on Si1(Kn, 2), two pebbles can be moved to the binding vertex i11 ∈
Si1(Kn, 2), i1 ∈ 2, 3 . . . i− 1, i+ 1 . . . n. Similarly for pi2 ≥ f(Kn) + 1 after a pebbling

move it infers that p(i21) = 2 for i2 ∈ 2, 3 . . . i− 1, i+ 1 . . . n and i1 6= i2. Hence

from the transmitting subgraph {i11, 1i1} and {i21, 1i2} we find that S1(Kn, 2) will

receive a pebble from the binding vertices of Si1(Kn, 2) and Si2(Kn, 2) so that the

vertex with one pebble on it will have two pebbles after a sequence of pebbling move.

Hence, the target is pebbled.

Consider the case when p2 + p3 + · · ·+ pn < (n− 1)f(Kn). In this case, the pebbling

move is possible only when each pi, i ∈ {2, 3 . . . n} has at most two pebbles and in

particular p(i1) = 2, i ∈ {2, 3 . . . n}, which is a binding vertex of every Si(Kn, 2).

Hence each binding vertex of Si(Kn, 2) will contribute a pebble to S1(Kn, 2) and so

with the remaining pebbles in S1(Kn, 2) one pebble is moved to the target vertex.

The entire proof of the theorem is carried out by fixing target as 11 ∈ V (S1(Kn, 2)),

but it is evident to see from the adjacency of the vertices of S(Kn, 2) that the proof

of the theorem is analogous if the target vertex is chosen as any vertex of Si(Kn, 2),

1 ≤ i ≤ n. Thus f(S(Kn, 2)) = nf(Kn).
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Theorem 3. Let S(Kn, t) be the Sierpiński graph. The pebbling number of S(Kn, t) for

any n ≥ 3, t > 2 is f(S(Kn, t)) = 22
t−1.

Proof. The Sierpiński graph S(Kn, t) and its subgraph Si(Kn, t) has nt and nt−1

vertices respectively. Let pi denote the pebbling number of Si(Kn, t) for 1 ≤ i ≤ n.

Suppose there are 22
t−1 pebbles distributed over the vertices of S(Kn, t). Without

loss of generality, let us assume the target vertex as v ∈ Si(Kn, t), 1 ≤ i ≤ n. If

pi = 22
t−1, one pebble is moved to v which is trivial. So, let us discuss the case when

the target has to be pebbled from Sj(Kn, t) where i 6= j. Assume that there are no

pebbles in Si(Kn, t). Hence consider a distribution of 22
t−1 pebbles over the remaining

vertices of S(Kn, t). Initially assume that there are at least f(Kn) pebbles on each

Sk(Kn, t), k 6= i. In this case there will be additional 22
t−1− [(n− 1)f(Kn)] pebbles,

let it be placed on the vertices of Sj(Kn, t). With f(Kn) + 22
t−1 − [(n− 1)f(Kn)]

pebbles on Sj(Kn, t) we can move 2f(Kn)+22
t−1−nf(Kn)
2 pebbles to the binding vertex

1jj . . . j ∈ Sj(Kn, t). Hence after a sequence of pebbling move the target is pebbled.

Suppose there are no pebbles on all the vertices of S(Kn, t). Since the diameter of

S(Kn, t) is 2t − 1 place 22
t−1 pebbles on any vertex initiating the pebbling move in

order to pebble the target vertex. Thus it is proved that 22
t−1 pebbles are sufficient

to pebble any arbitrary chosen target vertex.

4. Sierpiński triangle graph

Sierpiński triangle graphs are obtained from Sierpiński graphs S(K3, t) by identifying

every edge of S(K3, t) that lies in no triangle. Sierpiński triangle graph denoted by Sm

serves as an ideal model for both software and hardware architecture. These graphs

play a vital role in the study of development strategy of DNA fractal links. Further,

Sierpiński triangle graph has a significant contribution in analyzing dynamic systems

and are also used as models for Sierpiński fractal antenna [15].

For m ≥ 1, the Sierpiński triangle graph Sm is defined as the graph whose vertices

are the intersection points on the line segments in Sierpiński graph S(K3, t) and edge

set consisting of the line segments connecting two vertices. The Sierpiński triangle

graph Sm has (3m + 3)/2 vertices and 3m edges. The diameter of Sm is 2m−1. See

Figure 3.

An m-dimensional Sierpiński triangle graph consists of three copies of Sierpiński tri-

angle graph of dimension m − 1 with (3m−1 + 3)/2 vertices. These three copies of

Sm−1 in Sm are denoted by Sm,T , Sm,L and Sm,R as shown in Figure 4. The binding

vertices of Sm,T , Sm,L and Sm,R are referred as x1, x2, x3, x4, x5 and x6. These bind-

ing vertices are connected by a set of vertices which are referred as extreme vertices.

The extreme vertices connecting the binding vertices {x1, x2, x3}, {x2, x4, x5} and

{x3, x5, x6} are labeled as xT,i, xL,i and xR,i respectively for 1 ≤ i ≤ 3(2m−2 − 1).

See Figure 5.
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Figure 3. Sierpiński triangle graph S4

Figure 4. Sierpiński triangle graph Sm

Figure 5. Labeling of Sierpiński triangle graph S4

5. Pebbling number of Sierpiński triangle graph

The pebbling number of S2 is f(S2) = 6. The proof is direct since for a distribution

of 5 pebbles with one pebble on each vertex except the target there is no pebbling

move possible. We begin with m > 2.
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Theorem 4. For a Sierpiński triangle graph Sm, m ≥ 3 f(Sm) = 22
m−1

.

Proof. Let p1, p2 and p3 be the number of pebbles in Sm,T , Sm,L and Sm,R

respectively. Let p(x) be the number of pebbles on the vertex x. Choose x1 ∈ Sm,T

as the target vertex. The Sierpiński triangle graph is a fractal, that is, it is a self

similar structure that occurs at different levels of iterations. Hence, the proof of the

theorem by choosing the target vertex as any vertex of Sm,R and Sm,L is carried out

with the same procedure. Assume that p(x1) = 0, otherwise the solution is trivial.

The proof of the theorem is carried out in such a way that the target x1 can be

pebbled from any vertex of Sm,T , Sm,L, Sm,R with a distribution of 22
m−1

pebbles.

Case 1: p1 ≥ 3m−1+3
2

Each copy of Sm−1 in Sm has 3m−1+3
2 vertices. Distribute 3m−1+3

2 pebbles on the ver-

tices of Sm,T in such a way that except the target vertex all the other vertices have at

least one pebble. Then there exists minimum two vertices of Sm,T , say x2 and x3, with

p(x2) ≥ 2 and p(x3) ≥ 2. Therefore the target can be pebbled through a transmit-

ting subgraph which is exhibited by {x2, xT,i, xT,i−1, xT,i−2 . . . xT,1, x1}, i = 2m−2−1

or through a transmitting subgraph {x3, xT,i, xT,i+1, xT,i+2,. . . xT,3(2m−2−1), x1}, i =

2m−1 − 1. If p(xT,i) ≥ 2, for either i = 2m−2 − 1 or i = 2m−1 − 1, the target

can be pebbled using the transmitting subgraph {xT,i, xT,i−1, xT,i−2 . . . xT,1, x1} or

{xT,i, xT,i+1, xT,i+2 . . . xT,3(2m−2−1), x1}.
Let S = {x/p(x) = 0, x ∈ V (Sm,T )}. If 1 ≤ |S| ≤ 3m−1−1

2 , then there should exists at

least four pebbles distributed on vertices y ∈ SC , such that p(y) > 0, where x and y are

adjacent. Now, we consider a pebbling move in such a way that, the vertex y will re-

tain two pebbles on it and out of the remaining two pebbles it will contribute a pebble

to the vertex x. In this way, we can see that the target is pebbled through a trans-

mitting subgraph which is exhibited by {xT,i, xT,i−1, xT,i−2 . . . xT,1, x1} or through a

transmitting subgraph {xT,i, xT,i+1, xT,i+2 . . . xT,3(2m−2−1), x1}.
If |S| = 3m−1+1

2 , then we need to consider the entire distribution of pebbles stacked

at a particular vertex either on xi or xT,i so that the target is pebbled along its path

of length n ∈ {1, 2, . . . ,m}. Hence for some i, p(xi) = 3m−1+5
2 or p(xT,i) = 3m−1+5

2 ,

we have one pebble moved to the vertex xT,i which is adjacent to x1. In order to

pebble the target vertex the remaining pebbles considered on p1 are placed on xT,i

which facilitates a pebbling move to the target x1.

Case 2: p1 <
3m−1+3

2

Due to insufficiency of pebbles in Sm,T , pebbling move cannot be initiated and

pebbling x1 is not possible. In order to pebble the target vertex, pebbles are

extracted from Sm,L and Sm,R which leads to the following subcases.

Subcase 2.1. p2 ≥ 3m−1+3
2 and p3 ≥ 3m−1+3

2

The distribution of 3m−1+3
2 pebbles over the vertices of Sm,L and Sm,R allows two

pebbles moved to x5 ∈ Sm,L ∩ Sm,R. Hence p(x5) = 2 will initiate the pebbling move
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either in Sm,L or Sm,R.

Let T = {u/p(u) = 0, u ∈ V (Sm,L)}. If |T | = φ, then there exists at least one vertex

r with p(r) ≥ 2 and through a sequence of pebbling move two pebbles are transmitted

either to the vertex x2 or x3. Hence p(x2) ≥ 2 or p(x3) ≥ 2 allows at least two pebbles

transmitted to Sm,T which will trigger the pebbling move within the vertices of Sm,T

and the target is pebbled as in Case 1.

Let 1 ≤ |T | ≤ 3m−1−1
2 . In order to have a pebbling move a distribution of

p2 + p3 ≥ 3m−1 + 3 either on Sm,L or Sm,R is considered. On distributing 3m−1 + 3

pebbles there exists at least three pebbles on every vertex of Sm,L or Sm,R and so

the target is pebbled as discussed in Case 1.

Subcase 2.2. p2 ≥ 3m−1+3
2 and p3 <

3m−1+3
2

It is observed that, x2 ∈ Sm,T ∩ Sm,L. If p(x2) ≥ 2, then one pebble is transmitted

to Sm,T and target vertex will be pebbled as discussed in Case 1. In the remaining

subcases, assume that p(x2) < 2.

Subcase 2.2.1. p(x2) = 0

Suppose V (Sm,L) = TC . With p2 ≥ 3m−1+3
2 pebbles on Sm,L, p(x2) ≥ 2 as discussed

in Case 2.1. Now consider the case when there exists some vertex u ∈ Sm,L for which

p(u) = 0. First, let us assume that there are pebbles distributed only on the extreme

vertices of Sm,L and there are no pebbles on the inner vertices of Sm,L. Now x2 can

receive minimum two pebbles from a series of pebbling move along the extreme vertices

through the transmitting subgraphs {x4, xL,i, xL,i−1, xL,i−2 . . . xL,1, x2}, i = 2m−2−1

and {x5, xL,i, xL,i+1, xL,i+2 . . . xL,3(2m−2−1), x2}, i = 2m−1−1. Thus p1 ≥ 3m−1+3
2 and

x1 is pebbled as in Case 1.

Next, let us assume that there are no pebbles on the extreme vertices and 3m−1+3
2

pebbles are distributed over the inner vertices such that the vertex initiating the

pebbling move should have at least two pebbles and all the other vertices v ∈ TC

has at least one pebble. The path from some inner vertex xL,i to the binding vertex

x2 has at least m − 2 extreme vertices. As the pebbling move starts from some

inner vertex xL,i the transmitting path stops as it reaches some extreme vertex as

there are no pebbles on it. Hence to overcome this situation we may assume that

p(xL,i) ≥ 3 for all the inner vertices which are adjacent to the extreme vertices in

particular which are included in the transmitting path. Further, in order to facilitate

the pebbling move there should exists at least one pebble on these m − 2 extreme

vertices. In this way, p(x2) ≥ 2 and the target is pebbled.

Subcase 2.3. p2 <
3m−1+3

2 and p3 ≥ 3m−1+3
2

This case is an analogy to Case 2.2.

Subcase 2.4. p2 <
3m−1+3

2 and p3 <
3m−1+3

2

Here we assume the worst case when there are no pebbles on the vertices of Sm. In

order to pebble the target from some vertex xi let p(xi) = 22
m−1

. Thus the target
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x1 ∈ Sm,T can be pebbled through a sequence of pebbling move.

Finally, pebbling the target vertex for any xT,i ∈ Sm,T , 1 ≤ i ≤ 3m−1−3
2 , is same as

pebbling the target vertex x1 ∈ Sm,T . Thus, we have obtained the pebbling number

for Sierpiński triangle graph as f(Sm) = 22
m−1

, for m ≥ 3.

6. Conclusion

The pebbling number of Sierpiński graphs can be applied by biologist and chemist to

develop synthesis strategies specifically arranging the DNA crystals in the pattern of

Sierpiński triangle to obtain an efficient growth mechanism through pebbling strate-

gies and further enhances the system information regarding DNA nano structures.

In this paper, we have obtained the lower bound for pebbling number of General-

ized Sierpiński graph S(G, t), t ≥ 2 and pebbling number of Sierpiński graph S(Kn, t)

for any t ≥ 1 and n ≥ 2, Sierpiński triangle graph Sm, m ≥ 2. The problem of

determining the pebbling number of other variants of Sierpiński graphs are open.
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