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1. Introduction

All graphs considered in this paper are finite, simple, undirected, and connected. Let

G = (V (G), E(G)) be a graph, where V (G) is the vertex set and E(G) is the edge set

of G. For each v ∈ V (G), degree of v in G, denoted by dG(v), is the number of edges

incident with v. For a positive integer `, a graph in which every vertex has degree ` is

called an `-regular graph. For a positive integer n, Kn, Pn, and Cn denote the complete

graph on n vertices, path of order n, and cycle of length n, respectively. The distance

between u and v in G, denoted by dG(u, v), is the length of a shortest path between

u and v in G, the open neighbourhood of u in G is NG(u) = {x ∈ V (G) : ux ∈ E(G)},
the closed neighbourhood of u in G is NG[u] = {u}∪NG(u). The diameter of a graph

G, diam(G), is defined as max{dG(u, v) : u, v ∈ V (G)}. The girth of G, denoted by

g(G), is the length of a shortest cycle in G. For a non-empty subset T of V (G), 〈T 〉
denotes the subgraph induced by T . The complement of the graph G, denoted by Gc,

is a graph with V (Gc) = V (G) and E(Gc) = {xy : xy 6∈ E(G)}.
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Figure 1. Mycielskian of K3

For u, v ∈ V (G), define dG(u ∧ v) = |NG(u) ∩ NG(v)|. For uv ∈ E(G), define

Nu(uv|G) = {x ∈ V (G) : dG(u, x) < dG(v, x)} and nu(uv|G) = |Nu(uv|G)| the

number of vertices of G whose distance to the vertex u is smaller than the distance

to the vertex v in G. A vertex x ∈ V (G) is said to be equidistant from the edge

uv of G if dG(u, x) = dG(v, x), otherwise it is said to be non-equidistant from an

edge uv. Denote NG(uv) the set of all equidistant vertices from the edge uv, that is,

NG(uv) = {z ∈ V (G) : dG(u, z) = dG(v, z)}. A graph G is said to be a triangle-free

graph if G does not contain a triangle (that is, a cycle of length 3).

In the mid-20th century, there was a question regarding triangle-free graphs with

arbitrarily large chromatic numbers. Mycielski [18] developed an interesting graph

transformation that answered the above famous question. For a graph G, the My-

cielskian of G is the graph µ(G) with vertex set V (µ(G)) = V (G) ∪ V ′(G) ∪ {u},
where V ′(G) = {x′ : x ∈ V (G)} and is disjoint from V (G), and edge set E(µ(G)) =

E(G)∪{xy′ : xy ∈ E(G)}∪ {y′u : y′ ∈ V ′}. The vertex x′ is called the shadow of the

vertex x (and x the shadow of x′) and the vertex u is the root of µ(G). For example,

the Mycielskian of K3 is illustrated in Figure 1. We use V in place of V (G) and E in

place of E(G) when no ambiguity arises. The Mycielskian graph has fascinated graph

theorists a great deal. As their interest, several graph parameters of µ(G) have been

studied in the past, see [2, 4, 8]. Note that, if G has no isolated vertices, then µ(G)

and µc(G) are connected.

A topological index is a molecular descriptor calculated from a molecular graph of a

chemical compound that characterizes its topology. Topological indices are very useful

tools in graph theory and mathematical chemistry. We consider the following well-

known topological indices namely, Wiener index, Harary index, hyper-Wiener index,

vertex Padmakar-Ivan index, and Zagreb indices. Some of the chemical applications

of topological indices are reported in [6, 7, 21, 22, 24].

The Wiener index is one of the significant and oldest topological indices used in



K. Vinothkumar 3

mathematical chemistry. It was introduced in 1947 by Wiener [24]. For a connected

graph G, the Wiener index of G is the sum of the distance between any two unordered

pairs of vertices of G, that is,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u,v∈V (G)

dG(u, v).

It was used for modeling the shape of organic molecules and for calculating several of

their physico-chemical properties, in particular the boiling points of alkane isomers.

There have been several papers on the Wiener index from the time of its introduction.

Some of the related references are [2, 8]. The Harary index of a connected graph G

is the sum of the reciprocal of the distances of any two unordered pair of vertices of

G, that is,

H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
=

1

2

∑
u,v∈V (G)
u 6=v

1

dG(u, v)
.

The Harary index of a graph has been introduced independently by Plavšić et al. [21]

and by Ivanciuc et al. [11] in 1993. The hyper-Wiener index is the generalization of the

Wiener index. This index was introduced by Randic [22] in 1993. For a connected

graph G, the hyper-Wiener index of the graph G is one-half of the summation of

distances and square distances over all its unordered vertex pairs u, v, that is,

WW (G) =
1

2

∑
{u,v}⊆V (G)

[
dG(u, v) + d2G(u, v)

]
=

1

2
W (G) +

1

2

∑
{u,v}⊆V (G)

d2G(u, v),

where d2G(u, v) = (dG(u, v))2. In [15], Khalifeh et al. computed an exact formula for

the hyper-Wiener index of various graph operations. The hyper-Wiener index has

been studied extensively in the past, see some of the references [3, 14, 23]. The vertex

Padmakar-Ivan index of a graph G, denoted by PIv(G), is defined as

PIv(G) =
∑

uv∈E(G)

[nu(uv|G) + nv(uv|G)].

In other words, PIv(G) is the sum over all edges uv of G the number of vertices which

are non-equidistant from an edge uv, that is,

PIv(G) =
∑

uv∈E(G)

(
|V (G)| − |NG(uv)|

)
.

The vertex Padmakar-Ivan index was introduced by Khalifeh et al. [15]. In short, we

use the PI index instead of the vertex Padmakar-Ivan index. Several authors have
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studied the PI index of various classes of graphs. For instance, see [5, 12, 13, 16, 17, 20].

The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the

vertices. The second Zagreb index M2(G) is equal to the sum of the products of

the degrees of pairs of adjacent vertices of the graph G. The Zagreb indices were

introduced by Gutman et al. [10]. They are defined as

M1(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

]
=

∑
v∈V (G)

d2G(v),M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

The PI index and Zagreb index are well-studied topological indices, both from a

theoretical point of view and applications, see [9, 19].

This paper is organized as follows. In Section 2, we recall some properties of µ(G)

and its complement. Also, we recall the results in [1, 2, 8]. In Section 3, we compute

a formula for the Harary index of the Mycielskian of G. Using this result, we deduce

a result in [1]. Moreover, we obtain a formula for the Harary index of the complement

of µ(G). In Section 4, we find a formula for the hyper-Wiener index of Mycielskian of

G. Also, we provide a formula for the hyper-Wiener index of Mycielskian of a graph

with g(G) ≥ 7 in terms of Zagreb indices of G. In Section 5, we determine a formula

for the PI index of the Mycielskian of G if g(G) ≥ 8, and we find a formula for the

PI index of the complement of µ(G).

2. Preliminaries

Let us first recall the following observations.

Observation 1. If a ∈ V (µ(G)), then

dµ(G)(a) =


n, for a = u;

dG(x) + 1, for a = x′ ∈ V ′;
2dG(x), for a = x ∈ V.

and for any two distinct vertices a and b in µ(G),

dµ(G)(a, b) =



1, for a = x′ ∈ V ′, b = u;

2, for a = x ∈ V , b = u;

2, for a = x′ ∈ V ′, b = y′ ∈ V ′;
dG(x, y), for a = x ∈ V, b = y ∈ V, dG(x, y) ≤ 3 ;

4, for a, b ∈ V, dG(a, b) ≥ 4;

2, for a = x ∈ V, b = x′ ∈ V ′;
dG(x, y), for a = x ∈ V , b = y′ ∈ V ′, y′ 6= x′, dG(x, y) ≤ 2;

3, for a = x ∈ V , b = y′ ∈ V ′ , y′ 6= x′, dG(x, y) ≥ 3.

Hence, the diameter of Mycielskian of G is at most 4.
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Observation 2. If a ∈ V (µc(G)), then

dµc(G)(a) =


n, for a = u;

2n− (dG(x) + 1), for a = x′ ∈ V ′;
2n− 2dG(x), for a = x ∈ V.

and for any two distinct vertices a, b in µc(G),

dµc(G)(a, b) =



2, for a = x′ ∈ V ′, b = u;

1, for a = x ∈ V , b = u;

1, for a = x′ ∈ V ′, b = y′ ∈ V ′;
1, for a = x ∈ V , b = y ∈ V, dG(x, y) > 1;

2, for a = x ∈ V , b = y ∈ V, dG(x, y) = 1;

1, for a = x ∈ V , b = x′;

1, for a = x ∈ V , b = y′ ∈ V ′ , y′ 6= x′, dG(x, y) > 1;

2, for a = x ∈ V , b = y′ ∈ V ′ , y′ 6= x′, dG(x, y) = 1.

Hence, the diameter of the complement of Mycielskian of G, µc(G) is 2.

Now, we recall the following Lemma in [8].

Lemma 1 ([8]). Let G be a graph with n vertices and m edges. Then
(i) The number of paths of order two in G is equal to 1

2
M1(G)−m.

(ii) If G is a triangle-free graph, then the number of paths of order three in G is equal to
M2(G)−M1(G) +m.

Next, we recall the following results in [1]. Let G be a graph with V (G) =

{x1, x2, . . . , xn} and m edges. For each positive integer k, define

Ak(G) =
{
{i, j} ⊆ {1, 2, . . . , n} : dG(xi, xj) = k

}
and

A(G) =
{
{i, j} ⊆ {1, 2, . . . , n} : dG(xi, xj) ≥ 4

}
.

Clearly,

|A1(G)| = m. (2.1)

If g(G) ≥ 5, part (i) of Lemma 1 yields

|A2(G)| = 1

2
M1(G)−m, (2.2)

and if g(G) ≥ 7, part (ii) of Lemma 1 yields

|A3(G)| = M2(G)−M1(G) +m. (2.3)
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Therefore,

|A(G)| =
(
n

2

)
− |A1(G)| − |A2(G)| − |A3(G)|.

So if g(G) ≥ 7, by Equations (2.1)−(2.3), we obtain

|A(G)| =
(
n

2

)
−m+

1

2
M1(G)−M2(G). (2.4)

For 1 ≤ k ≤ 3, we define

M
(k)
1 (G) =

∑
{i,j}∈Ak(G)

[
dG(xi) + dG(xj)

]
,

M
(k)
2 (G) =

∑
{i,j}∈Ak(G)

dG(xi)dG(xj).

Obviously, M
(1)
1 (G) = M1(G) and M

(1)
2 (G) = M2(G). If G is an `-regular graph with

g(G) ≥ 7, then

|Ak(G)| = n`

2
(`− 1)k−1, 1 ≤ k ≤ 3. (2.5)

Hence for 1 ≤ k ≤ 3,

M
(k)
1 (G) = n`2(`− 1)k−1 and M

(k)
2 (G) =

n`3

2
(`− 1)k−1. (2.6)

For a positive integer k, p(k,G) is the number of pairs of vertices which are at distance

k in G.

Observation 3. If G is any graph, then |Ak(G)| = p(k,G), for 1 ≤ k ≤ 3 and |A(G)| =∑
k≥4

p(k,G).

Next, we recall the following result proved in [2].

Theorem 4 ([2]). Let G be a connected graph with n vertices and m edges. Then the
Wiener index of the Mycielskian of G is given by

W (µ(G)) = 6n2 − n− 7m− 4p(2, G)− p(3, G). (2.7)
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3. Harary index of µ(G) and µc(G)

In [1], the authors obtained a formula for the Harary index of µ(G) when g(G) ≥ 7.

In this section, we find a formula for the Harary index of Mycielskian of G without

assuming g(G) ≥ 7 and complement of µ(G). The proof of the following result is

similar to the one given in [2]. For the sake of completion, we give the proof.

Theorem 5. Let G be a graph with n vertices and m edges. Then the Harary index of
µ(G) is given by

H(µ(G)) =
1

24

[
17n2 + 31n+ 50m+ 14p(2, G) + 2p(3, G)

]
.

Proof. By the definition of Harary index of µ(G),

H(µ(G)) =
1

2

∑
x,y∈V (µ(G))

x 6=y

1

dµ(G)(x, y)
=

∑
{x,y}⊆V (µ(G))

1

dµ(G)(x, y)
. (3.1)

For each {x, y} ⊆ V (µ(G)), we have five cases, namely, 1) x′ ∈ V ′(G), y =

u; 2) x ∈ V (G), y = u; 3) x′ ∈ V ′(G), y′ ∈ V ′(G); 4) x ∈ V (G), y ∈ V (G); 5) x ∈
V (G), y′ ∈ V (G). Hence, the summation in Equation (3.1) can be divided into five

sums as follows.

H(µ(G)) =
∑

x′∈V ′, y=u

1

dµ(G)(x′, u)
+

∑
x∈V, y=u

1

dµ(G)(x, u)
+

1

2

∑
x′,y′∈V ′

1

dµ(G)(x′, y′)

+ 1
2

∑
x,y∈V

1

dµ(G)(x, y)
+

∑
x∈V,y′∈V ′

1

dµ(G)(x, y′)
(3.2)

=
∑

1 +
∑

2 +
∑

3 +
∑

4 +
∑

5 (say).

It is easy to observe that
∑

1 = n,
∑

2 = 1
2 (n),

∑
3 = 1

2

(
n
2

)
= n2−n

4 . Since the

maximum distance of any pair of vertices in V (G) is 4 in µ(G),
∑

4 = p(1, G) +
1
2p(2, G) + 1

3p(3, G) + 1
4

[(
n
2

)
− p(1, G) − p(2, G) − p(3, G)

]
. Note that if xy ∈ E(G),

then xy′, yx′ ∈ V (µ(G)). Also, for every x ∈ V (G), dµ(G)(x, x
′) = 2 and for every

x, y ∈ V (G) such that dG(x, y) = 2, we have dµ(G)(x, y
′) = 2, dµ(G)(y, x

′) = 2. Thus∑
5 = 1

2n+ 2
[
p(1, G) + 1

2p(2, G)
]

+ 1
3

[
n2 − n− 2p(1, G)− 2p(2, G)

]
.

Then by equation (3.2), the result follows.

By Equations (2.2) and (2.3) and Observation 3, we deduce the result in [1].

Corollary 1 (Theorem 3.3, [1]). Let G be a graph on n vertices, m edges with
g(G) ≥ 7. Then

H(µ(G)) =
1

24

[
5M1(G) + 2M2(G) + 17n2 + 31n+ 38m

]
.
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Proof. By Theorem 5,

H(µ(G)) =
1

24

[
17n2 + 31n+ 50m+ 14p(2, G) + 2p(3, G)

]
.

By Observation 3, p(2, G) = |A2(G)| and p(3, G) = |A3(G)|. By Equations (2.2) and

(2.3), we have p(2, G) = 1
2M1(G)−m and p(3, G) = M2(G)−M1(G) +m. Hence the

result.

Next, we derive a formula for the Harary index of the complement of the Mycielskian

of G. Let us first observe the following.

Observation 6.

p(i, µc(G)) =

{
2n2 − 3m, if i = 1;

3m+ n, if i = 2.
(3.3)

Proposition 1. If G is graph on n vertices and m edges, then the Wiener index of µc(G)
is given by

W (µc(G)) = 2n2 + 2n+ 3m. (3.4)

Proof. By the definition of Wiener index of µc(G),

W (µc(G)) =
∑

{x,y}⊆V (µc(G))

dµc(G)(x, y). (3.5)

Since the diameter of µc(G) is 2, then

W (µc(G)) =
∑

{x,y}∈A1(µ
c(G))

dµc(G)(x, y) +
∑

{x,y}∈A2(µ
c(G))

dµc(G)(x, y).

By Observation 3,

W (µc(G)) = p(1, µc(G))(1) + p(2, µc(G))(2)

=
(
2n2 − 3m

)
(1) +

(
3m+ n

)
(2), by Equation (3.3).

Therefore, the result follows.

By Observation 3, we find a formula for the Harary index of µc(G).

Theorem 7. Let G be the graph with n vertices and m edges. Then the Harary index of
µc(G) is given by

H(µc(G)) =
1

2

[
4n2 + n− 3m

]
. (3.6)
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Proof. Note that diameter of µc(G) is 2. Then

H(µc(G)) =
∑

{x,y}∈A1(µ
c(G))

1

dµc(G)(x, y)
+

∑
{x,y}∈A2(µ

c(G))

1

dµc(G)(x, y)
.

By Observation 3,

H(µc(G)) = p(1, µc(G))(1) + p(2, µc(G))

(
1

2

)
=
(
2n2 − 3m

)
(1) +

(
3m+ n

)(1

2

)
, by Equation (3.3).

Hence, the result follows.

4. Hyper-Wiener index of µ(G) and µc(G)

In this section, we determine a formula for the hyper-Wiener index of Mycielskian of

G and complement of µ(G).

Theorem 8. If G is a graph with n vertices and m edges, then the hyper-Wiener index
of µ(G) is given by

WW (µ(G)) =
1

2

[
25n2 − 11n− 38m− 26p(2, G)− 8p(3, G)

]
. (4.1)

In particular, if g(G) ≥ 7, then the hyper-Wiener index of µ(G) is given by

WW (µ(G)) =
1

2

[
25n2 − 11n− 20m− 5M1(G)− 8M2(G)

]
. (4.2)

Proof. By the definition of the hyper-Wiener index of Mycielskian of G,

WW (µ(G)) =
1

2

∑
{x,y}⊆V (µ(G))

dµ(G)(x, y) +
1

2

∑
{x,y}⊆V (µ(G))

d2µ(G)(x, y)

=
1

2
W (µ(G)) +

1

2

∑
{x,y}⊆V (µ(G))

d2µ(G)(x, y).

By Theorem 4,

WW (µ(G)) =
1

2

[
6n2 − n− 7m− 4p(2, G)− p(3, G)

]
+

1

2

∑
{x,y}⊆V (µ(G))

d2µ(G)(x, y).

(4.3)
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Then, ∑
{x,y}⊆V (µ(G))

d2µ(G)(x, y) =
∑

x′∈V ′(G), y=u

d2µ(G)(x
′, u) +

∑
x∈V (G),y=u

d2µ(G)(x, u) +

1

2

∑
x′,y′∈V ′(G)

d2µ(G)(x
′, y′) +

1

2

∑
x,y∈V (G)

d2µ(G)(x, y) +
∑

x∈V (G),y′∈V ′(G)

d2µ(G)(x, y
′).

Using the similar argument as given in Theorem 5, we get∑
{u,v}⊆V (G)

d2G(u, v) =
[
19n2 − 10n− 31m− 22p(2, G)− 7p(3, G)

]
.

By Equation (4.3),

WW (µ(G)) =
1

2

[
6n2 − n− 7m− 4p(2, G)− p(3, G)

]
+

1

2

[
19n2 − 10n− 31m− 22p(2, G)− 7p(3, G)

]
.

Hence the result. Next, if g(G) ≥ 7, then by Equations (2.2) and (2.3), we have

|A2(G)| = 1
2M1(G)−m and |A3(G)| = M2(G)−M1(G) +m. By Observation 3, we

have p(2, G) = |A2(G)| and p(3, G) = |A3(G)|. Therefore the result follows from the

Equation (4.1).

By Theorem 8 and Equation (2.6), we have the following.

Corollary 2. If G be an `-regular graph with g(G) ≥ 7, then the hyper-Wiener index of
µ(G), is given by

WW (µ(G)) =
1

2

(
25n2 −

[
4`3 + 5`2 + 10`+ 11

]
n

)
. (4.4)

In particular, if n ≥ 7, WW (µ(Cn)) =
1
2

(
25n2 − 83n

)
.

Proof. As g(G) ≥ 7, then by Equation (4.2),

WW (µ(G)) =
1

2

[
25n2 − 11n− 20m− 5M1(G)− 8M2(G)

]
.

Since G is an `-regular, then by Equation (2.6), we have M
(1)
1 (G) = M1(G) = n`2

and M
(1)
2 (G) = M2(G) = n`3

2 . Therefore,

WW (µ(G)) =
1

2

[
25n2 − 11n− 20

(
n`

2

)
− 5
(
n`2
)
− 8

(
n`3

2

)]
.
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Hence the result follows. Next, if G is a cycle of length of n, then we have ` = 2. As

g(G) ≥ 7, then by Equation (4.4),

WW (µ(G)) =
1

2

(
25n2 −

[
4(2)3 + 5(2)2 + 10(2) + 11

]
n

)
.

Hence, the result follows.

Next, we obtain a formula for the hyper-Wiener index of the complement of the

Mycielskian of G.

Theorem 9. If G is a graph with n vertices and m edges, then the hyper-Wiener index
of µc(G) is given by

WW (µc(G)) = 2n2 + 3n+ 6m. (4.5)

Proof. By the definition of hyper-Wiener index of µc(G),

WW (µc(G)) = 1
2

∑
{x,y}⊆V (µc(G))

dµc(G)(x, y) +
1

2

∑
{x,y}⊆V (µc(G))

d2µc(G)(x, y)

= 1
2W (µc(G)) + 1

2

∑
{x,y}⊆V (µc(G))

d2µc(G)(x, y).

By Proposition 1,

WW (µc(G)) =
1

2

[
2n2 + 2n+ 3m

]
+

1

2

∑
{x,y}⊆V (µc(G))

d2µc(G)(x, y). (4.6)

It is enough to compute the sum
∑

{x,y}⊆V (µc(G))

d2µc(G)(x, y). Therefore,

∑
{x,y}⊆V (µc(G))

d2µc(G)(x, y) =
∑

{x,y}∈A1(µc(G))

d2µc(G)(x, y) +
∑

{x,y}∈A2(µc(G))

d2µc(G)(x, y)

=
[
p(1, µc(G))

]
(1) +

[
p(2, µc(G))

]
(4), by Observation 6,

= [2n2 − 3m](1) + [3m+ n](4), by Equation (3.3),

= 2n2 + 4n+ 9m.

By Equation (4.6),

WW (µc(G)) =
1

2

[
2n2 + 2n+ 3m

]
+

1

2

[
2n2 + 4n+ 9m

]
.

Hence, the result follows.
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Using Theorem 9, we compute the hyper-Wiener index of µc(G) when G is an `-

regular.

Corollary 3. If G is an `-regular graph with n vertices, then the hyper-Wiener index of
µc(G) is

WW (µc(G)) = 2n2 + 3n+ 3n`.

Proof. The result follows from the Equation (4.5).

As a consequence, we have the following example.

Example 1. The hyper-Wiener index of µc(Cn) is given by

WW (µc(Cn)) = 2n2 + 9n.

5. PI index of µ(G) and µc(G)

In this section, we now compute the PI index of Mycielskian of G with g(G) ≥ 8.

Notations: Let G be a graph. For an edge xy ∈ E(G), denote P = NG(y) \ {x},
Q = NG

(
NG(y) \ {x}

)
\ {y} = NG(P ) \ {y} and R = NG

(
NG
(
NG(y) \ {x}

)
\

{y}
)
\
(
NG(y) \ {x}

)
= NG(Q) \ P. For x ∈ V (G) and 1 ≤ i ≤ diam(G), define

VG(i, x) = {z ∈ V (G) : dG(z, x) = i}. Clearly, if g(G) ≥ 8, then 〈VG(i, x)〉 is

induced subgraph of G, for 1 ≤ i ≤ diam(G), and P ⊆ VG(2, x), Q ⊆ VG(3, x) and

R ⊆ VG(4, x). This can be seen in Figure 2. If g(G) ≥ 8, then VG(1, x) = NG(x),

VG(2, x) = NG

(
NG(x)

)
\{x} = NG(VG(1, x))\{x} and VG(3, x) = NG

(
NG(NG(x))\

{x}
)
\NG(x) = NG(VG(2, x))\{NG(x)}. For xy ∈ E(G), we use nx and ny to denote

nx(xy|G) and ny(xy|G), respectively.

Observation 10. If g(G) ≥ 8, then for xy ∈ E(G), |P | = dG(y)− 1,

|Q| = 1− dG(y) +
∑
w∈P

dG(w), and (5.1)

|R| = dG(y)− 1 +
∑
z∈Q

dG(z)−
∑
w∈P

dG(w). (5.2)

Hence,

|Q|+ |R| =
∑
z∈Q

dG(z). (5.3)
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VG(2, x)

VG(3, x)

VG(4, x)

VG(1, x)

Q = P \ {y}

P = NG(y) \ {x}

Figure 2. The sets P, Q, R.

For x ∈ V (G), we can write V (µ(G)) = {x, x′, u} ∪
k⋃
i=1

VG(i, x) ∪
k⋃
i=1

V ′G(i, x), where

V ′G(i, x) = {z′ ∈ V ′(G) : z ∈ VG(i, x)}. Also, we define (NG(x))′ = N ′G(x) = {z′ ∈
V ′(G) : z ∈ NG(x)}.

Observation 11. For x ∈ V (G), VG(1, x) = NG(x), VG(2, x) = NG(NG(x)) \ {x},
VG(3, x) = NG

(
NG(NG(x)) \ {x}

)
\NG(x) and

|VG(1, x)| = dG(x), (5.4)

|VG(2, x)| =
[ ∑
t∈NG(x)

dG(t)
]
− dG(x), (5.5)

|VG(3, x)| = dG(x) +
∑

s∈VG(2,x)

dG(s)−
∑

t∈NG(x)

dG(t). (5.6)
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Using these observations, we prove the following result.

5.1. PI index of µ(G)

In this subsection, we obtain a formula for the PI index of µ(G) when g(G) ≥ 8. If

g(G) is at most 7, then PI(µ(G)) becomes a complicated expression that involves

many parameters in G.

Theorem 12. If G is a connected graph on n vertices, m edges with g(G) ≥ 8, then PI
index of µ(G) is given by

PIv(µ(G)) = 2n2 + 6m+ 4mn−
∑

ab∈E(µ(G))

a=x′∈V ′
b=u

[ ∑
t∈NG(x)

dG(t)

]
+

∑
ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[ ∑
w∈P

dG(w)
]
− dG(y)−

∑
s∈VG(2,x)

dG(s)

]
+

∑
ab∈E(µ(G))
a=x∈V
b=y∈V

[
dG(x) +

∑
t∈NG(x)

dG(t) +
∑

s∈VG(2,x)

dG(s) +
∑
z∈Q

dG(z)

]
.

Proof. Let diam(G) = k. By the definition of PI index of µ(G),

PIv(µ(G)) =
∑

ab∈E(µ(G))

[
na(ab|µ(G)) + nb(ab|µ(G))

]
. (5.7)

For an edge ab ∈ E(µ(G)), we have three possibilities for a and b, that is, (1) a =

x ∈ V (G), b = y′ ∈ V ′(G); (2) a = x′ ∈ V ′(G), b = u ; (3) a = x ∈ V (G), b =

y ∈ V (G). Hence, the summation in Equation (5.7) can be divided into three sums

as follows.

PIv(µ(G)) =
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[
nx + ny′

]
+

∑
ab∈E(µ(G))
a=x′∈V ′

b=u

[
nx′ + nu

]

+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
nx + ny

]
. (5.8)
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Case 1. ab ∈ E(µ(G)) with a = x in V(G) and b = y′ in V ′(G).

Let A = {x′} ∪ V ′G(2, x) ∪
(
VG(3, x) \Q

)
and

B = V (µ(G)) \A = {x, u} ∪
⋃

1≤i≤k
i 6=3

VG(i, x) ∪
⋃

1≤i≤k
i 6=2

V ′G(i, x) ∪Q.

Then for z ∈ A,

dµ(G)(x, z) = dµ(G)(y
′, z) =

{
2, if z ∈ {x′} ∪ V ′G(2, x);

3, if z ∈
(
VG(3, x) \Q

)
.

For z ∈ B,

dµ(G)(x, z) =



0, if z = x;

2, if z = u;

1, if z ∈ VG(1, x);

1, if z ∈ V ′G(1, x);

2, if z ∈ VG(2, x);

3, if z ∈ Q;

4, if z ∈
⋃

4≤i≤k

VG(i, x);

3, if z ∈
⋃

3≤i≤k

V ′G(i, x),

and

dµ(G)(y
′, z) =



1, if z = x;

1, if z = u;

2, if z ∈ VG(1, x);

0 or 2, if z ∈ V ′G(1, x);

1 or 3, if z ∈ VG(2, x);

2, if z ∈ Q;

3, if z ∈
⋃

4≤i≤k

VG(i, x);

2, if z ∈
⋃

3≤i≤k

V ′G(i, x).

Therefore, dµc(x, z) = dµc(y′, z), for every z ∈ A and dµc(x, z) 6= dµc(y′, z), for every

z ∈ B. Then

|B| = 2 +
(
n− 1− |VG(3, x)|

)
+
(
n− 1− |VG(2, x)|

)
+ |Q|

= 2n− |VG(2, x)| − |VG(3, x)|+ |Q|

= 2n+ 1− dG(y) +
∑
w∈P

dG(w)−
∑

s∈VG(2,x)

dG(s).
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Since nx + ny′ = |B|, then

∑
ab∈E(µ(G))
x=x∈V,
b=y′∈V ′

[
nx + ny′

]
=

∑
ab∈E(µ(G))
a=x∈V
b=y′∈V ′

2n+ 1− dG(y) +
∑
w∈P

dG(w)−
∑

s∈VG(2,x)

dG(s)

 .

As there are 2m edges between V (G) and V ′(G), we get∑
ab∈E(µ(G))
x=x∈V
b=y′∈V ′

[
nx + ny′

]
= 4mn+ 2m

+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[ ∑
w∈P

dG(w)
]
− dG(y)−

∑
s∈VG(2,x)

dG(s)

]
. (5.9)

Case 2. ab ∈ E(µ(G)) with a = x′ in V ′(G) and b = u.

Let A = {x} ∪ VG(2, x) and B = V (µ(G)) \ A = {u} ∪
⋃

1≤i≤k
i6=2

VG(i, x) ∪ V ′(G). Then

for z ∈ {x} ∪ VG(2, x), we have dµ(G)(x, z) = 2 = dµ(G)(u, z).

For z ∈ B,

dµ(G)(x
′, z) =



0, if z = x′;

1, if z = u;

1, if z ∈ VG(1, x);

2, if z ∈ V ′(G) \ {x′};
3, if z ∈

⋃
3≤i≤k

VG(i, x),

and

dµ(G)(u, z) =



1, if z = x′;

0, if z = u;

2, if z ∈ VG(1, x);

1, if z ∈ V ′(G) \ {x′};
2, if z ∈

⋃
3≤i≤k

VG(i, x).

Therefore, dµ(G)(x
′, z) = dµ(G)(u, z) for every z ∈ A and dµ(G)(x

′, z) 6= dµ(G)(u, z),

for every z ∈ B. Then

|B| = 1 +
(

(n− 1)− |VG(2, x)|
)

+ n

= 2n+ dG(x)−
∑

t∈NG(x)

dG(t), by Equation (5.5).
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Thus,

∑
ab∈E(µ(G))
a=x′∈V ′

b=u

[
nx′ + nu

]
=

∑
ab∈E(µ(G))
a=x′∈V ′

b=u

[
2n+ dG(x)−

∑
t∈NG(x)

dG(t)

]

=
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

2n+
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

dG(x)

−
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

∑
t∈NG(x)

dG(t).

As there are n edges between V ′ and {u} and
∑

ab∈E(µ(G))
a=x′∈V ′(G)

b=u

dG(x) =
∑

x∈V (G)

dG(x) = 2m,

we get

∑
ab∈E(µ(G))
a=x′∈V ′(G)

b=u

[
nx′ + nu

]
= 2n2 + 2m−

∑
ab∈E(µ(G))
a=x′∈V ′(G)

b=u

∑
t∈NG(x)

dG(t). (5.10)

Case 3. ab ∈ E(µ(G)) with a = x in V (G) and b = y in V (G).

Let A = {u} ∪
(
VG(4, x) \R

)
∪
(
V ′G(3, x) \Q′

)
∪

k⋃
i=5

VG(i, x) ∪
k⋃
i=4

V ′G(i, x)

and B = V (µ(G)) \A = {x, x′} ∪
3⋃
i=1

VG(i, x) ∪
2⋃
i=1

V ′G(i, x) ∪R ∪Q′.

Clearly, y ∈ VG(1, x) and y′ ∈ V ′G(1, x).

For z ∈ A,

dµ(G)(x, z) = dµ(G)(y, z) =



4, if z ∈ VG(4, x) \R;

3, if z ∈ V ′G(3, x) \Q′;
4, if z ∈

⋃
5≤i≤k

VG(i, x);

3, if z ∈
⋃

4≤i≤k

V ′G(i, x);

2, if z = u.
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For z ∈ B,

dµ(G)(x, z) =



0, if z = x;

1, if z = y;

2, if z = x′;

1, if z = y′;

1, if z ∈
(
VG(1, x) \ {y}

)
∪
(
V ′G(1, x) \ {y′}

)
;

2, if z ∈ P ∪ P ′;
2, if z ∈

(
VG(2, x) \ P

)
∪
(
VG(2, x) \ P

)′
;

3, if z ∈ VG(3, x);

4, if z ∈ R;

3, if z ∈ Q′,

and

dµ(G)(y, z) =



1, if z = x;

0, if z = y;

1, if z = x′;

2, if z = y′;

2, if z ∈
(
VG(1, x) \ {y}

)
∪
(
V ′G(1, x) \ {y′}

)
;

1, if z ∈ P ∪ P ′;
3, if z ∈

(
VG(2, x) \ P

)
∪
(
VG(2, x) \ P

)′
;

2 or 4, if z ∈ VG(3, x);

3, if z ∈ R;

2, if z ∈ Q′.

Hence, dµ(G)(x, z) = dµ(G)(y
′, z), for every z ∈ A and dµ(G)(x, z) 6= dµ(G)(y

′, z), for

every z ∈ B. Then,

|B| = 2 +

3∑
i=1

|VG(i, x)|+
2∑
i=1

|V ′G(i, x)|+ |R|+ |Q′|.

As |VG(1, x)| = dG(x), |VG(i, x)| = |V ′G(i, x)| and |(NG(x))′| = |NG(x)|, we have

|B| = 2 + 2dG(x) + 2|VG(2, x)|+ |VG(3, x)|+ |R|+ |Q|

= 2 + dG(x) +
∑

t∈NG(x)

dG(t) +
∑

s∈VG(2,x)

dG(s) +
∑
z∈Q

dG(z).

As there are m edges in G, we have
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∑
ab∈E(µ(G))
a=x∈V
b=y∈V

[
nx + ny

]
= 2m+

∑
ab∈E(µ(G))
a=x∈V
b=y∈V

[
dG(x) +

∑
t∈NG(x)

dG(t) +
∑

s∈VG(2,x)

dG(s) +
∑
z∈Q

dG(z)

]
.

(5.11)

Thus by Equations (5.9)−(5.11), we get

PIv(µ(G)) = 4mn+ 2m+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[ ∑
w∈P

dG(w)
]
− dG(y)−

∑
s∈VG(2,x)

dG(s)

]

+ 2n2 + 2m−
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

[ ∑
t∈NG(x)

dG(t)

]

+ 2m+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
dG(x) +

∑
t∈NG(x)

dG(t) +
∑

s∈VG(2,x)

dG(s) +
∑
z∈Q

dG(z)

]
.

Hence, the result follows.

As a consequence of Theorem 12, we calculate the PI index of µ(G) when G is an

`-regular with g(G) ≥ 8. First, we observe the following.

Observation 13. If G is an `-regular with g(G) ≥ 8, then for xy ∈ E(G),

|P | = `− 1, |Q| = `2 − 2`+ 1 and |VG(2, x)| = `2 − `. (5.12)

Corollary 4. If G is an `-regular graph on n vertices with g(G) ≥ 8, then the PI index
of µ(G) is given by

PIv(µ(G)) = 2n2(`+ 1
)
+ n`

(
`2 − 2`+ 3

)
.

Proof. By Theorem 12,

PIv(µ(G)) = 2n2 + 6m+ 4mn−
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

[ ∑
t∈NG(x)

dG(t)

]

+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[ ∑
w∈P

dG(w)
]
− dG(y)−

∑
s∈VG(2,x)

dG(s)

]
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+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
dG(x) +

∑
t∈NG(x)

dG(t) +
∑

s∈VG(2,x)

dG(s) +
∑
z∈Q

dG(z)

]
.

As dG(v) = `, for every v ∈ V (G) and m = n`
2 , we have

PIv(µ(G)) = 2n2 + 6

(
n`

2

)
+ 4n

(
n`

2

)
−

∑
ab∈E(µ(G))
a=x′∈V ′

b=u

[ ∑
t∈NG(x)

`

]

+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[ ∑
w∈P

`
]
− `−

∑
s∈VG(2,x)

`

]

+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
`+

∑
t∈NG(x)

`+
∑

s∈VG(2,x)

`+
∑
z∈Q

`

]

= 2n2 + 3n`+ 2n2`−
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

[
|NG(x)|

(
`
)]

+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[
|P |
(
`
)]
− `− |VG(2, x)|

(
`
)]

+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
`+ |NG(x)|

(
`
)

+ |VG(2, x)|
(
`
)

+ |Q|
(
`
)]
.

By Equation (5.12) in Observation 13, we get

PIv(µ(G)) = 2n2 + 3n`+ 2n2`−
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

[
`
(
`
)]

+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[[[
`− 1

](
`
)]
− `−

[
`2 − `

](
`
)]

+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
`+

[
`
](
`
)

+
[
`2 − `

](
`
)

+
[
`2 − 2`+ 1

](
`
)]
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= 2n2 + 3n`+ 2n2`−
∑

ab∈E(µ(G))
a=x′∈V ′

b=u

[
`2
]

+
∑

ab∈E(µ(G))
a=x∈V
b=y′∈V ′

[
2`2 − 2`− `3

]

+
∑

ab∈E(µ(G))
a=x∈V
b=y∈V

[
2`3 − 2`2 + 2`

]
.

As there are n edges between V and {u}, there are 2m = n` edges between V and V ′

and G has m edges, we get

PIv(µ(G)) = 2n2 + 3n`+ 2n2`−
(
n
)[
`2
]

+
(
n`
)[

2`2 − 2`− `3
]

+
(n`

2

)[
2`3 − 2`2 + 2`

]
.

Hence, the result follows.

By Corollary 4, we calculate the PI index of µ(G) if G is a cycle of length n ≥ 8.

Example 2. For n ≥ 8, PI index of µ(Cn) is given by

PIv(µ(Cn)) = 6
(
n2 + n

)
.

5.2. PI index of µc(G)

In this subsection, we find a formula for the PI index of the complement of Mycielskian

of G.

Theorem 14. If G is a graph with n vertices and m edges, then the PI index of comple-
ment of µ(G) is given by

PIv(µ
c(G)) = 6n2 − 6nm+ 4M1(G)

+ 6
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x) + dG(y)− dG(x ∧ y)

]

+
∑

ab∈E(µc(G))
a=x∈V (G)

b=y′∈V ′(G)
x 6=y

[
2dG(x) + dG(y)− 2dG(x ∧ y)

]

− 2
∑

ab∈E(µc(G))

a=x′∈V ′(G)

b=y′∈V ′(G)
xy/∈E(Gc)

dG(x ∧ y).
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Proof. By the definition of PI index of µc(G),

PIv(µ
c(G)) =

∑
ab∈E(µc(G))

[
na(ab|µc(G)) + na(ab|µc(G))

]
. (5.13)

For an edge ab ∈ E(µc(G)), we have six possibilities for a and b, namely, (1) a = u, b =

x ∈ V (G); (2) a = x ∈ V (G), b = y′ ∈ V ′(G), with x = y; (3) a = x ∈ V (G), b =

y′ ∈ V ′(G), with x 6= y; (4) a = x ∈ V (G), b = y ∈ V (G); (5) a = x′ ∈ V ′(G), b =

y′ ∈ V ′(G), with xy ∈ E(Gc); (6) a = x′ ∈ V ′(G), b = y′ ∈ V ′(G), with xy /∈
E(Gc). Hence, the summation in Equation (5.13) can be divided into six sums as

follows.

PIv(µ
c(G)) =

∑
ab∈E(µc(G))

a=u,
b=x∈V (G)

[nu + nx] +
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x=y

[ny + ny′ ] +
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[nx + ny′ ]

+
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[nx + ny] +
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[nx′ + ny′ ] +
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[nx′ + ny′ ]. (5.14)

It is easy to observe that if x, y ∈ V (G), then

dGc(x ∧ y) =

{
[n− 2]− dG(x)− dG(y) + dG(x ∧ y), if xy ∈ E(Gc);

n− dG(x)− dG(y) + dG(x ∧ y), if xy /∈ E(Gc).
(5.15)

By the definition of first Zagreb index of Gc, M1(Gc), we have

M1(Gc) =
∑

uv∈E(Gc)

[
dGc(u) + dGc(v)

]
=

∑
v∈V (Gc)

d2Gc(v) (5.16)

=
∑

v∈V (G)

[
(n− 1)− dG(v)

]2
, by |V (G)| = |V (Gc)| = n,

=
∑

v∈V (G)

[
(n− 1)2 + d2G(v)− 2(n− 1)dG(v)

]
.

As
∑

v∈V (G)

dG(v) = 2m and
∑

v∈V (G)

d2G(v) = M1(G), we have

M1(Gc) = n3 − 2n2 + n− 4nm+ 4m+M1(G). (5.17)

Case 1. ab ∈ E(µc(G)) with a = u and b = x ∈ V (G).

Let A = NGc(x) ∪
(
V ′(G)\N ′Gc [x]

)
and



K. Vinothkumar 23

B = V (µc(G)) \A = {u, x, x′} ∪
(
V (G)\NGc [x]

)
∪N ′Gc(x).

Then for z ∈ A,

dµc(G)(u, z) = dµc(G)(x, z) =

{
1, if z ∈ NGc(x);

2, z ∈ V ′(G)\N ′Gc [x].

For z ∈ B,

dµc(G)(u, z) =



2, if z ∈ N ′Gc(x);

1, if z ∈ V (G) \NGc [x];

0, if z = u;

1, if z = x;

2, if z = x′,

and

dµc(G)(x, z) =



1, if z ∈ N ′Gc(x);

2, if z ∈ V (G) \NGc [x];

1, if z = u;

0, if z = x;

1, if z = x′.

Therefore, every vertex of A is equidistant from the edge ux, and every vertex in B

is non-equidistant from the edge ux. Then,

|B| = 3 +
(
n−

(
dGc(x) + 1

))
+ dGc(x) = n+ 2.

Therefore, ∑
ab∈E(µc(G))

a=u,
b=x∈V (G)

[
nu + nx

]
=

∑
ab∈E(µc(G))

a=u,
b=x∈V (G)

[
n+ 2

]
.

As there are n edges between V and {u}, we get∑
ab∈E(µc(G))

a=u,
b=x∈V (G)

[
nu + nx

]
=

∑
ab∈E(µc(G))

a=u,
b=x∈V (G)

[
n+ 2

]
= n[n+ 2] = n2 + 2n. (5.18)

Case 2. ab ∈ E(µc(G)) with a = x ∈ V (G), b = y′ ∈ V ′(G) and x = y.

Let A = NGc(y) ∪N ′Gc(y) ∪
(
V (G) \

(
NGc [y]

)
and

B = V (µc(G)) \A = {u, y, y′} ∪ V ′(G) \N ′Gc [y].
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For z ∈ A,

dµc(G)(y, z) = dµc(G)(y
′, z) =

{
1, if z ∈ NGc(y) ∪N ′Gc(y);

2, if z ∈ V (G) \NGc [y].

For z ∈ B,

dµc(G)(y, z) =


2, if z ∈ V ′(G) \N ′Gc [y];

1, if z = u;

0, if z = y;

1, if z = y′,

and

dµc(G)(y
′, z) =


1, if z ∈ V ′(G) \N ′Gc [y];

2, if z = u;

1, if z = y;

0, if z = y′.

Therefore, every vertex of A is equidistant from the edge yy′ and every vertex in B

is non-equidistant from the edge yy′. Then

|B| = 3 +
(
n− [dGc(y) + 1]

)
= 3 + n− dGc(y)− 1 = 2 + n− dGc(y).

Thus,

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x=y

[
ny + ny′

]
=

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x=y

[
2 + n− dGc(y)

]

=
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x=y

[
2 + n

]
−

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x=y

dGc(y).

As there are n edges between V and V ′ with yy′ ∈ E(µc(G)) and
∑

y∈V (Gc)

dGc(y) =

2|E(Gc)| = 2
[(n

2

)
−m

]
= n2 − n− 2m, we obtain

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x=y

[
ny + ny′

]
= n[2 + n]−

[
n2 − n− 2m

]
= 3n+ 2m. (5.19)
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Case 3. ab ∈ E(µc(G)) with a = x ∈ V (G), b = y′ ∈ V ′(G) and x 6= y.

Clearly, xy, x′y, yy′, xx′ ∈ E(µc(G)). Let

A = {x′, y} ∪NGc(x ∧ y) ∪
(
V (G) \

[
NGc(x) ∪NGc(y)

])
∪
(
N ′Gc(x) \ {y′}

)
and

B = V (µc(G)) \A = {u, x, y′} ∪
(
NGc(x) \

[
NGc(x ∧ y) ∪ {y}

])
∪
(
NGc(y) \

[
NGc(x ∧ y) ∪ {x}

])
∪
(
V ′(G) \N ′Gc [x]

)
.

For z ∈ A,

dµc(G)(x, z) = dµc(G)(y
′, z) =

{
1, if z ∈ NGc(x ∧ y) ∪

(
N ′Gc(x) \ {y′}

)
∪ {x′, y};

2, if z ∈ V (G) \
[
NGc(x) ∪NGc(y)

]
.

For z ∈ B,

dµc(G)(x, z) =



1, if z ∈ NGc(x) \
[
NGc(x ∧ y) ∪ {y}

]
;

2, if z ∈ NGc(y) \
[
NGc(x ∧ y) ∪ {x}

]
;

2, if z ∈ V ′(G) \N ′Gc [x];

1, if z = u;

0, if z = x;

1, if z = y′,

and

dµc(G)(y
′, z) =



2, if z ∈ NGc(x) \
[
NGc(x ∧ y) ∪ {y}

]
;

1, if z ∈ NGc(y) \
[
NGc(x ∧ y) ∪ {x}

]
;

1, if z ∈ V ′(G) \N ′Gc [x];

2, if z = u;

1, if z = x;

0, if z = y′.

Therefore, every vertex in A is equidistant from the edge xy′ and every vertex in B

is a non-equidistant vertex from the edge xy′. Then

|B| = 3 +
[
dGc(x)− (dGc(x ∧ y) + 1)

]
+
[
dGc(y)− (dGc(x ∧ y) + 1)

]
+
[
n− (dGc(x) + 1)

]
= n+ dGc(y)− 2dGc(x ∧ y).
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Therefore,

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x6=y

[nx + ny′ ] =
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
n+ dGc(y)− 2dGc(x ∧ y)

]

=
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x6=y

n+
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x6=y

[dGc(y)]− 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
dGc(x ∧ y)

]
.

As there are 2
((
n
2

)
−m

)
edges between V and V ′ in µc(G) with respect to this case

and dGc(y) = n− 1− dG(y),

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[nx + ny′ ] =
(
n2 − n− 2m

)
[n] +

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
n− 1− dG(y)

]

− 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
dGc(x ∧ y)

]

= n3 − n2 − 2mn+
(
n2 − n− 2m

)
[n− 1]−

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
dG(y)

]

− 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
dGc(x ∧ y)

]
.

By Equation (5.15), we have

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[nx + ny′ ] = 2n3 − 3n2 − 4mn+ n+ 2m−
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
dG(y)

]

− 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
n− 2− dG(x)− dG(y) + dG(x ∧ y)

]
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= 2n3 − 3n2 − 4mn+ n+ 2m−
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
dG(y)

]

− 2
(
n2 − 2m− n

)[
n− 2

]
+

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
2dG(x) + 2dG(y)− 2dG(x ∧ y)

]
.

Hence,∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x6=y

[nx + ny′ ] = 3n2 − 3n− 6m+
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
2dG(x) + dG(y)− 2dG(x ∧ y)

]
.

(5.20)

Case 4. ab ∈ E(µc(G)) with a = x ∈ V (G) and b = y ∈ V (G).

By the definition of µc(G), xy′, x′y, xx′, yy′ ∈ E(µc(G)). Let

A = {u, x′, y′} ∪NGc(x ∧ y) ∪N ′Gc(x ∧ y) ∪
(
V (G) \

[
NGc(x) ∪NGc(y)

])
∪(

V ′(G) \
[
N ′Gc(x) ∪N ′Gc(y)

])
and

B = V (µc(G)) \A =

(
NGc(x) \NGc(x ∧ y)

)
∪
(
NGc(y) \NGc(x ∧ y)

)
∪(

N ′Gc(x) \
[
N ′Gc(x ∧ y) ∪ {y′}

])
∪
(
N ′Gc(y) \

[
N ′Gc(x ∧ y) ∪ {x′}

])
.

For z ∈ A,

dµc(G)(x, z) = dµc(G)(y, z) =


1, if z ∈ NGc(x ∧ y) ∪N ′Gc(x ∧ y);

2, if z ∈ V (G) \
(
NGc(x) ∪NGc(y)

)
;

2, if z ∈ V ′(G) \
(
N ′Gc(x) ∪N ′Gc(y)

)
;

1, if z ∈ {u, x′, y′}.

For z ∈ B,

dµc(G)(x, z) =



1, if z ∈ NGc(x) \
[
NGc(x ∧ y) ∪ {y}

]
;

1, if z ∈ N ′Gc(x) \
[
N ′Gc(x ∧ y) ∪ {y′}

]
;

2, if z ∈ NGc(y) \
[
NGc(x ∧ y) ∪ {x}

]
;

2, if z ∈ N ′Gc(y) \
[
N ′Gc(x ∧ y) ∪ {x′}

]
;

0 if z = x;

1, if z = y,
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and

dµc(G)(y, z) =



2, if z ∈ NGc(x) \
[
NGc(x ∧ y) ∪ {y}

]
;

2, if z ∈ N ′Gc(x) \
[
N ′Gc(x ∧ y) ∪ {y′}

]
;

1, if z ∈ NGc(y) \
[
NGc(x ∧ y) ∪ {x}

]
;

1, if z ∈ N ′Gc(y) \
[
N ′Gc(x ∧ y) ∪ {x′}

]
;

1, if z = x;

0, if z = y.

Therefore, every vertex of A is equidistant from the edge xy and every vertex in B is

non-equidistant from the edge xy. Then

|B| =
[
dGc(x)− dGc(x ∧ y)

]
+
[
dGc(y)− dGc(x ∧ y)

]
+
[
dGc(x)− dGc(x ∧ y)− 1

]
+
[
dGc(y)− dGc(x ∧ y)− 1

]
= 2dGc(x) + 2dGc(y)− 4dGc(x ∧ y)− 2.

Therefore

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[nx + ny] =
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
2dGc(x) + 2dGc(y)− 4dGc(x ∧ y)− 2

]

= 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dGc(x) + dGc(y)− 2dGc(x ∧ y)

]
−

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[2].

As there are
[(
n
2

)
−m

]
edges in Gc,

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[2] = n2 − n− 2m. Therefore,

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[nx + ny] = 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dGc(x) + dGc(y)− 2dGc(x ∧ y)

]
−
[
(n2 − n− 2m)

]

= n+ 2m− n2 + 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dGc(x) + dGc(y)

]
− 4

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

dGc(x ∧ y)

= n+ 2m− n2 + 2M1(Gc)− 4
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

dGc(x ∧ y), by Equation (5.16).
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By Equations (5.15) and (5.17), we get

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[nx + ny] = n+ 2m− n2 + 2
[
n3 − 2n2 + n− 4nm+ 4m+M1(G)

]

− 4
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
n− 2− dG(x)− dG(y) + dG(x ∧ y)

]

= 2n3 − 5n2 + 3n+ 10m− 8mn+ 2M1(G)− 4
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[n− 2]+

4
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x) + dG(y)− dG(x ∧ y)

]

= 2n3 − 5n2 + 3n+ 10m− 8mn+ 2M1(G)− 4

(
1

2
[n2 − n− 2m]

)
[n− 2]+

4
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x) + dG(y)− dG(x ∧ y)

]
, since |E(Gc)| =

[(
n

2

)
−m

]
.

Hence,

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[nx + ny] = n2 − n− 4mn+ 2m+ 2M1(G)

+ 4
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x) + dG(y)− dG(x ∧ y)

]
. (5.21)

Case 5. ab ∈ E(µc(G)) with a = x′ ∈ V ′(G), b = y′ ∈ V ′(G) and xy ∈ E(Gc).

Let A = {u, x, y}∪NGc(x∧ y)∪
(
V (G) \

[
NGc(x)∪NGc(y)

])
∪
(
V ′(G) \ {x′, y′}

)
and

B = V (µc(G)) \A = {x′, y′} ∪
(
NGc(x) \

[
NGc(x ∧ y) ∪ {y}

])
∪
(
NGc(y) \

[
NGc(x ∧ y) ∪ {x}

])
.
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Then for z ∈ A,

dµc(G)(x
′, z) = dµc(G)(y

′, z) =



1, if z ∈ NGc(x ∧ y);

2, if z ∈
(
V (G) \

[
NGc(x) ∪NGc(y)

])
;

1, if z ∈ V ′(G) \ {x′, y′};
2, if z = u;

1, if z ∈ {x, y}.

For z ∈ B,

dµc(G)(x
′, z) =


1, if z ∈ NGc(x) \

[
NGc(x ∧ y) ∪ {y}

]
;

2, if z ∈ NGc(y) \
[
NGc(x ∧ y) ∪ {x}

]
;

0, if z = x′;

1, if z = y′,

and

dµc(G)(y
′, z) =


2, if z ∈ NGc(x) \

[
NGc(x ∧ y) ∪ {y}

]
;

1, if z ∈ NGc(y) \
[
NGc(x ∧ y) ∪ {x}

]
;

1, if z = x′;

0, if z = y′.

Therefore, dµc(G)(x
′, z) = dµc(G)(y

′, z) for every z ∈ A and dµc(G)(x
′, z) 6=

dµc(G)(y
′, z) for every z ∈ B. Then

|B| = 2 +
(
dGc(x)−

[
dGc(x ∧ y) + 1

])
+
(
dGc(y)−

[
dGc(x ∧ y) + 1

])
= dGc(x) + dGc(y)− 2dGc(x ∧ y).

Therefore,∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
nx′ + ny′

]
=

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
dGc(x) + dGc(y)− 2dGc(x ∧ y)

]

=
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
dGc(x) + dGc(y)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

dGc(x ∧ y)

= M1(Gc)− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

dGc(x ∧ y), by Equation (5.16).
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By Equations (5.15) and (5.17), we have

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
nx′ + ny′

]
= M1(Gc)− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

dGc(x ∧ y)

=
[
n3 − 2n2 + n− 4nm+ 4m+M1(G)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
n− 2

]

+ 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
dG(x) + dG(y)− dG(x ∧ y)

]
.

As there are
(
n
2

)
−m edges in Gc,

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
nx′ + ny′

]
=
[
n3 − 2n2 + n− 4nm+ 4m+M1(G)

]

− 2
[1

2
[n2 − n− 2m]

][
n− 2

]
+ 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
dG(x) + dG(y)− dG(x ∧ y)

]
.

Hence,

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
nx′ + ny′

]
= n2 − n− 2nm+M1(G)

+ 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
dG(x) + dG(y)− dG(x ∧ y)

]
. (5.22)

Case 6. ab ∈ E(µc(G)) with a = x′ ∈ V ′(G), b = y′ ∈ V ′(G) and xy /∈ E(Gc).

Let A = {u}∪NGc(x∧y)∪
(
V (G)\

[
NGc(x)∪NGc(y)∪{x, y}

])
∪
(
V ′(G)\{x′, y′}

)
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and B = V (µc(G))\A = {x, y, x′, y′}∪
(
NGc(x)\NGc(x∧y)

)
∪
(
NGc(y)\NGc(x∧y)

)
.

For z ∈ A,

dµc(G)(x
′, z) = dµc(G)(y

′, z) =


1, if z ∈ NGc(x ∧ y);

2, if z ∈ V (G) \
[
NGc(x) ∪NGc(y) ∪ {x, y}

]
;

1, if z ∈ V ′(G) \ {x′, y′};
2, if z = u.

For z ∈ B,

dµc(G)(x
′, z) =



1, if z ∈ NGc(x) \NGc(x ∧ y);

2, if z ∈ NGc(y) \NGc(x ∧ y);

0, if z = x′;

1, if z = y′;

1, if z = x;

2, if z = y,

and

dµc(G)(y
′, z) =



2, if z ∈ NGc(x) \NGc(x ∧ y);

1, if z ∈ NGc(y) \NGc(x ∧ y);

1, if z = x′;

0, if z = y′;

2, if z = x;

1, if z = y.

Therefore, dµc(G)(x
′, z) = dµc(G)(y

′, z) for every z ∈ A and dµc(G)(x
′, z) 6=

dµc(G)(y
′, z), for every z ∈ B. Then,

|B| = 4 +

[
dGc(x)− dGc(x ∧ y)

]
+

[
dGc(y)− dGc(x ∧ y)

]
= 4 + dGc(x) + dGc(y)− 2dGc(x ∧ y).

Therefore,

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[nx′ + ny′ ] =
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[
4 + dGc(x) + dGc(y)− 2dGc(x ∧ y)

]

=
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[4] +
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[
dGc(x) + dGc(y)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

dGc(x ∧ y)
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As |{ab ∈ E(µc(G)) : a = x′ ∈ V ′, b = y′ ∈ V ′, xy ∈ E(G)}| = m and dGc(x) =

n− 1− dG(x), we have

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[nx′ + ny′ ] = m[4] +
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[(
n− 1− dG(x)

)
+
(
n− 1− dG(y)

)]

− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

dGc(x ∧ y)

= 4m+
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[
2n− 2− dG(x)− dG(y)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

dGc(x ∧ y).

By Equation (5.15),

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[nx′ + ny′ ] = 4m+m[2n− 2]−
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[
dG(x) + dG(y)

]

− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[
n− dG(x)− dG(y) + dG(x ∧ y)

]

= 4m+m[2n− 2]−
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[
dG(x) + dG(y)

]

− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[
n
]

+ 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

[
dG(x) + dG(y)

]

− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

dG(x ∧ y).
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By the definition of the first Zagreb index of G,

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[nx′ + ny′ ] = 4m+m[2n− 2]−M1(G)− 2
(
m
)[
n
]

+ 2
[
M1(G)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

dG(x ∧ y).

Hence,

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[nx′ + ny′ ] = 2m+M1(G)− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(G)

dG(x ∧ y). (5.23)

By Equations (5.18)−(5.23) and∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x) + dG(y) − dG(x ∧ y)

]
=

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy∈E(Gc)

[
dG(x) + dG(y) − dG(x ∧ y)

]
,

then the result follows.

As a consequence, we calculate the PI index of µc(G) when G is an `-regular.

Corollary 5. If G is an `-regular graph on n vertices, then PI index of µc(G) is given by

PIv(µ
c(G)) = [12`+ 6]n2 − [5`+ 9]n`− 6

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x ∧ y)

]

− 2
∑

ab∈E(µc(G))
a=x∈V (G)

b=y′∈V ′(G)
x 6=y

[
dG(x ∧ y)

]
− 2

∑
ab∈E(µc(G))

a=x′∈V ′(G)

b=y′∈V ′(G)
xy/∈E(Gc)

[
dG(x ∧ y)

]
. (5.24)

In particular, if G is an `-regular graph on n vertices and triangle-free, then

PIv(µ
c(G)) = [12`+ 6]n2 − [5`+ 9]n`.
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Proof. By Theorem 14,

PIv(µ
c(G)) = 6n2 − 6nm+ 4M1(G) + 6

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
dG(x) + dG(y)− dG(x ∧ y)

]

+
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
2dG(x) + dG(y)− 2dG(x ∧ y)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

dG(x ∧ y).

As dG(v) = `, for every v ∈ V (G), m = n`
2 and M1(G) = n`2,

PIv(µ
c(G)) = 6n2 − 6n

(
n`

2

)
+ 4

(
n`2
)

+ 6
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[
[`] + [`]− dG(x ∧ y)

]

+
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[
2[`] + [`]− 2dG(x ∧ y)

]
− 2

∑
ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

dG(x ∧ y)

= 6n2 − 3n2`+ 4n`2 + 6
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[2`]− 6
∑

ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[dG(x ∧ y)]

+
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[3`]− 2
∑

ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[dG(x ∧ y)]− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[dG(x ∧ y)].

As Gc has
((
n
2

)
−m

)
edges, there are n2− 2m−n edges between V and V ′ such that

xy′ ∈ E(µc(G)) with x 6= y,

PIv(µ
c(G)) = 6n2 − 3n2`+ 4n`2 + 6

(
1

2
[n2 − n− 2m]

)
[2`]− 6

∑
ab∈E(µc(G))
a=x∈V (G)
b=y∈V (G)

[dG(x ∧ y)]

+
(
n2 − 2m− n

)
[3`]− 2

∑
ab∈E(µc(G))
a=x∈V (G)
b=y′∈V ′(G)

x 6=y

[dG(x ∧ y)]− 2
∑

ab∈E(µc(G))
a=x′∈V ′(G)
b=y′∈V ′(G)
xy/∈E(Gc)

[dG(x ∧ y)].

Next, if G is an `-regular with triangle-free, then we have dG(x ∧ y) = 0. The result

follows from Equation 5.24.
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By Corollary 5, we calculate the PI index of µc(G) if G is a cycle of length n ≥ 3.

Example 3. For n ≥ 3, PI index of µc(Cn) is given by

PIv(µ
c(Cn)) = 30n2 − 38n.
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