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Abstract: The paired, total, and independent domination subdivision number of a

graph G is the minimum number of edges that must be subdivided, where each edge
can be subdivided at most once, in order to increase the paired, total, and independent

domination number, respectively. In this paper, we prove that the corresponding deci-

sion problems for paired, total, and independent domination subdivision numbers are
NP-hard, even when restricted to bipartite graphs. Additionally, we point out the error

in the previous proof of NP-hardness of the paired domination subdivision problem by
Amjadi and Chellali in “Complexity of the paired domination subdivision problem”

[Commun. Comb. Optim. 7 (2022), No.2, 177–182].
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1. Introduction

We consider the finite, undirected and simple graph G with vertex set V (G) and edge

set E(G). For graph theoretic terminology and notation, we refer the readers to [12],

and for complexity theoretic terminology and notation, we refer to [9].

Domination number and its variants are one of the most extensively researched graph

theoretical parameters due to their theoretical as well as practical importance. When a

graph theoretic parameter is of interest in applications, it is often crucial to understand
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2 Complexity of three domination subdivision problems

how this parameter behaves when the graph undergoes modifications. Thus it is an

interesting and important problem to recognize the impact on domination number

when a graph is modified through various operations, for instance, deleting an edge

[6], adding an edge [15], contracting an edge [14], or subdividing an edge [11]. In these

problems, given a graph G, a natural number k and a fixed operation, the question is

whether G can be transformed to a graph G′, using at most k operations, such that

the domination number of G′ is either increased or decreased accordingly, relative to

the domination number of G.

Velammal [16] in his Ph.D. thesis initiated the study of the effect of a graph operation

called subdivision of an edge on the domination number. An edge uv of a graph

G is subdivided by deleting the edge uv, and inserting a new vertex w with edges

uw and vw. The newly added vertex w is called a subdivision vertex. A set D of

vertices in a graph G is called a dominating set if every vertex of G is either in D

or is adjacent to a vertex in D. The domination number of G, denoted by γ(G), is

defined as the minimum cardinality of a dominating set of G. Upon subdividing an

edge, the domination number of the resulting graph does not decrease relative to the

domination number of G. The domination subdivision number, denoted by sdγ(G),

is the minimum number of edges of G that must be subdivided (each edge can be

subdivided at most once) in order to increase the domination number.

In this paper, we consider the three variants of dominating sets- paired dominating

set, total dominating set, and independent dominating set. A matching in a graph G

is a set of edges without common vertices, while a perfect matching in G is a matching

such that every vertex of G is incident to an edge of the matching. A vertex which is

not incident to any edge of G is an isolated vertex. A paired (resp. total, independent)

dominating set of G is a dominating set D with additional property that it induces a

subgraph G[D] of G which has a perfect matching (resp. no isolated vertex, no edge).

The paired (resp. total, independent) domination number of G, denoted by γpr(G)

(resp. γt(G), i(G)) is the minimum cardinality of a paired (resp. total, independent)

dominating set. A paired (resp. total, independent) dominating set of G of cardinality

γpr(G) (resp. γt(G), i(G)) is called a γpr-set (resp. γt-set, i-set) of G. The concept

of the domination subdivision number has been extended to these three variants of

domination: the paired domination subdivision number [8], the total domination sub-

division number [13], and the independent domination subdivision number [5], which

are defined along similar lines of the domination subdivision number.

Determining if there exists a polynomial-time algorithm to compute the exact value of

a graph parameter is a fundamental problem. If the decision problem corresponding

to the computation of a certain parameter is NP-hard, then polynomial-time algo-

rithms for this parameter do not exist unless NP = P. In this paper, we investigate

the algorithmic complexity of decision problems corresponding to the determination

of three aforementioned variants of domination subdivision numbers: paired domi-

nation subdivision problem, total domination subdivision problem, and independent

domination subdivision problem.

Although the concept of the domination subdivision number dates back to the early

2000s, the complexity results in this area have only been studied recently. The first
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result concerning the NP-hardness of the decision problem of domination subdivision

number is proved by Detlaff et al. [7]. The algorithmic complexity of several other

variants of the domination subdivision problem have been investigated in recent years.

The decision problem associated with Roman domination subdivision number is shown

to be NP-hard by Amjadi et al. [2]. Amjadi and Sadeghi proved the NP-hardness of

double and triple Roman domination subdivision problems in [3] and [4], respectively.

Haghparast et al. [10] established a general result showing the NP-hardness of [k]-

Roman domination subdivision number of graphs.

In this paper, we prove that the decision problem of the paired domination subdivision

number is NP-hard even when restricted to bipartite graphs. Moreover, we also estab-

lish the NP-hardness of the decision problems associated with the total domination

subdivision number and the independent domination subdivision number, restricted

to bipartite graphs. These results are proved in Sections 3, 4, 5, respectively.

We note here that Amjadi and Chellali [1] proposed a proof of the NP-hardness

of the paired domination subdivision problem. We produce a counterexample that

demonstrates the error in their proof in Appendix A. Further, we provide a revised

proof of the NP-hardness of the paired domination subdivision problem (Theorem 1)

by introducing an alternative gadget. The proofs of our results are by a polynomial

time transformation from 3-SAT problem. This problem is discussed in the next

section.

2. 3-SAT Problem

The 3-satisfiability problem, abbreviated 3-SAT, is a well-known NP-complete prob-

lem. It serves as a benchmark for proving the NP-hardness of other problems. A

problem is proven to be NP-hard by showing a polynomial time reduction from 3-SAT.

In reduction, we transform an instance of 3-SAT into an instance of the considered

problem. Using the techniques outlined for proving the NP-completeness presented

by Garey and Johnson [9], we provide a polynomial time reduction from 3-SAT to

establish the NP-hardness of the paired domination subdivision problem, the total

domination subdivision problem, and the independent domination subdivision prob-

lem. Before stating the 3-SAT problem, we recall some terminology.

Let U = {u1, u2, . . . , un} be a set of variables. A truth assignment for U is a mapping

t : U → {T, F}. If t(ui) = T , then ui is said to be true under t; if t(ui) = F , then ui
is said to be false under t. In other words, t assigns the value true (T ) or false (F ) to

each variable ui. The variable ui and the negated variable ui are called literals over

U . In order to extend t to a truth assignment on literals, we set t(ui) = T if t(ui) = F ;

and t(ui) = F otherwise. A clause over U is a set of literals over U . A clause is said

to be satisfied by a truth assignment if and only if at least one of its members is true

under that assignment. A collection C of clauses over U is satisfiable if and only if

there exists a truth assignment for U that simultaneously satisfies all the clauses in

C . Such a truth assignment is a satisfying truth assignment for C . Given clauses

C1, C2, . . . , Cm each containing exactly three literals over U , the 3-SAT problem is
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to check if there exists a truth assignment for U that simultaneously satisfies all the

clauses. Let us state the 3-SAT problem as follows. For a positive integer k, we use

the standard notation [k] = {1, 2, . . . , k}.

3-Satisfiability Problem (3-SAT)

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U

of variables such that |Cj | = 3 for each j ∈ [m].

Question: Is there a satisfying truth assignment for C ?

The NP-completeness of the 3-SAT problem is a cornerstone of computational com-

plexity theory. The following theorem serves as the foundation for polynomial time

reductions used to establish the NP-hardness of other problems.

Theorem A (Theorem 3.1, [9]). The 3-Satisfiability Problem is NP-complete.

3. Complexity of Paired Domination Subdivision Problem

Let us first recall the definition of the paired domination subdivision number. Let G

be a graph of order at least three, without isolated vertices. The paired domination

subdivision number of G, denoted sdγpr (G), is the minimum number of edges that

must be subdivided (where no edge in G can be subdivided more than once) in order

to increase the paired domination number of G. Note that, if D is a paired dominating

set with a perfect matching M , then two vertices u and v are said to be paired or

partners in D if the edge uv ∈ M . Clearly, the paired domination number γpr(G) is

always an even integer.

In this section, we show that the problem of determining the paired domination

subdivision number in bipartite graphs is NP-hard. Let us first state the problem as

the following decision problem.

Paired Domination Subdivision Problem

Instance: A nonempty graph G and a positive integer k.

Question: Is sdγpr (G) ≤ k?

Now we prove the NP-hardness of the paired domination subdivision problem.

Theorem 1. The paired domination subdivision problem is NP-hard even when restricted
to bipartite graphs and k = 1.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance

of 3-SAT. We construct a bipartite graph G from the instance (U,C ) of 3-SAT such

that C is satisfiable if and only if sdγpr (G) = 1 as follows:
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1. For each variable ui ∈ U , associate a graph Hi with the vertex set

(V (Hi) = vi, wi, ui, ui, pi, ai, bi, ci, qi, di, ei, fi) and

the edge set E(Hi) = {aipi, bipi, cipi, vipi, wipi, diqi, eiqi, fiqi, uiqi, viui, qiui, wiui}

2. For each clause Cj , associate a single vertex Cj . We add the edge Cjui if

ui ∈ Cj , and the edge Cjui if ui ∈ Cj to the edge set of G.

3. Add a path L with the vertex set V (L) = {l1, l2, l3, l4} and

the edge set E(L) = {l1l2, l2l3, l3l4}. We denote this path by l1l2l3l4.

4. Finally, for each j ∈ [m], join the vertex l1 to the clause vertex Cj .

It is easy to see that the graph G contains 12n + m + 4 vertices and 12n + 4m + 3

edges. Hence, the construction of G can be accomplished in polynomial time. It is

clear that the constructed graph G is a bipartite graph with bipartition

X = {ai, bi, ci, wi, vi, qi, Cj , l2, l4 | 1 ≤ i ≤ n, 1 ≤ j ≤ m} and

Y = {ui, ui, pi, di, ei, fi, l1, l3 | 1 ≤ i ≤ n}.
Figure 1 illustrates the construction of the graph G, for the instance (U,C ) where

U = {u1, u2, u3, u4}, C = {C1, C2, C3}, with

C1 = {u1, u3, u4}, C2 = {u1, u2, u3}, C3 = {u1, u2, u4}.

u1u1

v1w1

q1

e1d1 f1

p1

b1a1 c1

u2u2

v2w2

q2

e2d2 f2

p2

b2a2 c2

u3u3

v3w3

q3

e3d3 f3

p3

b3a3 c3

u4u4

v4w4

q4

e4d4 f4

p4

b4a4 c4

C1 C2 C3

l1

l2

l3

l4

Figure 1. An illustration of the construction of G in the proof of Theorem 1

We show that, the collection C is satisfiable if and only if sdγpr (G) = 1, through the

following four claims.
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Claim 1.1. γpr(G) ≥ 4n + 2. Moreover, if γpr(G) = 4n + 2, then for any γpr-set D of
G, we have, D ∩ L = {l2, l3}, |D ∩ V (Hi)| = 4 and |D ∩ {ui, ui}| ≤ 1 for each i ∈ [n], and
Cj /∈ D for each j ∈ [m].

Proof. Let D be a γpr-set of G. It is clear from the construction of G that the

pendant vertices ai, bi, ci and di, ei, fi are covered only by the support vertices pi and

qi, respectively. Also, the vertices pi and qi are not adjacent. So at least four vertices

from each gadget Hi must be present in D. Hence, |D ∩ V (Hi)| ≥ 4 for each i ∈ [n].

Further, to paired dominate the pendant vertex l4, the set D must include at least

two vertices from L. Hence, γpr(G) ≥ 4n+ 2.

Suppose γpr(G) = 4n+ 2. Then |D ∩V (Hi)| = 4 for each i ∈ [n] and |D ∩V (L)| = 2.

This shows that, D ∩ L = {l2, l3} and the clause vertex Cj /∈ D for each j ∈ [m].

Observe that ui and ui along with their possible partners can not dominate Hi. If both

ui and ui are in D for some i ∈ [n], then four additional vertices (other than ui and ui)

from Hi must be included in the set D, which is a contradiction to |D ∩ V (Hi)| = 4.

Therefore, |D ∩ {ui, ui}| ≤ 1 for each i ∈ [n]. This proves Claim 1.1.

Claim 1.2. The collection C is satisfiable if and only if γpr(G) = 4n+ 2.

Proof. Suppose D is a γpr-set of G with cardinality 4n+ 2. By Claim 1.1,

|D ∩ {ui, ui}| ≤ 1 for each i ∈ [n]. Let us define a mapping

t : U → {T, F} by t(ui) =

{
T if ui ∈ D;

F otherwise.

Now we show that t is a satisfying truth assignment for the collection C . Choose an

arbitrary clause Cj in C . Since l1 /∈ D and the corresponding clause vertex Cj /∈ D,

there exists at least one k ∈ [n] such that vertex Cj is dominated either by uk ∈ D or

by uk ∈ D. Now, by definition of the mapping t, the literal belonging to D assumes

value T . It follows that the clause Cj is satisfied by t. Since Cj is arbitrary, we get

that t satisfies all the clauses in C . Hence, the collection C is satisfiable.

Conversely, suppose the collection C is satisfiable. If t : U → {T, F} is a satisfying

truth assignment for C , then we can construct a paired dominating set D of V (G) with

cardinality 4n+ 2 as follows. If t(ui) = T , put ui, qi, pi, wi in D and if t(ui) = F , put

ui, qi, pi, wi in D. Now {ui, qi, pi, wi} as well as {ui, qi, pi, wi} are paired dominating

sets for the gadget Hi. As t is a satisfying truth assignment for C , the clause vertex

Cj in G is adjacent to at least one vertex in D. Therefore, each clause vertex Cj with

j ∈ [m] is dominated by a vertex in D. Finally, add the vertices l2, l3 to D to form a

paired dominating set of the path L. Thus, we have constructed a paired dominating

set D of G with cardinality 4n + 2. But by Claim 1.1, γpr(G) ≥ 4n + 2, and hence,

γpr(G) = 4n+ 2. This proves Claim 1.2.

Claim 1.3. Let G′ be a graph obtained by subdividing any edge of the graph G. Then
γpr(G

′) ≤ 4n+ 4.
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Proof. Observe that, the vertex l1 is adjacent to each clause vertex Cj in graph G.

We will make use of this fact to construct a paired dominating set D′ of G′ with

cardinality 4n+ 4.

Suppose an edge in the gadget L consisting of path l1l2l3l4 is subdivided by introduc-

ing a subdivision vertex w. Now, we construct a set D′ that dominates clause vertices

and path vertices as follows. Select the vertex l1 and its next vertex, which is either

l2 or w, call it t1. Select vertex l4 and its preceding vertex, which is either l3 or w,

call it t4. It is easy to observe that the set D′ = {l1, t1, l4, t4} ∪ {pi, bi, di, qi | i ∈ [n]}
is a paired dominating set of G′.

Assume that an edge incident to a clause vertex Cj is subdivided. Note that, the

vertex Cj is adjacent to the vertex l1 and three literals over U . If Cj is adjacent to

uk for some k ∈ [n], and the edge Cjuk is subdivided, then D′ = {l1, l2, l3, l4} ∪
{bi, pi, qi, ui | i ∈ [n]} is a paired dominating set of G′. Similarly, if Cj is adjacent to

some uk, we can obtain a paired dominating set by replacing uk with uk in D′.

Consider the case where an edge in the gadget Hk is subdivided for some k ∈ [n].

If an edge incident to the vertex pk is subdivided with a subdivision vertex w, then

D′ = {l1, l2, l3, l4, pk, w, dk, qk}∪{bi, pi, di, qi | i ∈ [n], i 6= k} is a paired dominating set

of G′. Similarly, if an edge incident to the vertex qk is subdivided with a subdivision

vertex w, then D′ = {l1, l2, l3, l4, qk, w, pk, bk} ∪ {bi, pi, di, qi, | i ∈ [n], i 6= k} is a

paired dominating set of G′. If the edge uivi or uiwi is subdivided, then D′ =

{l1, l2, l3, l4} ∪ {qi, ui, pi, wi | i ∈ [n]} is the required paired dominating set.

Therefore, in each case, we get a paired dominating set D′ of G′ with cardinality

4n+ 4. This proves Claim 1.3.

Claim 1.4. γpr(G) = 4n+ 2 if and only if sdγpr (G) = 1.

Proof. Assume that γpr(G) = 4n + 2. We subdivide the edge l3l4 in the gadget L

to obtain a new graph G′ with subgraph L′ being the path l1l2l3wl4. By Claim 1.3,

γpr(G
′) ≤ 4n+4. Also, if D′ is a paired dominating set of G′, then |D′∩V (Hi)| ≥ 4 for

each i and no vertex of L′ is dominated by D′ ∩ V (Hi) for any i. Hence, at least four

vertices are required to paired dominate the vertices of L′, leading to γpr(G
′) ≥ 4n+4,

and the equality follows from Claim 1.3. Therefore, γpr(G) < γpr(G
′) and thus

sdγpr (G) = 1.

Conversely, suppose that sdγpr (G) = 1, and note that the paired domination number is

always an even integer. By Claim 1.1, γpr(G) ≥ 4n+2. Let G′ be obtained from G by

subdividing any edge of G such that γpr(G) < γpr(G
′). By Claim 1.3, γpr(G

′) ≤ 4n+4

and thus 4n+2 ≤ γpr(G) < γpr(G
′) ≤ 4n+4. Therefore, γpr(G) = 4n+2, as desired.

By Claims 1.2 and 1.4, it follows that sdγpr (G) = 1 if and only if the collection C is

satisfiable. The construction of the paired domination subdivision instance is straight-

forward from the 3-SAT instance and the size of the paired domination subdivision

instance is bounded above by a polynomial function of the size of the 3-SAT instance.

It follows that this is a polynomial reduction and thus the NP-hardness of the paired

domination subdivision problem in bipartite graphs is established.
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As noted in the introduction, a proof of the NP-hardness of the paired domination

subdivision problem was given by Amjadi and Chellali [1], but the proof contains an

error which will be explained in Appendix A.

4. Complexity of Total Domination Subdivision Problem

Recall that the total domination subdivision number sdγt(G) of an isolate-free graph

G of order at least 3, is the minimum number of edges that must be subdivided, each

at most once, in order to increase the total domination number of G. In this section,

we show that the problem of determining the total domination subdivision number

in bipartite graphs is NP-hard by a slight modification of the proof of Theorem 1.

We first state the problem as the decision problem, followed by the proof of the

NP-hardness.

Total Domination Subdivision Problem

Instance: A nonempty graph G and a positive integer k.

Question: Is sdγt(G) ≤ k?

Theorem 2. The total domination subdivision problem is NP-hard even when restricted
to bipartite graphs and k = 1.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance

of 3-SAT. We construct a bipartite graph G from the instance (U,C ) of 3-SAT such

that C is satisfiable if and only if sdγt(G) = 1 as follows. The graph required for this

proof is a slight modification of the graph used in the proof of the paired domination

subdivision problem by introducing an additional vertex l5 adjacent to vertex l4.

Clearly the graph remains bipartite and the construction can be accomplished in

polynomial time.

Figure 2 illustrates the construction of the graph G from the instance (U,C ) where

U = {u1, u2, u3, u4}, C = {C1, C2, C3}, and

C1 = {u1, u3, u4}, C2 = {u1, u3, u4}, C3 = {u2, u3, u4}.

In the next, we prove that the collection C is satisfiable if and only if sdγt(G) = 1,

through the following four claims.

Claim 2.1. γt(G) ≥ 4n+ 3. Moreover, if γt(G) = 4n+ 3, then for any γt-set D of G, we
have {l3, l4} ⊆ D and |D ∩ V (Hi)| = 4, |D ∩ {ui, ui}| ≤ 1 for each i ∈ [n], and l1 /∈ D.

Proof. Let D be a γt-set of G. By the construction of G, the pendant vertices

ai, bi, ci and di, ei, fi are covered only by vertices pi and qi, respectively. Since the

support vertices pi and qi are neither adjacent nor have common neighbors, at least

four vertices from each gadget Hi must be present in the total dominating set D.
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u1u1

v1w1

q1

e1d1 f1
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b1a1 c1

u2u2
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e4d4 f4

p4
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l3
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Figure 2. An illustration of the construction of G in the proof of Theorem 2

Moreover, to totally dominate the vertices of path L at least three vertices are required

from V (G) \
n⋃
i=1

V (Hi). Hence, γt(G) ≥ 4n+ 3.

Suppose γt(G) = 4n + 3. Then |D ∩ V (Hi)| = 4 for each i ∈ [n]. If both ui and ui
are in D, then it is not possible to totally dominate all vertices of Hi by selecting at

most two additional vertices from Hi. Therefore, |D ∩ {ui, ui}| ≤ 1 for each i ∈ [n].

Now we show that {l3, l4} ⊆ D. Since l5 is a pendant vertex with support vertex l4,

we must have either {l4, l5} ⊆ D or {l3, l4} ⊆ D. We show that the former is not

possible. The vertices l1 and l2 are not dominated by l4, l5 nor by the vertices of

gadgets Hi. Hence, if {l4, l5} ⊆ D, then it is not possible to choose a single vertex of

G to totally dominate both l1 and l2. Therefore, {l3, l4} ⊆ D. Now, if l1 ∈ D, then

no vertex in open neighborhood of l1 belongs to D, which is a contradiction to the

fact that D is a total dominating set of G. Hence, l1 /∈ D. This completes the proof

of Claim 2.1.

Claim 2.2. The collection C is satisfiable if and only if γt(G) = 4n+ 3.

Proof. Let D be a γt-set of G with cardinality 4n+ 3. By Claim 2.1, l1 /∈ D and for

each i ∈ [n], |D ∩ {ui, ui}| ≤ 1. Let us define a mapping

t : U → {T, F} by t(ui) =

{
T if ui ∈ D;

F otherwise.

Choose an arbitrary clause Cj in the collection C . Since l1 /∈ D and the fact that

D is a total dominating set, the clause vertex Cj must be adjacent to either uk ∈ D
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or uk ∈ D for some k ∈ [n]. By definition of the mapping t, the literal present in D

assumes value T . It follows that the clause Cj is satisfied by t. By the arbitrariness

of Cj with j ∈ [m], we get that t is a satisfying truth assignment for C . Thus, the

collection C is satisfiable.

Conversely, suppose the collection C is satisfiable. If t : U → {T, F} is a satisfying

truth assignment for C , then we construct a total dominating set D of G with car-

dinality 4n + 3 as follows. If t(ui) = T , put ui, qi, pi, wi in D and if t(ui) = F , put

ui, qi, pi, wi in D. Now {ui, qi, pi, wi} as well as {ui, qi, pi, wi} are total dominating

sets for the gadget Hi. As t is a satisfying truth assignment for C , the clause vertex

Cj is adjacent to at least one vertex in D. Therefore, each clause vertex Cj with

j ∈ [m] is dominated by at least one vertex in D. Finally, add the vertices l2, l3, l4
to D to totally dominate the vertices of the path L. Thus, D is a total dominating

set of G with cardinality 4n + 3. But by Claim 2.1, γt(G) ≥ 4n + 3, and hence,

γt(G) = 4n+ 3. This completes the proof of Claim 2.2.

Claim 2.3. Let G′ be a graph obtained by subdividing any edge of the graph G. Then
γt(G

′) ≤ 4n+ 4.

Proof. The proof is similar to the proof of Claim 1.3.

Claim 2.4. γt(G) = 4n+ 3 if and only if sdγt(G) = 1.

Proof. The proof is similar to the proof of Claim 1.4.

By Claims 2.2 and 2.4, we proved that sdγt(G) = 1 if and only if the collection

C is satisfiable. The construction of the total domination subdivision instance is

polynomial-time from a 3-SAT instance, since the graph G contains 12n + m + 5

vertices and 12n + 4m + 4 edges. Thus the NP-hardness of the total domination

subdivision problem in bipartite graphs follows.

5. Complexity of Independent Domination Subdivision Prob-
lem

In this section, we study the complexity of the independent domination subdivi-

sion number problem. Recall that the independent domination subdivision number,

sdi(G), of a connected graph G of order at least 3, is the minimum number of edges

that must be subdivided, each at most once, in order to increase the independent

domination number of G. We show that the problem of determining the independent

domination subdivision number in bipartite graphs is NP-hard. The corresponding

decision problem is stated below, followed by the proof of NP-hardness.
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Independent Domination Subdivision Problem

Instance: A nonempty graph G and a positive integer k.

Question: Is sdi(G) ≤ k?

Theorem 3. The independent domination subdivision problem is NP-hard even when
restricted to bipartite graphs and k = 1.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance

of 3-SAT. We construct a bipartite graph G from the instance (U,C ) of 3-SAT such

that C is satisfiable if and only if sdi(G) = 1 as follows.

1. For each variable ui ∈ U , with i ∈ 1, 2, . . . n, associate a graph Hi with

the vertex set V (Hi) = ui, ui, ai, bi, ci, ai1, ai2, ai3, bi1, bi2, bi3, ci1, ci2, ci3 and

the edge set E(Hi) = {uiai, uici, aibi1, aibi2, aibi3, aici1, aici2, aici3, biai1, biai2,
biai3, bici1, bici2, bici3, ciai1, ciai2, ciai3, cibi1, cibi2, cibi3}.

2. For each clause Cj , associate a single vertex Cj . We add the edge Cjui if

ui ∈ Cj , and the edge Cjui if ui ∈ Cj to the edge set for each j ∈ [m].

3. Finally, add a path L, with vertex set V (L) = {l1, l2, l3} and edge set E(L) =

{l1l2, l2l3}, by joining the vertex l1 to each vertex Cj .

The construction of the graph G can be accomplished in polynomial time as its order

is polynomially bounded in terms of m and n. Observe that the graph G constructed

above is a bipartite graph with bipartition

X = {ai, bi, ci, Cj , l2 | i ∈ [n], j ∈ [m]} and

Y = {ui, ui, ai1, ai2, ai3, bi1, bi2, bi3, ci1, ci2, ci3, l1, l3 | i ∈ [n]}.
Figure 3 illustrates this construction for the instance U,C with

U = {u1, u2, u3} and C = {C1, C2, C3, C4}, where

C1 = {u1, u2, u3}, C2 = {u1, u2, u3}, C3 = {u1, u2, u3}, C4 = {u1, u2, u3}.
We establish that the collection C is satisfiable if and only if sdi(G) = 1 through the

following four claims.

Claim 3.1. i(G) ≥ 3n + 1. Moreover, if i(G) = 3n + 1, then for any i-set D of G,
D ∩ V (L) = {l2}, |D ∩ V (Hi)| = 3, |D ∩ {ui, ui}| ≤ 1 for each i ∈ [n], and Cj /∈ D for each
j ∈ [m].

Proof. Let D be an i-set of G. By the construction of G, the vertex l2 can be

dominated only by vertices in {l1, l2, l3}. This implies |D∩V (L)| ≥ 1. Also, it is easy

to observe that at least three vertices from each gadget Hi must be present in any

dominating set. Therefore, i(G) ≥ 3n+ 1.

Suppose i(G) = 3n + 1. Then |D ∩ V (L)| = 1 and |D ∩ V (Hi)| = 3 for each i ∈ [n].

As a result, the clause vertex Cj /∈ D for each j ∈ [m]. Moreover, it is not possible
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Figure 3. An illustration of the construction of G in the proof of Theorem 3

to construct an independent dominating set for Hi of cardinality 3 containing both

ui and ui, leading to |D ∩ {ui, ui}| ≤ 1. Also, as l2 is dominated only by the vertices

of L and |D ∩ V (L)| = 1, we obtain D ∩ V (L) = {l2}. This completes the proof of

Claim 3.1.

Claim 3.2. The collection C is satisfiable if and only if i(G) = 3n+ 1.

Proof. Suppose that i(G) = 3n + 1 and let D be an i-set of G. By Claim 3.1, we

obtain for each i ∈ [n], |D ∩ {ui, ui}| ≤ 1, and l2 ∈ D. Let us define a mapping

t : U → {T, F} by t(ui) =

{
T if ui ∈ D;

F otherwise.

Now, we show that t is a satisfying truth assignment for C . Let Cj be an arbitrary

clause in the collection C . Then the clause vertex Cj is dominated by a literal in Hk,

say uk or uk, for some k ∈ [n]. The literal belonging to D assumes value T under the

mapping t. It follows that the clause Cj is satisfied by t. By the arbitrariness of Cj
with j ∈ [m], we get that t satisfies all the clauses in C , that is, C is satisfiable.

Conversely, suppose C is satisfiable. We construct a dominating set D of G as follows.

Let t : U → {T, F} be a satisfying truth assignment for C . For each i ∈ [n], if

t(ui) = T , put ui, bi, ci in D; otherwise put ui, ai, bi in D. Add the vertex l2 to D,

and observe that D is an independent set of cardinality 3n+ 1.

Now, {ui, bi, ci} as well as {ui, ai, bi} are dominating sets of the gadget Hi. Since t is

a satisfying truth assignment for C , the clause vertex Cj in G is adjacent to at least

one vertex in D. So, each clause vertex Cj is dominated by at least one vertex in

D. The vertex l2 dominates the path L. Thus we have constructed an independent



D. M. Bakal, et al. 13

dominating set D of graph G with cardinality 3n+1. But by Claim 3.1, i(G) ≥ 3n+1.

Hence, i(G) = 3n+ 1, and this completes the proof of Claim 3.2.

Claim 3.3. Let G′ be a graph obtained by subdividing any edge of the graph G. Then
i(G′) ≤ 3n+ 2.

Proof. Observe that, the vertex l1 is adjacent to each vertex Cj in graph G. We

will make use of this fact to construct an independent dominating set D′ of G′ with

cardinality 3n+ 2 in each of the following cases.

If an edge in the gadget L consisting of path l1l2l3 is subdivided, then D′ = {l1, l3}∪
{ai, bi, ci | i ∈ [n]} is an independent dominating set of G′.

Consider an arbitrary clause vertex Cj . Note that, Cj is adjacent to the vertex l1 and

three literals over U . Suppose an edge incident to Cj is subdivided. If the edge Cjuk
is subdivided, then D′ = {l1, l3}∪{ui, bi, ci | i ∈ [n]} is an independent dominating set

of G′. Similarly, if the edge Cjuk is subdivided then D′ = {l1, l3}∪{ui, ai, bi | i ∈ [n]}
is an independent dominating set of G′. If the edge Cj l1 is subdivided and Cj is

adjacent to literal vertex uk for some k, then D′ = {l1, l3} ∪ {ui, bi, ci | i ∈ [n]} is an

independent dominating set of G′. Similarly, if the edge Cj l1 is subdivided and Cj is

adjacent to literal vertex uk for some k, then D′ = {l1, l3} ∪ {ui, ai, bi | i ∈ [n]} is an

independent dominating set of G′.

Finally, suppose an edge in the gadget Hk, for some k ∈ [n] is subdivided. If the edge

akuk is subdivided with a subdivision vertex w, then D′ = {l1, l3, w, bk, ck}∪{ai, bi, ci |
i ∈ [n], i 6= k} is an independent dominating set of G′. If the edge ckuk is subdivided

with a subdivision vertex w, then D′ = {l1, l3, w, ak, bk} ∪ {ai, bi, ci | i ∈ [n], i 6= k}
is an independent dominating set of G′. If an edge other than akuk and ckuk is

subdivided, then D′ = {l1, l3} ∪ {ai, bi, ci | i ∈ [n]} is an independent dominating set

of G′.

Therefore, in each case, we have constructed an independent dominating set D′ of

G′ with cardinality 3n + 2. Hence, if a graph G′ is obtained from the graph G by

subdividing any edge of G, then i(G′) ≤ 3n + 2. This completes the proof of Claim

3.3.

Claim 3.4. i(G) = 3n+ 1 if and only if sdi(G) = 1.

Proof. Assume that, i(G) = 3n + 1. Subdivide the edge l2l3 with a subdivision

vertex w, to obtain a new graph G′ with subgraph L′ being the path l1l2wl3. From

Claim 3.3 that i(G′) ≤ 3n + 2. To prove the equality we first observe that, if D′ is

an independent dominating set of G′, then |D′ ∩Hi| ≥ 3 for each i ∈ [n]. The path

L′ is not dominated by vertices in Hi. Also, at least two vertices are required to

dominate L′. So, i(G′) ≥ 3n+ 2. Using Claim 3.3, we obtain i(G′) = 3n+ 2, leading

to i(G) < i(G′), and therefore, sdi(G) = 1.

Conversely, suppose sdi(G) = 1. By Claim 3.1, i(G) ≥ 3n+1. Let G′ be obtained from

G by subdividing an edge of G such that i(G) < i(G′). By Claim 3.3, i(G′) ≤ 3n+ 2.



14 Complexity of three domination subdivision problems

Hence, we obtain 3n+ 1 ≤ i(G) < i(G′) ≤ 3n+ 2, and thus i(G) = 3n+ 1, as desired.

This completes the proof of Claim 3.4.

By Claims 3.2 and 3.4, we proved that sdi(G) = 1 if and only if the collection C

is satisfiable. Since the graph G contains 14n + m + 3 vertices and 20n + 4m + 2

edges, the size of the independent domination subdivision instance is bounded above

by a polynomial function of the size of the 3-SAT instance. It follows that this is a

polynomial reduction. Thus, we obtain the NP-hardness of independent domination

subdivision problem in bipartite graphs. This completes the proof.

6. Concluding Remarks

In this paper we proved that the decision problems for paired, total, and indepen-

dent domination subdivision numbers are NP-hard, even when restricted to bipartite

graphs. It would be interesting to study the complexity of these problems for other

classes of graphs such as chordal graphs and planar graphs. Similarly, it would be in-

teresting to study the complexity of these problems for subclasses of bipartite graphs

such as planar bipartite graphs, chordal bipartite graphs and star-convex bipartite

graphs.
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tion subdivision in graphs, Graphs Combin. 37 (2021), no. 3, 691–709.

https://doi.org/10.1007/s00373-020-02269-3.

[6] D. Bauer, F. Harary, J. Nieminen, and C.L. Suffel, Domination alteration sets in

graphs, Discrete Math. 47 (1983), no. 2-3, 153–161.

https://doi.org/10.1016/0012-365X(83)90085-7.

[7] M. Dettlaff, J. Raczek, and J. Topp, Domination subdivision and domination

multisubdivision numbers of graphs, Discuss. Math. Graph Theory 39 (2019),

no. 4, 829–839.

https://doi.org/10.7151/dmgt.2103.

[8] O. Favaron, H. Karami, and S.M. Sheikholeslami, Paired-domination subdivision

numbers of graphs, Graphs Combin. 25 (2009), no. 4, 503–512.

https://doi.org/10.1007/s00373-009-0835-6.

[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

[10] K. Haghparast, J. Amjadi, M. Chellali, and S.M. Sheikholeslami, On [k]-Roman

domination subdivision number of graphs, AKCE Int. J. Graphs Comb. 19 (2022),

no. 3, 261–267.

https://doi.org/10.1080/09728600.2022.2134836.

[11] T. Haynes, S. Hedetniemi, and S. Hedetniemi, Domination and independence

subdivision numbers of graphs, Discuss. Math. Graph Theory 20 (2000), no. 2,

271–280.

https://doi.org/10.7151/dmgt.1126.

[12] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Domination in Graphs:

Core Concepts, 1st ed., Springer Monographs in Mathematics, Springer Nature

Switzerland AG, Cham, Switzerland, 2023.

[13] T.W. Haynes, S.T. Hedetniemi, and L.C. van der Merwe, Total domination sub-

division numbers, J. Combin. Math. Combin. Comput. 44 (2003), 115–128.

[14] J. Huang and J.M. Xu, Domination and total domination contraction numbers

of graphs, Ars Combin. 94 (2010), 431–443.

[15] J. Kok and C. M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990),

225–231.

[16] S. Velammal, Studies in graph theory: Covering, independence, domination and

related topics, Ph.D. thesis, Manonmaniam Sundaranar University, Tirunelveli,

India, 1997.

A. Appendix

Amjadi and Chellali [1] proposed a proof of the NP-hardness of paired domination
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subdivision problem. We hereby point out the error in the proof. Throughout, we

follow the notations of [1]. We refer to Claims 1, 2, 3, 4 as stated in [1]. One can

verify that Claims 1 and 2 are correct. However, we show that the Claims 3 and 4

are incorrect by providing the following counterexample.

Consider the following instance of 3-SAT, where U = {u1, u2, . . . , u6}
and C = {C1, C2, . . . , C9}, with

C1 = {u1, u2, u3}, C2 = {u1, u2, u3}, C3 = {u1, u2, u3},
C4 = {u1, u2, u3}, C5 = {u1, u2, u3}, C6 = {u1, u2, u3},
C7 = {u1, u2, u3}, C8 = {u1, u2, u3}, C9 = {u4, u5, u6}.

Note that, the collection C is not satisfiable. Observe that regardless of how we assign

the truth values T, F to the literals u1, u2, u3, there always exists a clause that is not

satisfied. Let αi is the literal which is assigned the value T among ui and ui for each

i = 1, 2, 3. Then all the literals in the clause {α1, α2, α3} ∈ C assume truth value F ,

making the clause unsatisfied.

We construct a graph G as per the construction given in [1] for above instance (U,C )

(Refer Figure 4). This graph G is a counterexample to Claims 3 and 4. For the sake

of convenience of the reader, we state these Claims 1 to 4 here.

Claim 1. γpr(G) ≥ 2n+ 4. Moreover, if γpr(G) = 2n+ 4, then for every γpr(G)-set S of
G, |V (Hi) ∩ S| = 2 and (V (H) ∪ {c1, c2, . . . , cm}) ∩ S = {s3, s4, s5, s6}.

Claim 2. C is satisfiable if and only if γpr(G) = 2n+ 4.

Claim 3. Let G′ be obtained from G by subdividing any edge e of E(G), then
γpr(G

′) ≤ 2n+ 6.

Claim 4. γpr(G) = 2n+ 4 if and only if sdγpr (G) = 1.

Note that for the graph G constructed from the above instance (U,C ), we have n =

6,m = 9. Since C is not satisfiable, by Claims 1 and 2, we obtain that γpr(G) > 2n+4,

that is, γpr(G) ≥ 18. Observe that S = {s1, s3, s5, s7, s4, s6, yi, vi | i = 1, 2, . . . , 6} is

a paired dominating set of G with cardinality 18. Hence, γpr(G) = 18. We now show

that the Claim 3 does not hold for the graph G. Consider the graph G′ obtained by

subdividing the edge z6r6 in G with a subdivision vertex w. We show that γpr(G
′) =

20, that is, γpr(G
′) > 2n+ 6 contradicting Claim 3.

We use the following notations. For each i ∈ {1, 2, 3, 4, 5}, the variable gadget con-

sisting of complete bipartite graph K3,5 is denoted by Hi. Let H ′
6 denote the graph

obtained by subdividing the edge z6r6 in K3,5 by introducing a subdivision vertex w.

The clause gadget, composed of two disjoint paths s1s3s5s5 and s2s4s6s8, is denoted

by H.
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Figure 4. Counterexample to Claims 3 and 4 in Theorem 1 of [1]

Let S′ be a γpr-set of G′. Since, s7 and s8 are pendant vertices with support vertices

s5 and s6, respectively, it is trivial to note that s5, s6 along with their possible partners

must be present in S′ and thus |S′ ∩ V (H)| ≥ 4. For each i = 1, 2, . . . , 5, it is clear

that |S′ ∩ V (Hi)| ≥ 2. Furthermore, note that at least 4 vertices from H ′
6 ∪ {c9} are

required to paired dominate the vertices of H ′
6. Hence, we get that γpr(G

′) ≥ 18.

We claim that γpr(G
′) = 20. Let, if possible, γpr(G

′) = 18. Then we get |S′ ∩
V (H)| = 4, |S′ ∩ Hi| = 2 for each i = 1, 2, . . . , 5 and |S′ ∩ (V (H ′

6) ∪ {c9})| = 4.

It is clear that cj /∈ S′ for each j = 1, 2, . . . , 8. Since |S′ ∩ V (H)| = 4, we obtain

s1, s2 /∈ S′. The vertices in S′∩(V (H4)∪V (H5)∪V (H ′
6)∪{c9}) collectively dominate

the vertices in the gadgets H4, H5, H
′
6 and the clause vertex c9 alone. Observe that,

|S′ ∩ {ui, ui}| ≤ 1 for each i = 1, 2, 3. If the literal ui or ui belongs to S′ then

let αi be negation of the literal belonging to S′, otherwise set αi = ui. Now, it is

easy to see that the clause vertex {α1, α2, α3} ∈ C \ {c9} is not dominated by S′,

which is a contradiction to γpr(G
′) = 18. Therefore, γpr(G

′) ≥ 20. Moreover, the set

{s1, s3, s5, s7, s4, s6, z6, w} ∪ {xi, vi | 1 ≤ i ≤ 6} is a paired dominating set of G′ with

cardinality 20. Hence, γpr(G
′) = 20.

Since γpr(G) = 18 and γpr(G
′) = 20, we get sdγpr (G) = 1. However, the underlying

collection of clauses C in the construction of the graph G is not satisfiable. This

shows that Claim 4 does not hold.
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