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Abstract: Given a commutative ring R, a left R-module M , and an R-submodule

N ⊆M , the graph G(R;M,N), induced on R by the pair (M,N), is a simple graph with

vertex set R∗ = R\{0}. Distinct vertices r and s are adjacent if rsN = 0. This graph
generalizes Beck’s zero-divisor graph G(R). We analyze connectivity, completeness,

bipartiteness, cycles, diameter, girth, independence/clique/chromatic numbers, and

domination numbers, often under specific algebraic constraints on R or N . Applications
to Zn-modules illustrate these results. By linking G(R;M,N) to G(R), we derive

graph invariants for G(R) efficiently and vice versa, deepening insights into algebraic

structures and their graph-theoretic analogs.
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1. Introduction

Algebra and graph theory are two key areas of mathematics, each with its own

focus and methods, but they come together in interesting and useful ways. This

connection happens when algebra helps us understand graphs, or when graphs help

us solve problems in algebra. This crossover has led to the creation of “algebraic

graph theory,” where algebraic ideas are used to study graphs, and graph-based

methods are applied to explore algebraic structures. By combining the two, we

gain new ideas and ways to better understand both fields and how they can be applied.

∗ Corresponding Author
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One of the most important co-study between graphs and algebraic structures is the

zero-divisor graphs of commutative rings. The concept of zero-divisor graph was

first introduced by I. Beck in 1988 [4]. Beck’s interest was in the computation of the

chromatic number of the graph by using the algebraic properties of the commutative

ring. Following Beck’s introduction, the concept of zero-divisor graph was further

refined, expanded, and generalized to other algebraic structures as one can see for

example in [1, 2, 5, 7–9, 11].

Building on the extensive work around generalized zero-divisor graphs, we introduce

a new version of Beck’s zero-divisor graph for commutative rings. What makes

this graph unique is that it’s defined by a pair consisting of a module and its

submodule rather than the usual generalizations that go from rings to modules.

Given a commutative ring R, a left R-module M , and an R-submodule N of M , our

graph G(R;M,N) is a simple graph with vertex set R∗ = R − 0, and two distinct

vertices r and s are adjacent if rsN = 0. This graph expands on Beck’s zero-divisor

graph G(R) − 0 (with the zero-vertex removed), as G(R) − 0 ⊆ G(R;M,N). In

fact, G(R) − 0 = G(R;M,N) when AnnR(N) = 0, where AnnR(N) refers to the

annihilator of N in R. Throughout the paper, we highlight the strong connections

between G(R;M,N) and G(R), seen through the interaction between the algebraic

properties of R and the graph properties of G(R;M,N). We also provide formulas

for graph characteristics like the clique number, independence number, chromatic

number, girth, and more. For example, we show in Corollary 3 that when AnnR(N)

is a semiprime ideal, ω(G(R;M,N)) = |AnnR(N)| + ω
(
G
(

R
AnnR(N)

))
− 2, and

if AnnR(N) is a prime ideal, α(G(R;M,N)) = α
(
G
(

R
AnnR(N)

))
· |AnnR(N)|.

These formulas, along with others, not only help calculate the graph invariants of

G(R;M,N) in terms of their counterparts in G(R), but they also provide methods to

compute the graph invariants of G(R) in terms of their counterparts of G(R;M,N).

As a result, the findings in this paper will be helpful in solving coloring and

optimization problems.

In Section 2, we cover the basics needed for this paper. In Section 3, we explore and

analyze G(R;M,N), looking at aspects like connectivity, completeness, bipartiteness,

and cycles. We also determine specific values or provide rules for calculating the

diameter, girth, independence number, clique number, chromatic number, domina-

tion number, and vertex degree, sometimes with restrictions on the ring, module,

or submodule. In Section 4, we apply the results from Section 3 to the ring Zn and

provide examples to illustrate their applications.

Numerous additional properties of this new graph remain to be investigated. These

aspects are left for future research and interested scholars.
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2. Background

This section provides a review of the fundamental concepts related to rings and graphs.

All the results presented here are drawn from [3, 6]. Throughout the paper, we assume

that R is a non-zero commutative ring with unity 1 6= 0. The set of units in R is

denoted by U(R). We begin by outlining some preliminaries from Ring Theory.

Definition 1. A proper ideal I of a ring R is said to be maximal if I is not contained in
another proper ideal of R.

Definition 2. A proper ideal I of R is semiprime if whenever x2 ∈ I, then x ∈ I.

Definition 3. A proper ideal I of R is prime if whenever xy ∈ I, then x ∈ I or y ∈ I.

It’s obvious that every prime ideal is semiprime.

Definition 4. The radical Rad(I) or
√
I of a proper ideal I of R is the set {x ∈ R : xn ∈

I for some n ∈ N}.

It is easy to see that
√
I is an ideal of R. Moreover, an ideal I is semiprime if and

only if I =
√
I.

Definition 5. Given a left R-module M and a left R-submodule N of M , the annihilator
of N in R is defined to be the set AnnR(N) = {r ∈ R : rN = 0}.

The set AnnR(N) is an ideal of R. Also, if N and L are left submodules of M such

that N ⊆ L, then AnnR(N) ⊇ AnnR(L).

Next, we turn to some preliminaries from graph theory concerning undirected graphs.

In this section, G denotes an undirected graph. The number of vertices in G is referred

to as the order of the graph. The set of vertices in G is denoted by V (G). If two

vertices u and v are adjacent, we write this as u↔ v.

Definition 6. Let v be a vertex in G. The open neighborhood N(v) of v is the set of all
vertices adjacent to v.

If G is a simple undirected graph, then v /∈ N(v). If N(v) = ∅, then v is said to be

an isolated vertex.

Definition 7. The degree of a vertex v of G is the number of edges incident to v. The
degree of v is denoted by degG(v) (or deg(v) if there is no confusion with the underlined
graph).
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The minimum of the degrees of the vertices is denoted by δ(G), while the maximum

of the degrees of the vertices is denoted by ∆(G). When G is a simple graph, then

deg(v) = |N(v)|, where |N(v)| means the cardinality of N(v). Hence, v is isolated if

and only if deg(v) = 0.

Definition 8. Let v and u be two vertices of G. The distance d(u, v) between v and u
is the length of a shortest path between them. The diameter of G, denoted by diam(G), is
defined to be the maximum of the set {d(u, v) : u, v ∈ V (G)}.

Definition 9. A graph G is connected if there is a path between any two distinct vertices
of G.

Definition 10. By the girth of G, we mean the length of a shortest cycle in G. The girth
of G is denoted by g(G). If G has no cycles, then we write g(G) =∞.

Definition 11. A graph is said to be complete if it is a simple graph and every two
distinct vertices are adjacent. The complete graph on n vertices is denoted by Kn.

Definition 12. A subgraph of G which is a complete graph is called a clique of G. The
order of a clique with the largest number of vertices is called the clique number of G and it
is denoted by ω(G).

Definition 13. A dominating set D of G is a nonempty subset of V (G) such that
each vertex of G is either in D or adjacent to a vertex in D. The minimum of the set
{|D| : D is a dominating set of G} is called the domination number of G and is denoted by
γ(G).

Definition 14. A simple graph G is called bipartite if we can partition V (G) into two
disjoint nonempty subsets (each subset is called a part) such that the vertices belonging to
the same subset are not adjacent to each other.

Definition 15. A subset S of vertices of a graph G is called independent if no two vertices
in S are adjacent. The cardinality of largest independent set is called the independence
number of G and is denoted by α(G).

3. The graph of rings induced by a pair of module and sub-
module

In this section, we define the graph G(R;M,N) associated with a commutative ring

R, defined by a pair (M,N) where M is a left R-module and N is an R-submodule

of M . We then examine various properties of G(R;M,N), including connectivity,

completeness, bipartiteness, and cycles. Additionally, we calculate or provide methods

to determine key values such as diameter, girth, independence number, clique number,
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chromatic number, domination number, and vertex degree, potentially with some

restrictions on the ring, its ideals, or the submodule N .

3.1. Basic Properties

Definition 16. Let R be a commutative ring, M a left R-module, and N be a left R-
submodule of M . The graph of R induced by the pair (M,N), denoted by G(R;M,N), is
the simple graph whose vertices are the elements of R∗ = R − 0 and two distinct vertices
r, s ∈ R∗ are adjacent if rsN = 0 (or equivalently rs ∈ AnnR(N)).

The following lemma has a key role in this paper.

Lemma 1. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then

1. For every r ∈ R∗ and x ∈ AnnR(N)\{0} such that r 6= x, we have r ↔ x.

2. If r ↔ s, then αr ↔ βs, for every α, β ∈ R∗ provided that αr, βs ∈ R∗ and αr 6= βs.

3. Given a unit u and a non-unit element r 6= 0, we have u ↔ r if and only if r ∈
AnnR(N). Therefore, 1↔ r if and only if u↔ r.

4. Given distinct units u1 and u2 of R, we have u1 ↔ u2 if and only if N = 0.

Proof. 1, 2, and 3 follow from the fact that AnnR(N) is an ideal of R. For Part 4,

the proof is straightforward.

Theorem 1. Let R be a commutative ring, M a left R-module, N a left R-submodule of
M , and r ∈ R∗. Then

deg(r) =


|R| − 2 if r ∈ AnnR(N)− 0

|AnnR(N)| − 1 if r ∈ U(R)

≥ |AnnR(N)| − 1 if r /∈ U(R) ∪AnnR(N).

Proof. Apply Lemma 1.

The graph G(Zp,M,N) of Zp, where p is a prime number, defined by a pair (M,N) of

module and submodule, respectively, is utterly specified by the following proposition

whose proof follows from Lemma 1.

Proposition 1. Let p be a prime number, M a Zp−module, and N a Zp− submodule of
M . Then

G(Zp;M,N) =

{
Kp−1 if N = 0

Kp−1 if N 6= 0,

where Kp−1 is the complement graph of Kp−1 which consists of p− 1 independent vertices.
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Assume B is a set of vertices of a graph G, then G − B denotes the subgraph of G

obtained by deleting all vertices of B along with all edges incident to these vertices.

If B = {v}, we write G − B as G − v. On the other hand, if R 6∼= Zp, where p is a

prime number, we can assume without loss of generality that |R| ≥ 4.

Theorem 2. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then the following statements are equivalent:

1. G(R;M,N) is connected.

2. AnnR(N) 6= 0.

3. G(R;M,N) 6= G(R)− 0.

Moreover, for connected G(R;M,N), we have diam(G(R;M,N)) ≤ 2, and
diam(G(R;M,N)) = 2 if and only if N 6= 0.

Proof. If R ∼= Zp, where p is a prime number, then the result follows by Proposition

1 and by noticing that N = 0 if and only if AnnZp(N) 6= 0. Therefore assume R 6∼= Zp.

1⇒ 2 : Suppose G(R;M,N) is connected, and assume, for contrary, that AnnR(N) =

0. Let t ∈ R\{0, 1}. Then by Lemma 1, 1 6↔ t. Thus, 1 is an isolated vertex and

hence G(R;M,N) is disconnected which is a contradiction.

2 ⇒ 3 : Assume AnnR(N) 6= 0. Let 0 6= r ∈ AnnR(N). Then r ↔ 1 in G(R;M,N)

but r 6↔ 1 in G(R)− 0. So, we get G(R;M,N) 6= G(R)− 0.

3⇒ 1 : Assume G(R;M,N) 6= G(R)− 0. Since both graphs have the same vertex set

and G(R)−0 ⊆ G(R;M,N), there exist x, y ∈ R∗ such that x↔ y in G(R;M,N) but

x 6↔ y in G(R)− 0. That is, xy ∈ AnnR(N) and xy 6= 0. Now let r, s ∈ R∗. If r ↔ s,

then d(r, s) = 1. If r 6↔ s, then both r and s are different from xy (otherwise we

obtain a contradiction with item (1) of Lemma 1). So, we have the path r ↔ xy ↔ s

of length 2. Thus, d(r, s) = 2. Consequently, G(R;M,N) is connected. The fact that

diam(G(R;M,N)) = 2 if and only if N 6= 0 will be a direct conclusion of Theorem

3.

3.2. Completeness and Girth

Theorem 3. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then G(R;M,N) is a complete graph if and only if N = 0.

Proof. If R ∼= Zp, where p is a prime number, then the result follows by Proposition

1. Therefore we assume R 6∼= Zp.

(⇒) : Suppose G(R;M,N) is complete. Then we have 1↔ r, for each r ∈ R\{0, 1}.
Thus, R\{0, 1} ⊆ AnnR(N). Since R 6∼= Zp, there exists r ∈ R\{0, 1} such that

r + 1 /∈ {0, 1}. Hence r + 1 ∈ AnnR(N). Since AnnR(N) is an ideal of R, we get

1 = r + 1− r ∈ AnnR(N). We conclude that RN = 0 which implies N = 0.

(⇐) : Assume N = 0. Then AnnR(N) = R which yields G(R;M,N) is complete.
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Corollary 1. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . If |U(R)| ≥ 2, then the following statements are equivalent:

1. G(R;M,N) is a complete graph.

2. N = 0.

3. U(R) is not an independent set.

Proof. Based on Theorem 3, we focus on proving the equivalence between items (1)

and (3). Suppose G(R;M,N) is a complete graph. Let 1 6= u ∈ U(R). Then 1 ↔ u

and hence U(R) is not independent. Conversely, assume U(R) is not independent.

Then there exist distinct elements u, v ∈ U(R) such that u ↔ v. Thus uvN = 0

which implies N = 0. So, rsN = 0 or equivalently r ↔ s for every distinct elements

r, s ∈ R∗. Consequently, we obtain that G(R;M,N) is complete.

One must pay attention to the condition |U(R)| ≥ 2 in Corollary 1. Actually, when

|U(R)| = 1, then U(R) is independent vacuously. However the independence of U(R)

alone is not enough to guarantee the completeness of the graph G(R;M,N). The

next example illustrates this matter.

Example 1. Consider the Boolean ring R = Z2 ⊕ Z2 = {0, 1, 1−, 1+}. Here 0 =
(0, 0), 1− = (1, 0), 1+ = (0, 1) and 1 = (1, 1). It’s easy to see that U(R) = {1} and 1− ·1+ = 0.
Let M = R[x] and N =< 1+ · x >. We have N 6= 0 and AnnR(N) = {0, 1−}. Also,
G(R;M,N) is not complete since 1 6↔ 1+. The graph G(R;M,N) is represented below:

1•

•1+1−•

Figure 1. G(Z2 ⊕ Z2; (Z2 ⊕ Z2)[x], < 1+ · x >)

Next, we explore the cycles and girth of G(R;M,N). We start by introducing the

definition of demiprime ideals, which generalize the concept of prime ideals.

Definition 17. Let R be a commutative ring and I a proper ideal of R. The ideal I is
said to be a demiprime ideal if whenever distinct elements a, b ∈ R such that ab ∈ I, then
a ∈ I or b ∈ I.

Remark 1. It is clear that an ideal is prime if and only if it is both semiprime and
demiprime. On the other hand, it is easy to see that if I is not demiprime, then |R| ≥ 4.

Example 2. In Z4, the ideal {0} is not prime since 22 ≡ 0 (mod 4) but it is demiprime
because by direct calculations we have if x 6≡ y (mod 4), then x.y 6≡ 0 (mod 4).
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In the previous example the demiprime ideal which is not prime is the zero ideal. So,

the question that arises is whether there is a nonzero demiprime ideal which is not

prime. The answer is found in Corollary 2 which states that demiprime ideals which

are not prime ideals must be zero ideals.

Proposition 2. Let R be a commutative ring and I a nonzero ideal of R such that I is
not semiprime. Then I is not demiprime.

Proof. Let a /∈ I such that a2 ∈ I, and i ∈ I − {0}. Then a and a + i are distinct

elements of R that lie outside I such that a(a+ i) = a2 + ai ∈ I. This means that I

is not demiprime.

Corollary 2. Let R be a commutative ring and I a demiprime ideal of R that is not a
prime ideal. Then I = {0}.

Proof. The proof follows by noticing that the statement of the corollary is the con-

trapositive statement of Proposition 2 and that an ideal is prime if and only if it is

both demiprime and semiprime.

In the next theorem, we compute the girth of G(R;M,N). Since G(R;M,N) =

G(R)−0 when AnnR(N) = 0 and this case has been studied in the literature (see for

example [10]), we shall assume AnnR(N) 6= 0.

Theorem 4. Let R be a commutative ring such that |R| ≥ 4, M a left R-module, and N
a left R-submodule of M such that AnnR(N) 6= 0. Then G(R;M,N) has a cycle only in the
following cases:

1. N = 0.

2. N 6= 0 and |AnnR(N)| > 2.

3. N 6= 0, |AnnR(N)| = 2, and AnnR(N) is not a demiprime ideal.

Besides, when a cycle exists, the girth of G(R;M,N) is 3.

Proof. 1. If N = 0, then G(R;M,N) is complete by Theorem 3. Since |R| ≥ 4, we

have a triangle inside G(R;M,N).

2. Assume N 6= 0 and |AnnR(N)| > 2. Since N 6= 0, we have 1 /∈ AnnR(N). On

the other hand, since |AnnR(N)| > 2, we can find two distinct nonzero elements

r, s ∈ AnnR(N). So, by Lemma 1, we obtain the triangle 1↔ r ↔ s↔ 1.

3. Assume N 6= 0, |AnnR(N)| = 2, and AnnR(N) is not a demiprime ideal. Let

AnnR(N) = {0, x}. Since AnnR(N) is not demiprime, there exist two distinct

elements r, s /∈ AnnR(N) such that rs ∈ AnnR(N). Thus, we have the triangle

r ↔ x↔ s↔ r.

We conclude from the above argument that we always have a triangle. Therefore

g(G(R;M,N)) = 3.
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In the final part of the proof, we confirm that in the remaining case G(R;M,N) does

not possess cycles. Assume N 6= 0, |AnnR(N)| = 2, and AnnR(N) is a demiprime

ideal. Then for every distinct elements r, s 6∈ AnnR(N), we have rs /∈ AnnR(N),

which means that r 6↔ s. Thus G(R;M,N) is a star graph with center x and hence

no cycle is included in the graph.

Theorem 5. Let R be a commutative ring such that |R| ≥ 4, M a left R-module, and
N a left R-submodule of M such that AnnR(N) 6= 0. Then the following statements are
equivalent:

1. G(R;M,N) is a tree.

2. G(R;M,N) is a star graph.

3. N 6= 0, |AnnR(N)| = 2, and AnnR(N) is a demiprime ideal.

4. G(R;M,N) is bipartite.

Proof. 1⇒ 2 : is obvious.

2 ⇒ 3 : Assume G(R;M,N) is a star graph with center x 6= 0. Since G(R;M,N) is

not complete, we have N 6= 0 by Corollary 1 and 1 /∈ AnnR(N). So, x 6= 1 and hence

x↔ 1. By Lemma 1, x ∈ AnnR(N). Since every pair of distinct nonzero elements not

equal to x are not adjacent, we obtain AnnR(N) = {0, x} and AnnR(N) is demiprime.

3 ⇒ 4 : Suppose N 6= 0, |AnnR(N)| = 2, and AnnR(N) is a demiprime ideal. Let

AnnR(N) = {0, x}. Thus every pair of distinct nonzero elements not equal to x are

not adjacent. So, G(R;M,N) is a star graph and hence bipartite.

4⇒ 1 : Assume G(R;M,N) is bipartite. If G(R;M,N) has a cycle, then by Theorem

4, g(G(R;M,N)) = 3. That is, G(R;M,N) has a triangle which implies G(R;M,N)

cannot be bipartite and this is a contradiction. Therefore G(R;M,N) does not have

cycles and hence it is a tree.

3.3. Domination Number, Cliques, Chromatic Number, and Indepen-
dence Number

Theorem 6. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then

γ(G(R;M,N)) =

{
γ(G(R)− 0) if AnnR(N) = 0

1 if AnnR(N) 6= 0.

Proof. By Theorem 2, if AnnR(N) = 0, then G(R;M,N) = G(R)− 0. However, if

AnnR(N) 6= 0, then there exists x ∈ AnnR(N)− 0. The set {x} is a dominating set

by Lemma 1.

In the remaining part of this subsection, a maximal clique means a clique that is,

not included in a larger clique. The reader should pay attention to the fact that the

number of vertices in a maximal clique is not necessarily equal to the clique number

of G(R;M,N). However, the clique number of G(R;M,N) equals the order of a
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maximal clique with the largest number of vertices compared to the other maximal

cliques.

Theorem 7. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then

ω(G(R;M,N)) =



|R| − 1 if N = 0

|AnnR(N)| if N 6= 0 and

AnnR(N) is demiprime

|AnnR(N)|+ ω(G(R;M,N)−AnnR(N))− 1 if N 6= 0 and

AnnR(N) is not demiprime.

Moreover, in the last case ω(G(R;M,N)−AnnR(N)) ≥ 2.

Proof. • If N = 0, then G(R;M,N) is a complete graph by Theorem 3. Therefore

ω(G(R;M,N)) = |R| − 1.

• If N 6= 0 and AnnR(N) is demiprime, then the product of any two distinct vertices

outside AnnR(N) remains outside AnnR(N). Thus the set R−AnnR(N) is indepen-

dent and therefore, by Lemma 1, (AnnR(N)− 0)∪ {r}, where r /∈ AnnR(N), are the

only maximal cliques in G(R;M,N). Consequently, ω(G(R;M,N)) = |AnnR(N)|.
• If N 6= 0 and AnnR(N) is not demiprime, then there exists two distinct non-

unit elements r, s ∈ R∗ − AnnR(N) such that rs ∈ AnnR(N) (if r is unit,

then s ∈ AnnR(N) − 0 which is a contradiction). Thus, r ↔ s and hence

ω(G(R;M,N) − AnnR(N)) ≥ 2. Also, (AnnR(N) − 0) ∪ {s, r} is a clique which

yields ω(G(R;M,N)) ≥ |AnnR(N)|+ 1. Now, since every element in AnnR(N)− 0,

if any, is adjacent to every element outside AnnR(N), we obtain that whenever Q is

a maximal clique in the subgraph G(R;M,N)−AnnR(N) with the largest number of

vertices (i.e., |Q| = ω(G(R;M,N)−AnnR(N)))), then (AnnR(N)− 0)∪Q is a max-

imal clique of G(R;M,N) with the largest number of vertices. So, ω(G(R;M,N)) =

|AnnR(N)− 0|+ |Q| = |AnnR(N)| − 1 + ω(G(R;M,N)−AnnR(N)).

In the upcoming work, we shall show that

ω(G(R;M,N)−AnnR(N)) = ω

(
G

(
R

AnnR(N)

))
− 1,

when AnnR(N) is a semiprime ideal of R. We start from the following lemma that

investigates, in Parts 1 and 2, the adjacency between different cosets of AnnR(N) in

R, and, in Part 3, the adjacency between vertices within a coset of AnnR(N) in R.

Lemma 2. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then

1. If r 6= s (mod AnnR(N)), then r ↔ s in G(R;M,N) if and only if r + AnnR(N) ↔

s+AnnR(N) in G

(
R

AnnR(N)

)
.
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2. If r 6= s (mod
√
AnnR(N)), then r ↔ s in G(R;M,N) implies r +

√
AnnR(N) ↔

s+
√
AnnR(N) in G

(
R√

AnnR(N)

)
.

3. If x ∈ R∗ and r, s ∈ AnnR(N)\{0} are two distinct elements such that r + x↔ s+ x
in G(R;M,N), then x ∈

√
AnnR(N). Further, the converse holds if AnnR(N) is

semiprime.

Proof. 1. Let r, s ∈ R∗ such that r 6= s (mod AnnR(N)). This implies r 6= s. We

have

r ↔ s in G(R;M,N) ⇔ rs ∈ AnnR(N)

⇔ (r +AnnR(N))(s+AnnR(N)) = AnnR(N)

⇔ r +AnnR(N)↔ s+AnnR(N) in G

(
R

AnnR(N)

)
.

2. Let r, s ∈ R∗ such that r 6= s (mod
√
AnnR(N)). This implies r 6= s. We have

r ↔ s in G(R;M,N) ⇔ rs ∈ AnnR(N) ⊆
√
AnnR(N)

⇒ (r +
√
AnnR(N))(s+

√
AnnR(N)) =

√
AnnR(N)

⇒ r +
√
AnnR(N)↔ s+

√
AnnR(N) in G

(
R√

AnnR(N)

)
.

3. Let x ∈ R∗ and r, s ∈ AnnR(N)\{0} such that r 6= s. Then

r + x↔ s+ x in G(R;M,N) ⇔ (r + x)(s+ x) ∈ AnnR(N)

⇔ rs+ rx+ sx+ x2 ∈ AnnR(N)

⇔ x2 ∈ AnnR(N)

⇒ x ∈
√
AnnR(N).

The rest is straightforwardly proved.

Remark 2. In Lemma 2, the converse of (3) is not necessarily true. To see this Let R = Z,

M =
Z

16Z
, and N =

2Z
16Z

. Note that AnnR(N) = 8Z and
√
AnnR(N) = 2Z. Take 2, 10 ∈√

AnnR(N). We have 2 6= 10 and 10 = 2 (mod AnnR(N)) but 2 × 10 = 20 /∈ AnnR(N)
which means 2 6↔ 10 in G(R;M,N). The reason behind the failure of the converse of (3) is
that AnnR(N) is not a semiprime ideal (note that 4 /∈ AnnR(N) but 42 ∈ AnnR(N)). We
have seen in Lemma 2 (3) that if AnnR(N) is semiprime, then the converse of (3) is satisfied.

Lemma 3. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then any maximal clique in G(R;M,N) must contain AnnR(N)\{0}.
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Proof. Let Λ be a maximal clique in G(R;M,N). Assume, for contrary, that

AnnR(N)\{0} 6⊆ Λ. By Lemma 1, Λ ∪ AnnR(N)\{0} is a clique such that

Λ ( Λ ∪AnnR(N)\{0}. This contradicts that Λ is a maximal clique.

The next theorem gives an estimation of the clique number of G(R;M,N) in terms

of AnnR(N) and the quotient of R by
√
AnnR(N) and the

√
AnnR(N). To make

things easy, we introduce the notation G(B ⊆ R;M,N) which denotes the subgraph

of G(R;M,N) whose vertex set is the subset B ⊆ R∗.

Theorem 8. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M . Then ϕ ≤ ω(G(R;M,N)) ≤ ψ where

ϕ = ω(G(
√
AnnR(N) ⊆ R;M,N)) and ψ = ϕ+ ω

(
G

(
R√

AnnR(N)

))
− 1.

Proof. The inequality ω(G(
√
AnnR(N) ⊆ R;M,N)) ≤ ω(G(R;M,N)) follows di-

rectly. We prove the other inequality. By Lemma 2, for every x /∈
√
AnnR(N),

the coset x + AnnR(N) forms an independent set in G(R;M,N). So any clique in

G(R;M,N)−
√
AnnR(N) includes vertices from different cosets of AnnR(N). Thus,

once again by Lemma 2, each clique of G(R;M,N)−
√
AnnR(N) induces a clique in

G

(
R√

AnnR(N)

)
with the same cardinality consisting of the corresponding cosets of

AnnR(N). Now, let Λ be a maximal clique whose cardinality is ω(G(R;M,N)).

Noticing that Λ ∩
√
AnnR(N) is a clique in G(

√
AnnR(N) ⊆ R;M,N) and

Λ ∩ (R−
√
AnnR(N)) is a clique in G(R;M,N)−

√
AnnR(N), we obtain

|Λ| = |Λ ∩
√
AnnR(N)|+ |Λ ∩ (R−

√
AnnR(N))|

≤ ω(G(
√
AnnR(N) ⊆ R;M,N)) + ω

(
G

(
R√

AnnR(N)

))
− 1.

The proof ends when we let ϕ = ω(G(
√
AnnR(N) ⊆ R;M,N)) and ψ =

ω(G(
√
AnnR(N) ⊆ R;M,N)) + ω

(
G

(
R√

AnnR(N)

))
− 1.

Corollary 3. Let R be a commutative ring, M a left R-module, and N a left R-submodule
of M .

1. If AnnR(N) is semiprime, then

ω(G(R;M,N)) = |AnnR(N)|+ ω

(
G

(
R

AnnR(N)

))
− 2.

2. If AnnR(N) is prime, then ω(G(R;M,N)) = |AnnR(N)|, which agrees with Theorem

7. Moreover, χ(G(R;M,N)) = |AnnR(N)| and α(G(R;M,N)) = α
(
G
(

R
AnnR(N)

))
·

|AnnR(N)|.
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Proof. 1. Suppose AnnR(N) is semiprime. Then we have
√
AnnR(N) = AnnR(N).

By Theorem 8, we have

|AnnR(N)| − 1 ≤ ω(G(R;M,N)) ≤ |AnnR(N)| − 2 + ω

(
G

(
R

AnnR(N)

))
.

However, by 1 and 3 of Lemma 2 and Lemma 3, carrying the same discussion as in

the proof of Theorem 8, we get

|Λ| = |Λ ∩AnnR(N)|+ |Λ ∩ (R−AnnR(N))|

= |AnnR(N)\{0}|+ ω

(
G

(
R√

AnnR(N)

))
− 1

= |AnnR(N)| − 1 + ω

(
G

(
R√

AnnR(N)

))
− 1

= |AnnR(N)|+ ω

(
G

(
R

AnnR(N)

))
− 2.

2. Suppose AnnR(N) is prime. Then
R

AnnR(N)
is an integral domain and hence

G
(

R
AnnR(N)

)
is a star graph with center zero. Thus ω

(
G
(

R
AnnR(N)

))
= 2. There-

fore, ω(G(R;M,N)) = |AnnR(N)|, which is the same result obtained in Theo-

rem 7 by noticing that a prime ideal is both semiprime and demiprime. On the

other hand, (AnnR(N) − 0) ∪ {x} is a maximal clique for every x /∈ AnnR(N)

and R − AnnR(N) is the largest independent set in G(R;M,N). We conclude that

χ(G(R;M,N)) = |AnnR(N)| and by Lemma 2, α(G(R;M,N)) = |R − AnnR(N)| =
α(G

(
R

AnnR(N)

)
) · |AnnR(N)|.

4. Applications and Examples

This section applies the results from Section 3 to the ring Zn. We derive some concise

and practical formulas for the graph invariants and include examples to illustrate

these applications.

Application 9. Let R = Zpq = Zp ⊕ Zq where q > 2 and p are distinct prime num-

bers. Let M = R and N = Zp. Then AnnR(N) = Zq and
R

AnnR(N)
∼= Zp which is a

field. So, AnnR(N) is a maximal ideal and hence prime. Therefore by Corollary 3, we have
ω(G(R;M,N)) = |AnnR(N)| = q, χ(G(R;M,N)) = |AnnR(N)| = q, α(G(R;M,N)) =
α(G(Zp)) · |AnnR(N)| = (p− 1) · q. Moreover, by Theorem 6, γ(G(R;M,N)) = 1. Further-
more, by Theorem 4, g(G(R;M,N)) = 3.

Example 3. The values obtained in Application 9 can be confirmed by observing the
graph G(Z6;Z6,Z2), where we agree that Z6

∼= Z2 ⊕ Z3.
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(1,0) (1,1) (1,2)

(0,1) (0,2)

Figure 2. G(Z6;Z6,Z2)

We have g(G(Z6;Z6,Z2)) = ω(G(Z6;Z6,Z2)) = α(G(Z6;Z6,Z2)) = χ(G(Z6;Z6,Z2)) = 3,
and γ(G(Z6;Z6,Z2)) = 1. The graph G(Z6;Z6,Z2) is illustrated in the figure above.

Application 10. Let R = Z2p = Z2 ⊕ Zp where p > 2 is a prime number. Let M = R
and N = Zp. Then AnnR(N) = Z2 which is a prime ideal. By Theorem 5, G(Z2p;Z2p,Zp)
is a star graph. Hence, we have g(G(R;M,N)) =∞, χ(G(R;M,N)) = ω(G(R;M,N)) = 2,
α(G(R;M,N)) = 2p− 2, γ(G(R;M,N)) = 1.

Example 4. The values obtained in Application 10 can be confirmed by observing the
graph G(Z6;Z6,Z3) shown in the figure below:

(1,1)

(1,0) (1,2)

(0,1)

(0,2)

Figure 3. G(Z6;Z6,Z3)

where we agree that Z6
∼= Z2 ⊕ Z3. We have g(G(Z6;Z6,Z3)) = ∞, ω(G(Z6;Z6,Z2)) =

χ(G(Z6;Z6,Z2)) = 2, α(G(Z6;Z6,Z2)) = 4, and γ(G(Z6;Z6,Z2)) = 1.

Application 11. Let m = p1p2 . . . pn, where p1, . . . , pn are distinct prime numbers and
n ≥ 4, R = Zm = Zp1 ⊕ . . . ⊕ Zpn , M = R, and N = Zp1...pk an R-submodule where

1 < k < n− 1. Now, AnnR(N) = Zpk+1...pn 6∼= Z2 and
R

AnnR(N)
= Zp1...pk which is not an

integral domain. Thus AnnR(N) is not prime. Since it is semiprime, it is not demiprime. By
Theorem 4, g(G(R;M,N)) = 3. Also γ(G(R;M,N)) = 1. On the other hand, by Corollary
3, ω(G(R;M,N)) = |AnnR(N)|+ ω(G( R

AnnR(N)
))− 2 = pk+1 · pk+2 · . . . · pn + k − 1, where

ω(G(Zp1...pk ))− 1 = ω(G(Zp1...pk )− 0) = k by Theorem 3 of [11]. More efficiently, if we let
q = p1 . . . pk, then

ω(G(Zm;Zm,Zq)) =
m

q
− 1 + (the number of prime factors of q)
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.

Example 5. Let m = 7735 = 5 × 7 × 13 × 17, R = Z7735, M = R, and N = Z91 =
Z7×13. Then by Application 11, g(G(Z7735;Z7735,Z91)) = 3, γ(G(Z7735;Z7735,Z91)) = 1,

and ω((Z7735;Z7735,Z91)) =
7753

91
− 1 + 2 = 85 + 1 = 86.

Example 6. Let R = Zn and M = Zn[x].

1. If N = Znx, then AnnR(Znx) = 0. By Theorem 2, G(Zn;Zn[x],Znx) = G(Zn)− 0.

2. If n = 2p where p > 2 is a prime number, and N = Zn2x, then AnnR(N) = {0, p} ∼=
Z2. Moreover,

Zn

AnnR(N)
∼= Zp which is a field. So, AnnR(N) is a maximal ideal and

therefore a prime ideal. So, we obtain by Corollary 3 that χ(G(Zn;Zn[x],Zn2x)) =
ω(G(Zn;Zn[x],Zn2x)) = |AnnR(N)| = 2. In addition, γ(G(Zn;Zn[x],Zn2x)) = 1 and
again by Corollary 3, α(G(Zn;Zn[x],Zn2x)) = 2(p− 1).
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