
تعداد نشریات | 5 |
تعداد شمارهها | 116 |
تعداد مقالات | 1,369 |
تعداد مشاهده مقاله | 1,374,433 |
تعداد دریافت فایل اصل مقاله | 1,337,066 |
Skew-cyclic and skew-quasi-cyclic codes over a general infinite family of rings | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 تیر 1404 اصل مقاله (418.64 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.29232.1901 | ||
نویسندگان | ||
Djoko Suprijanto* 1، 2؛ Irwansyah Irwansyah3 | ||
1Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia | ||
2Center for Research Collaboration on Graph Theory and Combinatorics, Indonesia | ||
3Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Mataram, Indonesia | ||
چکیده | ||
We study structural properties of cyclic codes, and their generalization, over a general infinite family of rings, namely the ring $\mathcal{R}_k$ defined by $R[v_1,v_2,\ldots,v_k]$ with conditions $v_i^2=v_i,$ for $i \in [1,k]_\ZZ,$ where $R$ is any finite commutative Frobenius ring. We derived necessary and sufficient condition for the codes to be cyclic, quasi-cyclic, skew-cyclic as well as to be quasi-skew-cyclic. As an application, we constructed optimal linear codes over $\ZZ_4$ as a Gray images of our codes. | ||
کلیدواژهها | ||
Commutative Frobenius ring؛ quasi-cyclic code؛ skew-cyclic code؛ skew-quasi-cyclic code؛ optimal codes over $\ZZ_4.$ | ||
مراجع | ||
[1] T. Abualrub, N. Aydin, and P. Seneviratne, On $\theta$-cyclic codes over $\mathbb{F}_2+v\mathbb{F}_2$, Australas. J. Combin 54 (2012), no. 2, 115–126.
[2] N. Aydin and T. Abualrub, A database of $\mathbb{Z}_4$ codes, J. Comb. Inf. Syst. Sci. 34 (2009), no. 1–4, 1–12.
[3] N. Aydin and T. Asamov, Online database of $\mathbb{Z}_4$ codes, http://quantumcodes.info/Z4 (2023).
[4] I.F. Blake, Codes over certain rings, Inf. Control 20 (1972), no. 4, 396–404. https://doi.org/10.1016/S0019-9958(72)90223-9
[5] I.F. Blake, Codes over integer residu rings, Inf. Control 29 (1975), 295–300. https://doi.org/10.1016/S0019-9958(75)80001-5
[6] A.P.S. Bustomi and D. Suprijanto, Linear codes over the rings $\mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4 + w\mathbb{Z}_4 + uv\mathbb{Z}_4 + uw\mathbb{Z}_4 + vw\mathbb{Z}_4 + uvw\mathbb{Z}_4$, IAENG Int. J. Comput. Sci. 48 (2021), no. 3, 686–696.
[7] A.R. Calderbank, A.R. Hammons Jr, P.V. Kumar, N.J.A. Sloane, and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory 40 (1994), no. 2, 301–319. https://doi.org/10.1109/18.312154
[8] Y. Cengellenmis, A. Dertli, and S.T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72 (2014), no. 3, 559–580. https://doi.org/10.1007/s10623-012-9787-y
[9] J. Gao, Skew cyclic codes over $\mathbb{F}_p+v\mathbb{F}_p$, J. Appl. Math. Inform. 31 (2013), no. 3–4, 337–342.
[10] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
[11] Irwansyah, A. Barra, S.T. Dougherty, A. Muchlis, I. Muchtadi-Alamsyah, P. Solé, D. Suprijanto, and O. Yemen, $\Theta_S$-cyclic codes over $A_k$, Int. J. Comput. Math.: Comput. Syst. Theory 1 (2016), no. 1, 14–31. https://doi.org/10.1080/23799927.2016.1146800
[12] Irwansyah, A. Barra, I. Muchtadi-Alamsyah, A. Muchlis, and D. Suprijanto, Skew-cyclic codes over $B_k$, J. Appl. Math. Comput. 57 (2018), no. 1, 69–84. https://doi.org/10.1007/s12190-017-1095-2
[13] Irwansyah and D. Suprijanto, Structure of linear codes over the ring $B_k$, J. Appl. Math. Comput. 58 (2018), no. 1, 755–775. https://doi.org/10.1007/s12190-018-1165-0
[14] Irwansyah and D. Suprijanto, Linear codes over a general infinite family of rings and MacWilliams-type relations, Discrete Math. Lett. 11 (2023), 53–60. https://doi.org/10.47443/dml.2022.091
[15] N. Kumar and A.K. Singh, Some classes of linear codes over $\mathbb{Z}_4+v\mathbb{Z}_4$ and their applications to construct good and new $\mathbb{Z}_4$-linear codes, Appl. Algebra Engin. Comm. Comput. 28 (2017), no. 2, 131–153. https://doi.org/10.1007/s00200-016-0300-0
[16] I. Muchtadi, A. Muchlis, A. Barra, and D. Supriyanto, Codes over infinite family of algebras, J. Algebra Combin. Discrete Struct. Appl. 4 (2016), no. 2, 131–140. http://dx.doi.org/10.13069/jacodesmath.284947
[17] S. Rosdiana, I. Muchtadi-Alamsyah, D. Suprijanto, and A. Barra, On linear codes over $\mathbb{Z}_{2^m}+v\mathbb{Z}_{2^m}$, IAENG Int. J. Appl. Math. 51 (2021), no. 1, 133–141.
[18] E. Spiegel, Codes over $\mathbb{Z}_m$, Inf. Control 35 (1977), no. 1, 48–51. https://doi.org/10.1016/S0019-9958(77)90526-5
[19] E. Spiegel, Codes over $\mathbb{Z}_m$, revisited, Inf. Control 37 (1978), no. 1, 100–104. https://doi.org/10.1016/S0019-9958(78)90461-8 | ||
آمار تعداد مشاهده مقاله: 51 تعداد دریافت فایل اصل مقاله: 47 |