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Abstract: In this article, we investigate the solution of constrained optimization

problems using the Karush Kuhn Tucker (KKT) condition with single-valued neutro-
sophic triangular number coefficients. Our approach introduces new neutrosophic arith-

metic operations applied to the parametric representations of neutrosophic numbers,

along with the neutrosophic ranking of the parametric forms of Triangular Neutro-
sophic Numbers. The primary objective of this study is to develop a robust framework

for solving constrained Single-Valued Neutrosophic Nonlinear Programming Problems
using the KKT condition, effectively managing uncertainty and imprecision in opti-

mization. We present and prove an important theorem for the KKT condition under

neutrosophic environments, contributing to the theoretical foundation of this method.
Furthermore, a detailed numerical example illustrates the practical application of the

proposed approach. The results are compared with those of existing methods, demon-

strating the effectiveness and advantages of the neutrosophic-based solution.

Keywords: KKT condition, constrained optimization, single-valued neutrosophic
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1. Introduction

Ahmad et al. proposed addressing multi-objective nonlinear programming problems

within a neutrosophic hesitant fuzzy framework [1]. Al-Naemi introduced a novel
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2 Neutrosophic approach to constrained optimization using KKT conditions

conjugate gradient formula, βGhk , derived from the memoryless self-scaled DFP quasi-

Newton (QN) method [2]. Anuradha and Sobana developed a model for an intuition-

istic fuzzy multi-objective nonlinear programming problem (IFMONLPP), incorpo-

rating intuitionistic fuzzy numbers (IFNs) to represent all coefficients and constraints

[3]. Chakraborty et al. extended the concept of neutrosophic numbers, suggest-

ing that nonlinear neutrosophic numbers are more suitable for decision-makers than

their linear counterparts [4]. Emam and Youssef proposed a neutrosophic framework

combined with a fuzzy-based technique to determine the optimal compromise solu-

tion for bi-level multi-objective quadratic programming problems. Their approach

incorporates neutrosophic parameters in both the objective functions and constraints

[5]. Ghadle and Pawar proposed an alternative approach to Wolfe’s modified sim-

plex method. This technique simplifies solving quadratic programming problems

(QPP) related to NLPP [6]. Hanachi et al. implemented a new hybrid method

in which the parameter βk is calculated as a convex combination of three parameters

βFRk , βPRPk andβDYk . The method was shown to ensure sufficient descent and global

convergence. Practical evaluations determined this approach is faster and more effec-

tive than previously utilized methods [8]. Iqbal et al. scrutinized a multi-objective

nonlinear programming problem within a linear Diophantine fuzzy framework, ad-

dressing mixed conflicting objectives. Additionally, they highlighted that the linear

Diophantine fuzzy set forms the foundation of the interactive approach used to address

nonlinear fractional programming problems. In this approach, when the decision-

maker (DM) specifies the level set parameter α, the max-min problem is resolved us-

ing Zimmermann’s min operator technique [9, 10]. Irene and Sudha examined a new

method to address Neutrosophic Fuzzy Quadratic Programming Problems (FNQPP)

by employing a Taylor Series expansion [11]. Khalifa et al. addressed a challenging

nonlinear programming problem in which the coefficients of the objective function

are expressed as neutrosophic numbers, and the constraints are governed by fuzzy

inequalities [15]. Lachhwani conducted extensive research on nonlinear neutrosophic

numbers (NLNNs) and nonlinear neutrosophic linear programming problems (NLN-

LPPs) [16]. A comparison of the convergence performance of widely used solvers

for both constrained and unconstrained cases was conducted by Lavezzi et al. and

provided recommendations for choosing the solvers for nonlinear programming prob-

lems [17]. Maissam Jdid illustrated how binary integers can be utilized to transform

specific nonlinear models into linear forms, ensuring integer solutions that align with

the inherent characteristics of the problems under consideration. Also, their work

explored significant methods for solving nonlinear models focusing on the Lagrangian

multiplier approach for models with equality constraints, which were subsequently

reformulated using neutrosophic science principles [12, 13]. A new fuzzy arithmetic

designed for fuzzy calculus and to solve fuzzy linear equations was developed by Ming

Ma et al. [18]. Mishra et al. investigated a nonlinear fuzzy fractional signomial

programming problem in which all coefficients in the constraints and objective func-

tions are modeled as fuzzy numbers. They proposed two solution approaches: one

leveraging nearest interval approximation through parametric interval-valued func-

tions and the other employing a fuzzy α-cut combined with a min-max optimization
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technique [19]. Othman and Abdulrazzaq determined a control system for a bearing-

less brushless DC (BBLDC) motor designed for use in an artificial heart pump. Their

work included simulations of the system and an analysis of advancements in medical

devices, developments in IoT, detector designs, remote monitoring technologies and

fuzzy logic-based healthcare solutions [20]. A fuzzy mathematical model incorporat-

ing Beale’s condition to address such nonlinear programming problems (NLPPs) was

discussed by Palanivel and Muralikrishna. This model illustrated how quadratic pro-

gramming problems could be solved using membership functions (MFs) [14]. Purnima

Raj and Ranjana presented a method for solving FNLPPs with inequality constraints

often encountered in practical cases and involves transforming the FNLPP into sharp

equality constraints by applying the KKT conditions [21]. Raju provided an introduc-

tion to optimization methods, covering their historical background, key developments,

and foundational concepts [22]. Reig-Mullor and Salas-Molina explored an alternative

definition of nonlinear neutrosophic numbers (NLNN) to address certain limitations

highlighted in existing research. They also examined the fundamental properties of

NLNN, including α, β, γ-cuts, variance, standard deviation and possibilistic mean [23].

A new matrix game where payoffs are expressed as single-valued neutrosophic num-

bers (SVNNs) was formulated by Seikh et al. To determine the optimal strategies

and values for the players, they developed two nonlinear multi-objective program-

ming models [25]. Sharma et al. demonstrated an optimization approach to tackle

nonlinear separable programming problems, where the coefficients and variables are

modeled as generalized trapezoidal intuitionistic fuzzy numbers and classified as fully

intuitionistic fuzzy nonlinear separable programming problems [26]. Sudha and Hep-

zibah explored the substitution of fuzzy coefficients in the objective functions and

constraints with single-valued triangular neutrosophic numbers. They reformulated a

quadratic programming problem with triangular neutrosophic number coefficients into

a Fuzzy Neutrosophic Linear Complementarity Problem (FNLCP) and developed an

algorithm to solve the resulting model effectively [27]. Uma Maheswari and Ganesan

devised a fuzzy adaptation of the Kuhn-Tucker conditions to solve fully fuzzy nonlin-

ear programming problems, facilitating the determination of optimal fuzzy solutions.

They utilized the Gradient method to transform the original problem into an uncon-

strained multivariable fuzzy optimization problem for further analysis [28]. Vanaja

and Ganesan proposed an innovative interior fuzzy penalty function approach for

addressing Fuzzy Nonlinear Programming Problems (FNLPPs). Their methodology

incorporated advanced fuzzy arithmetic and ranking techniques based on the para-

metric representation of triangular fuzzy numbers. Additionally, they developed an

exterior penalty method utilizing fuzzy-valued functions, offering an effective frame-

work for solving these FNLPPs [7, 29].
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Nomenclature

χ̃ Variables f̃N Neutrosophic Objective

Function

h̃N
i

Equality Neutrosophic

Constraint
g̃N
i

Inequality Neutrosophic

Constraint

≈ Equivalent in fuzzy sense � Greater than in fuzzy sense

≺ Less than in fuzzy sense � Greater than or equal to in

fuzzy sense

� Less than or equal to in
fuzzy sense

λ Fuzzy lagrange multiplier

M̃N , ÑN Neutrosophic numbers m∗ Left fuzziness index of M̃

m∗ Right fuzziness index of M̃ m0 Location index of M̃

M̃ = (〈mT0 ,mT∗ ,mT∗ 〉;
〈mI0 ,mI∗ ,mI∗ 〉;
〈mF0

,mF∗ ,mF∗ 〉)
Parametric form of M̃N β β- cut of fuzzy number

2. Preliminaries

Definition 1. [24] A Single-Valued Neutrosophic Set (SVNS), denoted as M̃N , is de-
fined over a universe of discourse X and is characterized by three membership functions:
a truth-membership function TM̃N , an indeterminacy-membership function IM̃N , and a
falsity-membership function FM̃N . Each of these functions maps elements of X to the in-
terval [0,1], i.e., TM̃N ; IM̃N ;FM̃N : X → [0, 1]. The SVNS is expressed as: M̃N = {<
χ, (TM̃N (χ), IM̃N (χ), FM̃N (χ) > /χ ∈ X}, where the sum of the truth, indeterminacy, and
falsity membership values satisfies the condition: 0 ≤ TM̃N (χ) + IM̃N (χ) + FM̃N (χ) ≤ 3
for all χ ∈ X.

Definition 2. [24] A Single-Valued Neutrosophic Set (SVNS), represented as M̃N =
{< χ, (TM̃N (χ), IM̃N (χ), FM̃N (χ) > /χ ∈ X} is considered neutrosophic normal if there
exist at least three distinct points χ0, χ1, χ2 ∈ X such that the truth-membership function
achieves its maximum value of 1 at χ0, the indeterminacy-membership function reaches 1 at
χ1, and the falsity-membership function equals 1 at χ2.

Definition 3. [24] A Single-Valued Neutrosophic Set (SVNS), expressed as M̃N = {<
χ, (TM̃N (χ), IM̃N (χ), FM̃N (χ) > /χ ∈ X} is described as neutrosophic convex if it satisfies
the following conditions for any χ1, χ2 ∈ X and λ ∈ [0, 1] the following conditions are
satisfied.

1. TM̃N (λχ1 + (1− λ)χ2) ≥ min{TM̃N (χ1), TM̃N (χ2)}

2. IM̃N (λχ1 + (1− λ)χ2) ≤ max{IM̃N (χ1), IM̃N (χ2)}

3. FM̃N (λχ1 + (1− λ)χ2) ≤ max{FM̃N (χ1), FM̃N (χ2)}

i.e.,M̃N is neutrosophic convex, if its truth membership function is fuzzy convex, indeter-
minacy membership function and falsity membership function is fuzzy concave.

Definition 4. [24] A Single-Valued Neutrosophic Number (SVNN)
M̃N = {< χ, (TM̃N (χ), IM̃N (χ), FM̃N (χ)) > |χ ∈ X}, subset of a real line, is called
generalised neutrosophic number if
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1. M̃N is neutrosophic normal, i.e. there exists atleast three points χ0, χ1, χ2 ∈ X such
that TM̃N (χ0) = 1; IM̃N (χ1) = 1;FM̃N (χ2) = 1.

2. M̃N is neutrosophic convex.

3. TM̃N (χ) is upper semi-continuous, IM̃N (χ) is lower semi continuous and FM̃N (χ) is
lower semi continuous.

4. M̃N is support, i.e. S(M̃N ) = χ ∈ χ : TM̃N > 0, IM̃N < 1, FM̃N < 1 is bounded.

Definition 5. [24] A single valued neutrosophic number M̃N is Triangular Neutrosophic
Number (TNN) and is denoted by
M̃N = (TM̃N ; IM̃N ;FM̃N ) = (〈mT1 ,mT2 ,mT3〉; 〈mI1 ,mI2 ,mI3〉; 〈mF1 ,mF2 ,mF3〉) having
the membership function, indeterminacy function and non-membership function as follows.M

µT (χ) =


χ−mT1

mT2 −mT1

, mT1 ≤ χ ≤ mT2

mT3 − χ
mT3 −mT2

, mT2 ≤ χ ≤ mT3

0, elsewhere

µI(χ) =


χ−mI1

mI2 −mI1

, mI1 ≤ χ ≤ mI2

mI3 − χ
mI3 −mI2

, mI2 ≤ χ ≤ mI3

0, elsewhere

µF (χ) =


χ−mF1

mF2 −mF1

, mF1 ≤ χ ≤ mF2

mF3 − χ
mF3 −mF2

, mF2 ≤ χ ≤ mF3

0, elsewhere

We use F (R) to represent the set of all triangular neutrosophic numbers defined on

R.

Definition 6. [24] The (α, β, γ)-cut of neutrosophic set is denoted by F (α, β, γ), where
(α, β, γ) ∈ [0, 1] and are fixed numbers, such that α+β+γ ≤ 3 and is defined as F (α, β, γ) =
(µT (χ), µI(χ), µF (χ)), where χ ∈ X,µT (χ) ≥ α, µI(χ) ≤ β, µF (χ) ≤ γ.

Definition 7. A triangular neutrosophic number M̃N can also be represented
as a pair M̃N

T = (mT ; mT ), M̃N
I = (mI ; mI), M̃N

F = (mF ; mF ) of functions
mT (β),mT (β),mI(β),mI(β),mF (β),mF (β), 0 ≤ β ≤ 1 which satisfy the following require-
ments:

• mT (β) is lower bound of the membership function, which is a monotonic increasing
and left-continuous function .

• mT (β) is upper bound of the membership function, which is a monotonic decreasing
and left-continuous function.

• mI(β) is lower bound of the indeterminacy function, characterized by being a mono-
tonic increasing and left-continuous function.
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• mI(β) is upper bound of the indeterminacy function, which is monotonic decreasing
and left-continuous.

• mF (β) is lower bound of the non-membership function, defined as a monotonic in-
creasing and left-continuous function.

• mF (β) is upper bound of the non-membership function, characterized by being mono-
tonic decreasing and left-continuous.

• mT (β) ≤ mT (β),mI(β) ≤ mI(β),mF (β) ≤ mF (β), 0 ≤ β ≤ 1.

Definition 8. (Parametric Form)
Let M̃N = (mT ,mI ,mF ) be a triangular neutrosophic number and

mT (β) = mT3 − (mT3 −mT2)β, mT (β) = mT1 + (mT2 −mT1)β

mI(β) = mI3 − (mI3 −mI2)β, mI(β) = mI1 + (mI2 −mI1)β

mF (β) = mF3 − (mF3 −mF2)β, mF (β) = mF1 + (mF2 −mF1)β, β ∈ [0, 1]

The parametric form of the TNN is defined as

M̃N = (TM̃N ; IM̃N ;FM̃N ) = (〈mT0 ,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0 ,mF∗ ,mF∗〉)

where mT∗ = mT0 −mT and mT∗ = mT −mT0 , mI∗ = mI0 −mI and mI∗ = mI −mI0 ,
mF∗ = mF0 − mF and mF∗ = mF − mF0 are the left and right fuzziness index functions
respectively.

The number mT0 =

(
mT (1) +mT (1)

2

)
,mI0 =

(
mI(1) +mI(1)

2

)
,

mF0 =

(
mF (1) +mF (1)

2

)
is called the location index number. When β = 1, we get

mT0 = mT2 ,mI0 = mI2 ,mF0 = mF2 .

2.1. Arithmetic Operations on Neutrosophic Numbers

A novel fuzzy arithmetic framework is introduced based on the parametric represen-

tation of triangular neutrosophic numbers. This approach represents these numbers

through location index functions and fuzziness index functions associated with mem-

bership, indeterminacy, and non-membership degrees. A new neutrosophic arithmetic

operation is proposed, where the lattice rule defined by the least upper bound and

greatest lower bound in the lattice L governs the fuzziness index functions, while the

location index adheres to conventional arithmetic operations.

That is for m,n ∈ L, m ∨ n = max{m,n} and m ∧ n = min{m,n}. For any two

neutrosophic numbers M̃N and ÑN the arithmetic operations are defined as

M̃N ∗ ÑN =(〈mT0 ,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0 ,mF∗ ,mF∗〉)
∗ (〈nT0

, nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0
, nF∗ , nF∗〉)

=(〈mT0
∗ nT0

,mT∗ ∨ nT∗ ,mT∗ ∨ nT∗〉, 〈mI0 ∗ nI0 ,mI∗ ∨ nI∗ ,mI∗ ∨ nI∗〉,
〈mF0 ∗ nF0 ,mF∗ ∨ nF∗ ,mF∗ ∨ nF∗〉)
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In particular for M̃N = (〈mT0
,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0

,mF∗ ,mF∗〉),
ÑN = (〈nT0 , nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0 , nF∗ , nF∗〉) ∈ F (R), we have

Addition:

M̃N ∗ ÑN =(〈mT0 ,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0 ,mF∗ ,mF∗〉)
+ (〈nT0

, nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0
, nF∗ , nF∗〉)

=(〈mT0
+ nT0

,mT∗ ∨ nT∗ ,mT∗ ∨ nT∗〉, 〈mI0 + nI0 ,mI∗ ∨ nI∗ ,mI∗ ∨ nI∗〉,
〈mF0 + nF0 ,mF∗ ∨ nF∗ ,mF∗ ∨ nF∗〉)

Subtraction:

M̃N ∗ ÑN =(〈mT0 ,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0 ,mF∗ ,mF∗〉)
− (〈nT0

, nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0
, nF∗ , nF∗〉)

=(〈mT0
− nT0

,mT∗ ∨ nT∗ ,mT∗ ∨ nT∗〉, 〈mI0 − nI0 ,mI∗ ∨ nI∗ ,mI∗ ∨ nI∗〉,
〈mF0 − nF0 ,mF∗ ∨ nF∗ ,mF∗ ∨ nF∗〉)

Multiplication:

M̃N ∗ ÑN =(〈mT0
,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0

,mF∗ ,mF∗〉)
× (〈nT0

, nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0
, nF∗ , nF∗〉)

=(〈mT0 × nT0 ,mT∗ ∨ nT∗ ,mT∗ ∨ nT∗〉, 〈mI0 × nI0 ,mI∗ ∨ nI∗ ,mI∗ ∨ nI∗〉,
〈mF0 × nF0 ,mF∗ ∨ nF∗ ,mF∗ ∨ nF∗〉)

Division:

M̃N ∗ ÑN =(〈mT0
,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0

,mF∗ ,mF∗〉)
÷ (〈nT0 , nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0 , nF∗ , nF∗〉)

=(〈mT0 ÷ nT0 ,mT∗ ∨ nT∗ ,mT∗ ∨ nT∗〉, 〈mI0 ÷ nI0 ,mI∗ ∨ nI∗ ,mI∗ ∨ nI∗〉,
〈mF0

÷ nF0
,mF∗ ∨ nF∗ ,mF∗ ∨ nF∗〉)

provided nT0 , nI0 , nF0 6= 0.

2.2. Ranking of neutrosophic Numbers

The ranking of neutrosophic numbers plays an essential role in the decision-making

process within a fuzzy environment. Various authors in the literature have proposed

different types of ranking methods. This article uses a highly effective ranking tech-

nique based on the graded mean.

For M̃N = (〈mT0
,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0

,mF∗ ,mF∗〉) ∈ F (R), define R :

F (R)→ R by

R(TM̃N ) =

(
mT∗ + 4mT0 +mT∗

6

)
.
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R(IM̃N ) =

(
mI∗ + 4mI0 +mI∗

6

)
.

R(FM̃N ) =

(
mF∗ + 4mF0 +mF∗

6

)
.

For any two triangular neutrosophic numbers

M̃N = (TM̃N ; IM̃N ;FM̃N ) = (〈mT0
,mT∗ ,mT∗〉; 〈mI0 ,mI∗ ,mI∗〉; 〈mF0

,mF∗ ,mF∗〉)and

ÑN = (TÑN ; IÑN ;FÑN ) = (〈nT0 , nT∗ , nT∗〉; 〈nI0 , nI∗ , nI∗〉; 〈nF0 , nF∗ , nF∗〉) ∈ F (R)

we have the following comparison:

• If R(TM̃N ) < R(TÑN );R(IM̃N ) < R(IÑN ), R(FM̃N ) < R(FÑN ), then M̃N ≺
ÑN

• If R(TM̃N ) > R(TÑN );R(IM̃N ) > R(IÑN ), R(FM̃N ) > R(FÑN ), then M̃N �
ÑN

• If R(TM̃N ) = R(TÑN );R(IM̃N ) = R(IÑN ), R(FM̃N ) = R(FÑN ), then M̃N ≈
ÑN .

3. Neutrosophic Non Linear Programming Problems
(NNLPP)

Let general NNLPP

minf̃N (χ̃)

subject to h̃N
i (χ̃) ≈ 0̃ for i = 1, 2, · · · , l
g̃N
j (χ̃) � 0̃ for j = 1, 2, · · · ,m,
χ̃ � 0̃

(3.1)

where f̃N , h̃N
1 , · · · , h̃N

l , g̃N
1 , · · · , g̃N

m are continuous neutrosophic valued functions

defined on Rn.

Definition 9. A vector χ̃ = (χ̃1, χ̃2, χ̃3, · · · , χ̃n) is said to be a feasible solution to the
NNLPP (3.1) if it meets all the constraints and adheres to the non-negativity condition of
the NNLPP (3.1).

The collection of all such feasible solutions is known as the feasible region, which is

defined by these criteria.

F = {χ̃ ∈ F (R)n/h̃N
i (χ̃) ≈ 0̃, for i = 1, 2, 3, · · · , l, g̃N

j (χ̃) � 0̃, for j = 1, 2, 3, · · · ,m}.

Definition 10. A feasible solution χ̃0 to the NNLPP (3.1) is said to be an optimal
solution to the NNLPP (3.1) if f̃N (χ̃0) � f̃N (χ̃), for all χ̃ ∈ F .



G. Vanaja, K. Ganesan 9

3.1. Karush Kuhn Tucker optimality conditions

The conditions derived by mathematicians Kuhn and Tucker are necessary for f̃N (χ̃)

to be extreme in the case of multivariable problems with inequality constraints.

The Khun-Tucker conditions are the necessary conditions to be satisfied at relative

maximum of f̃N (χ̃) with inequality constraints g̃N
j (χ̃) � 0̃, expressed as

1. Stationarity: ∂f̃N

∂χ̃i
+
∑m
j=1 λj

∂g̃N
j

∂χ̃i
≈ 0̃ i = 1, 2, · · · , n, λj � 0̃

where λj are the Lagrange multipliers.

If the set of active constraints is not known, then the Khun-Tucker conditions

can be stated as follows for the case of maximize f̃N (χ̃), subject to, g̃N
j (χ̃) � 0

2. Primal feasibility: g̃N
j � 0̃, j = 1, 2, · · · ,m

3. Complementary slackness: λj g̃
N
j ≈ 0̃, j = 1, 2, · · · ,m

4. Dual feasibility: λj ≥ 0, j = 1, 2, · · · ,m

Table 1. Summary of values of Lagrange multipliers

min f̃N (χ̃) max f̃N (χ̃)

g̃N
j (χ̃) � 0 λj ≥ 0 λj ≤ 0

g̃N
j (χ̃) � 0 λj ≤ 0 λj ≥ 0

Theorem 1. Let f̃N : X → F (R) be a neutrosophic-valued function that is convex and
continuously differentiable. Here, f̃N represents the neutrosophic objective function, and
g̃N
j denotes the set of all associated neutrosophic constraints. Assume there exists a point

χ̃0 such that g̃N
j (χ̃0)− b̃i � 0̃, for all i = 1, 2 · · · , n, then χ̃0 is considered an optimal solution

for the given Neutrosophic Nonlinear Programming Problem (NNLPP) as defined in (3.1)
over the feasible region, if and only if there exist multipliers λi ≥ 0 satisfying the Karush
Kuhn Tucker (KKT) first-order conditions:

(i).
∂f̃N

∂χ̃i
+
∑m

j=1 λj
∂g̃N

j

∂χ̃i
≈ 0̃ and

(ii). λi(g̃
N
j (χ̃0)− b̃i) ≈ 0̃, for all j = 1, 2 · · · ,m.

Proof. Assume that f̃N is a convex, continuously differentiable function, and let χ̃0

represent the optimal solution for the NNLPP defined in (3.1). This implies that there

exists some (χ̃ 6≈ χ̃0) such that f̃N (χ̃0) � f̃N (χ̃). Given that g̃N
j is also a convex

and continuously differentiable function, the feasible set F is defined as: F = {χ̃ ∈
F (R)n : g̃N

j (χ̃)− b̃i � 0̃, i = 1, 2, · · · , n}. Therefore F = {χ̃0 ∈ F (R)n : g̃N
j (χ̃0)− b̃i �

0̃, i = 1, 2, · · · , n}. As a result, for χ̃0 ∈ F , we have g̃N
j (χ̃0) − b̃i � 0̃, satisfying all

constraints. Consequently, the problem becomes an optimization problem with a

neutrosophic objective function f̃N (χ̃) subject to the neutrosophic constraints. By

the Karush Kuhn Tucker (KKT) theorem, there exist non-negative multipliers λi ≥ 0,
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such that the following conditions hold:

(i).
∂f̃N

∂χ̃i
+
∑m
j=1 λj

∂g̃N
j

∂χ̃i
≈ 0̃ and

(ii). λi(g̃
N
j (χ̃0)− b̃i) ≈ 0̃, for all i = 1, 2 · · · , n hold.

Conversely: Let the KKT first-order conditions hold for the NNLPP defined in (3.1).

We now need to show that χ̃0 is indeed an optimal solution for this problem. Assume,

for contradiction, that χ̃0 is not an optimal solution. Then, there must exist some χ̃ 6≈
χ̃0 such that f̃N (χ) � f̃N (χ̃0), since f̃N is a convex and continuously differentiable

function, this contradicts the KKT conditions, which state that g̃N
j (χ̃0 − b̃i) ≈ 0̃.

Thus, χ̃0 must indeed be the optimal solution for the NNLPP defined in (3.1).

4. Algorithm

This section provides the step-by-step procedure for the Neutrosophic Khun-Tucker

conditions. This algorithm is developed to iteratively improve the solution by con-

sidering uncertainties and inconsistencies during the process. They represent the

principles of Neutrosophy and provide valuable insights into managing uncertainty

during optimization.

Algorithm 1 KKT-Based Solution for SVNNLPP

1: Input: SVNNLPP: objective function f̃N (χ̃), constraints g̃N
i (χ̃) � 0̃

2: Neutrosophic parameters (truth, indeterminacy, falsity)

3: Begin

4: Convert SVNNLPP into a crisp optimization problem
5: Apply score or accuracy function to neutrosophic parameters

6: Form the Lagrangian function

7: L(χ̃, λ) = f̃N (χ̃) +
∑
λig̃

N
i (χ̃)

8: Derive the KKT conditions

9: Stationarity: ∇f̃N (χ̃) +
∑
λi∇g̃N

i (χ̃) ≈ 0̃

10: Primal feasibility: g̃N
i (χ̃) � 0̃

11: Dual feasibility: λi � 0̃

12: Complementary slackness: λig̃
N
i (χ̃) ≈ 0̃

13: Identify all possible combinations of active/inactive constraints
14: For each combination:
15: Solve the system of KKT equations
16: Check if the solution is feasible

17: Verify complementary slackness
18: From all feasible solutions, choose the one with the best objective value
19: Output: The optimal solution and corresponding values

20: End

Note:

During the iterative process, the feasibility of neutrosophic constraints is checked

using neutrosophic arithmetic, the graded mean ranking method and the definition

of feasibility for neutrosophic numbers. These tools ensure that the constraints are

properly evaluated at each step of the algorithm.
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5. Numerical Example

Example 1. Consider a NLPP discussed by Ghadle and Pawar [6]

max f(χ1, χ2) =2χ1 + 3χ2 − 2χ2
1

sub. to g1(χ) =χ1 + 4χ2 ≤ 4

g2(χ) =χ1 + χ2 ≤ 2

χ1, χ2 ≥ 0.

(5.1)

Solution: Suppose that the coefficients in the objective function and in the con-

straints are uncertain and are modeled as neutrosophic triangular numbers, then the

NLPP (5.1) becomes a SVNNLPP as

max f̃N (χ̃1, χ̃2) =2̃χ̃1 + 3̃χ̃2 − 2̃χ̃2
1

sub. to g̃N
1 (χ̃) =1̃χ̃1 + 4̃χ̃2 � 4̃

g̃N
2 (χ̃) =1̃χ̃1 + 1̃χ̃2 � 2̃

χ̃1, χ̃2 � 0̃.

(5.2)

Assume that 2̃ = 〈(1, 2, 3); (0.6, 0.4, 0.1)〉,3̃ = 〈(2, 3, 4); (0.2, 0.3, 0.5)〉,
1̃ = 〈(0, 1, 2); (0.2, 0.3, 0.5)〉,4̃ = 〈(3, 4, 5); (0.4, 0.3, 0.2)〉

Then the SVNNLPP (5.2) becomes

max f̃N (χ̃1, χ̃2) =〈(1, 2, 3); (0.6, 0.4, 0.1)〉χ̃1 + 〈(2, 3, 4); (0.2, 0.3, 0.5)〉χ̃2

− 〈(1, 2, 3); (0.6, 0.4, 0.1)〉χ̃2
1

sub. to g̃N
1 (χ̃) =〈(0, 1, 2); (0.2, 0.3, 0.5)〉χ̃1 + 〈(3, 4, 5); (0.4, 0.3, 0.2)〉χ̃2

� 〈(3, 4, 5); (0.4, 0.3, 0.2)〉
g̃N
2 (χ̃) =〈(0, 1, 2); (0.2, 0.3, 0.5)〉χ̃1 + 〈(0, 1, 2); (0.2, 0.3, 0.5)〉χ̃2

� 〈(1, 2, 3); (0.6, 0.4, 0.1)〉
χ̃1, χ̃2 � 0̃.

(5.3)

Express the SVNNLPP (5.3) in its parametric form as

max f̃N (χ̃1, χ̃2) =〈(2, 1− β, 1− β); (0.6, 0.4, 0.1)〉χ̃1

+ 〈(3, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃2

− 〈(2, 1− β, 1− β); (0.6, 0.4, 0.1)〉χ̃2
1

subject to g̃N
1 (χ̃) =〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃1

+ 〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉χ̃2

� 〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉
g̃N
2 (χ̃) =〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃1

+ 〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃2

� (2, 1− β, 1− β); (0.6, 0.4, 0.1)

and χ̃1, χ̃2 � 0̃.

(5.4)



12 Neutrosophic approach to constrained optimization using KKT conditions

Stationarity:
∂f̃N

i

∂χ̃i
+
∑m
i=1 λi

∂g̃N
i

∂χ̃i
≈ 0̃

〈(2, 1− β, 1− β); (0.6, 0.4, 0.1)〉 − 〈(4, 1− β, 1− β); (0.6, 0.4, 0.1)〉χ̃1

+ λ1[〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉]
+ λ2[〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉] ≈ 0̃

〈(3, 1− β, 1− β); (0.2, 0.3, 0.5)〉+ λ1[〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉]
+ λ2[〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉] ≈ 0̃

(5.5)

Primal feasibility: g̃N
i (χ̃i) � 0̃

〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃1 + 〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉χ̃2

− 〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉 � 0̃

〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃1 + 〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃2

− 〈(2, 1− β, 1− β); (0.6, 0.4, 0.1)〉 � 0̃

(5.6)

Complementary slackness: λi[g̃
N
i (χ̃i)] ≈ 0̃

λ1[〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃1

+ 〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉χ̃2 − 〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉] ≈ 0̃

λ2[〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃1 + 〈(1, 1− β, 1− β); (0.2, 0.3, 0.5)〉χ̃2

− 〈(2, 1− β, 1− β); (0.6, 0.4, 0.1)〉] ≈ 0̃

(5.7)

Dual feasibility: λ1, λ2 � 0̃

Here we have two Langrange’s multiplier λ1, λ2 which can take zero or non zero

positive values. Thus four solutions corresponding to the following four combinations

of λi(i = 1, 2) values can be obtained.

Case(i): When λ1 = 0, λ2 = 0, from equations (5.5), (5.6) and (5.7), we have

χ̃1 =
〈(2, 1− β, 1− β); (0.6, 0.4, 0.1)〉
〈(4, 1− β, 1− β); (0.6, 0.4, 0.1)〉

, χ̃2 = 0

∴ The solution is feasible. This solution also satisfy all the conditions.

Case(ii): When λ1 6= 0, λ2 = 0, from equations (5.5), (5.6) and (5.7), we have

χ̃1 =
〈(5, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(16, 1− β, 1− β); (0.6, 0.4, 0.2)〉

, χ̃2 =
〈(59, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(64, 1− β, 1− β); (0.6, 0.4, 0.2)〉

λ1 =
−〈(3, 1− β, 1− β); (0.2, 0.3, 0.5)〉
〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉
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∴ This solution is also feasible and satisfy all the conditions.

max f̃N (χ̃1, χ̃2) =
〈(459, 1− β, 1− β); (0.6, 0.4, 0.2)〉
〈(128, 1− β, 1− β); (0.6, 0.4, 0.2)〉

Case(iii): When λ1 = 0, λ2 6= 0, from equations (5.5), (5.6) and (5.7), we have

χ̃1 =
−〈(1, 1− β, 1− β); (0.6, 0.4, 0.1)〉
〈(4, 1− β, 1− β); (0.6, 0.4, 0.1)〉

, χ̃2 = 0

λ2 = −〈(3, 1− β, 1− β); (0.2, 0.3, 0.5)〉

∴ This solution is infeasible.

Case(iv): When λ1 6= 0, λ2 6= 0, from equations (5.5), (5.6) and (5.7), we have

χ̃1 =
〈(4, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(3, 1− β, 1− β); (0.4, 0.3, 0.5)〉

, χ̃2 =
〈(2, 1− β, 1− β); (0.6, 0.4, 0.2)〉
〈(3, 1− β, 1− β); (0.4, 0.3, 0.5)〉

λ1 =
−〈(19, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(9, 1− β, 1− β); (0.4, 0.3, 0.5)〉

, λ2 =
〈(103, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(9, 1− β, 1− β); (0.4, 0.3, 0.5)〉

∴ This solution is also feasible but not satisfy the dual feasibility condition.

Since the maximum value of f̃N (χ̃1, χ̃2) is obtained for Case(ii), where λ1 6= 0, λ2 = 0,

The optimal solution is

χ̃1 =
〈(5, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(16, 1− β, 1− β); (0.6, 0.4, 0.2)〉

, χ̃2 =
〈(59, 1− β, 1− β); (0.6, 0.4, 0.5)〉
〈(64, 1− β, 1− β); (0.6, 0.4, 0.2)〉

λ1 =
−〈(3, 1− β, 1− β); (0.2, 0.3, 0.5)〉
〈(4, 1− β, 1− β); (0.4, 0.3, 0.2)〉

That is the optimal solution of the SVNNLPP (5.1) is

χ̃1 =

〈(
−11000000000000

16
+ β,

5

16
,

21

16
− β

)
; (0.6, 0.4, 0.5)

〉
,

χ̃2 =

〈(
−5

64
+ β,

59

64
,

123

64
− β

)
; (0.6, 0.4, 0.5)

〉

with max f̃N (χ̃1, χ̃2) =

〈(
562

256
+ β,

818

256
,

1074

256
− β

)
; (0.6, 0.4, 0.5)

〉
.

6. An application in Home Appliances

[22] Himaja Home Appliances agreed to supply Srija and Company around 50 fans

at the end of the first month and arond 50 each at the end of the second and third

months. The cost of manufacturing fans in any month is given by χ2 rupees, where

χ is the number of fans manufactured in that month. The company can manufacture
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more number of fans in a month than 50 and carry forward the surplus to the

next month. However an inventory carrying charge around rupees 20 per fan is to

maintain the total cost to the minimum. (Assume no initial inventory and no surplus

stock at the end of the month).

Solution: As the number of fans to be manufactured in every month is uncertain

and the carrying charge is also uncertain, we model these uncertain parameters as

single valued neutrosophic triangular numbers. Then the mathematical formulation

of the given SVNNLPP becomes

Given that the production cost of χ̃ units manufactured in any month = χ̃2. Since

χ̃1, χ̃2 and χ̃3 are the number of fans to be manufactured in the first, second and

third month respectively, we have χ̃2
1, χ̃

2
2 and χ̃2

3. And there is no initial inventory,

hence no holding charge in the first month. But, if χ̃1 exceeds 50, the holding cost

in the second month = 20(χ̃1 − 50). Also, if χ̃1 + χ̃2 exceeds 100 the holding cost in

the third month = 20(χ̃1 + χ̃2 − 100),. Hence, the total cost(Objective function is to

minimize Z)= χ̃2
1 + χ̃2

2 + χ̃2
3 + 20(χ̃1 − 50) + 20(χ̃1 + χ̃2 − 100).

min f̃N (χ̃) =χ̃2
1 + χ̃2

2 + χ̃2
3 + 4̃0χ̃1 + 2̃0χ̃2 − ˜3000

sub. to g̃N
1 (χ̃) =χ̃1 � 5̃0

g̃N
2 (χ̃) =χ̃1 + χ̃2 � ˜100

g̃N
3 (χ̃) =χ̃1 + χ̃2 + χ̃3 ≈ ˜150

χ̃1, χ̃2, χ̃3 � 0̃.

(6.1)

We can convert this problem into a two variable problem by using the direct substi-

tution method. Since we have one exact constraint.

g̃N
3 (χ̃)⇒ χ̃1 + χ̃2 + χ̃3 = ˜150⇒ χ̃3 = ˜150− χ̃1 − χ̃2

On substituting this χ̃3, the above problem becomes

min f̃N (χ̃) =2χ̃2
1 + 2χ̃2

2 + 4̃0χ̃1 + 2̃0χ̃2 + ˜19500

sub. to g̃N
1 (χ̃) =χ̃1 � 5̃0

g̃N
2 (χ̃) =χ̃1 + χ̃2 � ˜100

χ̃1, χ̃2, χ̃3 � 0̃.

(6.2)

Assume that 2̃ = 〈(1, 2, 3); (0.8, 0.6, 0.4)〉, 1̃ = 〈(0, 1, 2); (0.9, 0.7, 0.5)〉,
4̃0 = 〈(39, 40, 41); (0.6, 0.3, 0.2)〉, 2̃0 = 〈(19, 20, 21); (0.8, 0.2, 0.6)〉,

˜19500 = 〈(19499, 19500, 19501); (0.6, 0.3, 0.6)〉,
5̃0 = 〈(49, 50, 51); (0.7, 0.7, 0.5)〉, ˜100 = 〈(99, 100, 101); (0.4, 0.2, 0.1)〉
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Now the problem (6.2) becomes

min f̃N (χ̃) = 〈(1, 2, 3); (0.8, 0.6, 0.4)〉χ̃2
1 + 〈(1, 2, 3);

(0.8, 0.6, 0.4)〉χ̃2
2 + 〈(39, 40, 41); (0.6, 0.3, 0.2)〉χ̃1

+ 〈(19, 20, 21); (0.8, 0.2, 0.6)〉χ̃2

+ 〈(19499, 19500, 19501); (0.6, 0.3, 0.6)〉
sub. to g̃N

1 (χ̃) = 〈(0, 1, 2); (0.9, 0.7, 0.5)〉χ̃1

� 〈(49, 50, 51); (0.7, 0.7, 0.5)〉
g̃N
2 (χ̃) = 〈(0, 1, 2); (0.9, 0.7, 0.5)〉χ̃1 + 〈(0, 1, 2);

(0.9, 0.7, 0.5)〉χ̃2 � 〈(99, 100, 101); (0.4, 0.2, 0.1)〉
χ̃1, χ̃2 � 0̃.

(6.3)

The parametric form of (6.3) becomes

min f̃N (χ̃)) =〈(2, 1− β, 1− β); (0.8, 0.6, 0.4)〉χ̃2
1

+ 〈(2, 1− β, 1− β); (0.8, 0.6, 0.4)〉χ̃2
2

+ 〈(40, 1− β, 1− β); (0.6, 0.3, 0.2)〉χ̃1

+ 〈(20, 1− β, 1− β); (0.8, 0.2, 0.6)〉χ̃2

+ 〈(19500, 1− β, 1− β); (0.6, 0.3, 0.6)〉
sub. to g̃N

1 (χ̃) =〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉χ̃1

� 〈(50, 1− β, 1− β); (0.7, 0.7, 0.5)〉
g̃N
2 (χ̃) =〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉χ̃1

+ 〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉χ̃2

� 〈(100, 1− β, 1− β); (0.4, 0.2, 0.1)〉
χ̃1, χ̃2 � 0̃.

(6.4)

Applying the KKT conditions, we have

Stationarity:
∂f̃N

i

∂χ̃i
+
∑m
i=1 λi

∂g̃N
i

∂χ̃i
≈ 0̃

〈(4, 1− β, 1− β);(0.8, 0.6, 0.4)〉χ̃1 + 〈(40, 1− β, 1− β); (0.6, 0.3, 0.2)〉
+ λ1[〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉]
+ λ2[〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉] ≈ 0̃

〈(4, 1− β, 1− β);(0.8, 0.6, 0.4)〉χ̃2 + 〈(20, 1− β, 1− β); (0.8, 0.2, 0.6)〉
+ λ2[〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉] ≈ 0̃

(6.5)
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Primal feasibility: g̃N
i (χ̃i) � 0̃

〈(1, 1− β, 1− β);(0.9, 0.7, 0.5)〉χ̃1

− 〈(50, 1− β, 1− β); (0.7, 0.7, 0.5)〉 � 0̃

〈(1, 1− β, 1− β);(0.9, 0.7, 0.5)〉χ̃1

+ 〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉χ̃2

− 〈(100, 1− β, 1− β); (0.4, 0.2, 0.1)〉 � 0̃

(6.6)

Complementary slackness: λi[g̃
N
i (χ̃i)] ≈ 0̃

λ1[〈(1, 1− β, 1− β);(0.9, 0.7, 0.5)〉χ̃1

− 〈(50, 1− β, 1− β); (0.7, 0.7, 0.5)〉] ≈ 0̃

λ2[〈(1, 1− β, 1− β);(0.9, 0.7, 0.5)〉χ̃1

+ 〈(1, 1− β, 1− β); (0.9, 0.7, 0.5)〉χ̃2

− 〈(100, 1− β, 1− β); (0.4, 0.2, 0.1)〉] ≈ 0̃

(6.7)

Dual feasibility: λ1, λ2 � 0̃

Here we have two Langrange’s multiplier λ1, λ2 which can take zero or non zero

positive values. Thus four solutions corresponding to the following four combinations

of λi(i = 1, 2) values can be obtained.

Case(i): When λ1 = 0, λ2 = 0, from equations (6.5), (6.6) and (6.7), we have

χ̃1 =
−〈(40, 1− β, 1− β); (0.6, 0.3, 0.2)〉
〈(4, 1− β, 1− β); (0.8, 0.6, 0.4)〉

, χ̃2 =
−〈(20, 1− β, 1− β); (0.8, 0.2, 0.6)〉
〈(4, 1− β, 1− β); (0.8, 0.6, 0.4)〉

∴ The solution is infeasible.

Case(ii): When λ1 6= 0, λ2 = 0, from equations (6.5), (6.6) and (6.7), we have

χ̃1 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.5)〉, χ̃2 = −〈(5, 1− β, 1− β); (0.8, 0.6, 0.6)〉
λ1 = −〈(240, 1− β, 1− β); (0.9, 0.7, 0.5)〉

∴ This solution also infeasible.

Case(iii): When λ1 = 0, λ2 6= 0, from equations (6.5), (6.6) and (6.7), we have

χ̃1 = 〈(47.5, 1− β, 1− β); (0.9, 0.7, 0.5)〉, χ̃2 = 〈(52.5, 1− β, 1− β); (0.9, 0.7, 0.6)〉
χ̃3 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.6)〉, λ2 = −〈(230, 1− β, 1− β); (0.9, 0.7, 0.5)〉

∴ The solution is feasible but not satisfy condition (6.6).
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Case(iv): Whenλ1 6= 0, λ2 6= 0, from equations (6.5), (6.6) and (6.7), we have

χ̃1 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.6)〉, χ̃2 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.6)〉
χ̃3 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.5)〉, λ1 = −〈(20, 1− β, 1− β); (0.9, 0.7, 0.5)〉
λ2 = −〈(220, 1− β, 1− β); (0.9, 0.7, 0.5)〉

∴ The solution is feasible and satisfy all condition.

Hence the optimal solution of the given SVNNLPP (6.1) is

χ̃1 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.5)〉, χ̃2 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.5)〉,
χ̃3 = 〈(50, 1− β, 1− β); (0.9, 0.7, 0.5)〉 with

min f̃N (χ̃) = 〈(7500, 1− β, 1− β); (0.9, 0.7, 0.6)〉.
That is Himaja Home Appliances has to supply χ̃1 = 〈(49+β, 50, 51−β); (0.9, 0.7, 0.5)〉
fans at the end of first month, χ̃2 = 〈(49+β, 50, 51−β); (0.9, 0.7, 0.5)〉 fans at the end

of second month and χ̃3 = 〈(49 +β, 50, 51−β); (0.9, 0.7, 0.5)〉 fans at the end of third

month with minimum cost min f̃N (χ̃) = 〈(7499 + β, 7500, 7501− β); (0.9, 0.7, 0.6)〉.

7. Result and Discussion

The Neutrosophic optimal solution of the SVNNLPP (5.1) for different values of β.

Table 2. NOS for various values of β ∈ [0, 1]

β χ̃1 χ̃2

0

〈(
−5

64
,

59

64
,

123

64

)
; (0.6, 0.4, 0.5)

〉 〈(
−11

16
,

5

16
,

21

16

)
; (0.6, 0.4, 0.5)

〉
0.25

〈(
11

64
,

59

64
,

107

64

)
; (0.6, 0.4, 0.5)

〉 〈(
−7

16
,

5

16
,

17

16

)
; (0.6, 0.4, 0.5)

〉
0.5

〈(
27

64
,

59

64
,

91

64

)
; (0.6, 0.4, 0.5)

〉 〈(
−3

16
,

5

16
,

13

16

)
; (0.6, 0.4, 0.5)

〉
0.75

〈(
43

64
,

75

64
,

123

64

)
; (0.6, 0.4, 0.5)

〉 〈(
1

16
,

5

16
,

9

16

)
; (0.6, 0.4, 0.5)

〉
1

〈(
59

64
,

59

64
,

59

64

)
; (1, 1, 1)

〉 〈(
5

16
,

5

16
,

5

16

)
; (1, 1, 1)

〉
=

59

64
=

5

16
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Table 3. Continuation to Table 2

β f̃N (χ̃)

0

〈(
562

256
,

818

256
,

1074

256

)
; (0.6, 0.4, 0.5)

〉
0.25

〈(
626

256
,

818

256
,

1010

256

)
; (0.6, 0.4, 0.5)

〉
0.5

〈(
690

256
,

818

256
,

946

256

)
; (0.6, 0.4, 0.5)

〉
0.75 〈(754

256
,

818

256
,

882

256
); (0.6, 0.4, 0.5)〉

1

〈(
818

256
,

818

256
,

818

256

)
; (1, 1, 1)

〉
=

818

256

Figure 1. Optimal solution for different values of β ∈ [0, 1]
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v
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e
f̃
∗

f̃∗(β)

Figure 2. Numerical example 5.1: graded-mean optimal objective vs. risk-aversion β. Data copied from
Table 3.
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When β = 1, we see that χ̃1 =
59

64
χ̃2 =

5

16
and max f̃N (χ̃) =

818

256
. This solution is

same the crisp optimal solution χ∗ =

(
59

64
,

5

16

)
with max f(χ) = 3.195 obtained by

Ghadle and Pawar [6].

The Neutrosophic optimal solution of the SVNNLPP (6.1) for different values of β.

Table 4. NOS for various values of β ∈ [0, 1]

β χ̃1 χ̃2

0 〈(49, 50, 51); (0.9, 0.7, 0.5)〉 〈(49, 50, 51); (0.9, 0.7, 0.5)〉
0.25 〈(49.25, 50, 50.75); (0.9, 0.7, 0.5)〉 〈(49.25, 50, 50.75); (0.9, 0.7, 0.5)〉
0.5 〈(49.5, 50, 50.5); (0.9, 0.7, 0.5)〉 〈(49.5, 50, 50.5); (0.9, 0.7, 0.5)〉
0.75 〈(49.75, 50, 50.25); (0.9, 0.7, 0.5)〉 〈(49.75, 50, 50.25); (0.9, 0.7, 0.5)〉

1 〈(50, 50, 50); (1, 1, 1)〉 〈(50, 50, 50); (0.9, 0.7, 0.5)〉
=50 =50

Table 5. Continuation to Table 4

β χ̃3 f̃N (χ̃)
0 〈(49, 50, 51); (0.9, 0.7, 0.5)〉 〈(7499, 7500, 7501); (0.9, 0.7, 0.6)〉

0.25 〈(49.25, 50, 50.75); (0.9, 0.7, 0.5)〉 〈(7499.25, 7500, 7500.75); (0.9, 0.7, 0.6)〉
0.5 〈(49.5, 50, 50.5); (0.9, 0.7, 0.5)〉 〈(7499.5, 7500, 7500.5); (0.9, 0.7, 0.6)〉
0.75 〈(49.75, 50, 50.25); (0.9, 0.7, 0.5)〉 〈(7499.75, 7500, 7500.25); (0.9, 0.7, 0.6)〉

1 〈(50, 50, 50); (1, 1, 1)〉 〈(7500, 7500, 7500); (1, 1, 1)〉
=(50) =7500

Figure 3. Optimal solution for different values of β ∈ [0, 1]

When β = 1, we see that χ̃1 = 50, χ̃2 = 50, χ̃3 = 50 and min f̃N (χ̃) = 7500.
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Month 1 Month 2 Month 3
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β = 0.5

β = 0.25

β = 0

Figure 4. neutrosophic optimal production quantities under three levels of uncertainty tolerance β.

8. Conclusion

In this chapter, we discussed a solution concept for SVNNLPP involving neutrosophic

triangular numbers. First, the given SVNNLPP is expressed in terms of its location

index number , left and right fuzziness index functions. In the parametric forms

of neutrosophic numbers, a new type of neutrosophic arithmetic and neutrosophic

ranking are introduced and utilized. The neutrosophic versions of the Karush

Kuhn Tucker (KKT) condition are used, and the neutrosophic optimal solution

of the SVNNLPP is obtained without having to convert the given problem. The

neutrosophic fuzzy optimal solution of the given SVNNLPP is tabulated for different

values of β ∈ [0, 1]. It is important to note that by utilizing the suggested procedure

and selecting an appropriate value for β ∈ [0, 1], the decision maker has the flexibility

to select his or her preferred optimal solution based on the situation. The numerical

solutions have been presented and discussed.

Future Scope

The proposed Neutrosophic KKT-based method opens several avenues for future re-

search. One promising direction is its extension to multi-objective optimization prob-

lems, where conflicting objectives can be modeled using neutrosophic sets to reflect

trade-offs under uncertainty. Another potential area involves dynamic systems, where

the method could be adapted to handle time-dependent parameters and constraints.

Moreover, integrating this approach with machine learning techniques may enhance

its ability to learn and update neutrosophic parameters from evolving data. Ex-

ploring hybrid models combining fuzzy, intuitionistic and neutrosophic frameworks

also presents a valuable path for handling diverse forms of imprecision in real-world

problems.
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[17] G. Lavezzi, K. Guye, and M. Ciarcià, Nonlinear programming solvers for un-

constrained and constrained optimization problems: a benchmark analysis, arXiv

preprint arXiv:2204.05297 (2022).

[18] M. Ma, M. Friedman, and A. Kandel, A new fuzzy arithmetic, Fuzzy sets and

systems 108 (1999), no. 1, 83–90.

https://doi.org/10.1016/S0165-0114(97)00310-2.

[19] S. Mishra, R. Ranjan Ota, and S. Nayak, Nonlinear fuzzy fractional signo-

mial programming problem: A fuzzy geometric programming solution approach,

RAIRO Oper. Res. 57 (2023), no. 3, 1579–1597.

https://doi.org/10.1051/ro/2023063.

[20] S.M. Othman and M.B. Abdulrazzaq, Fuzzy logic system for drug storage based

on the internet of things: a survey, Indones. J. Electr. Eng. Comput. Sci. 29

(2023), no. 3, 1382–1392.

https://doi.org/10.11591/ijeecs.v29.i3.

[21] R. Purnima Raj, Fuzzy non-linear programming problems with linear inequality

constraints and its solutions, Mathematical Statistician and Engineering Appli-

cations 70 (2021), no. 2, 297–308.

[22] N.V.S. Raju, Optimization Methods for Engineers, PHI Learning Pvt. Ltd., 2014.

[23] J. Reig-Mullor and F. Salas-Molina, Non-linear neutrosophic numbers and its

application to multiple criteria performance assessment, Int. J. Fuzzy Syst. 24

(2022), no. 6, 2889–2904.

https://doi.org/10.1007/s40815-022-01295-y.

[24] M. Sarkar, T.K. Roy, and F. Smarandache, Neutrosophic Optimization and Its

Application on Structural Designs, Infinite Study, 2018.



G. Vanaja, K. Ganesan 23

[25] M.R. Seikh and S. Dutta, A nonlinear programming model to solve matrix games

with pay-offs of single-valued neutrosophic numbers, Neutrosophic Sets Syst. 47

(2021), no. 1, 366–383.

[26] K. Sharma, V.P. Singh, B. Poojara, A. Ebrahimnejad, and D. Chakraborty,

An optimization method to solve a fully intuitionistic fuzzy non-linear separable

programming problem, RAIRO Oper. Res. 57 (2023), no. 6, 3117–3139.

https://doi.org/10.1051/ro/2023152.

[27] N. Sudha and R.I. Hepzibah, Fuzzy neutrosophic quadratic programming problem

as a linear complementarity problem, Int. J. Aquat. Sci. 12 (2021), no. 2, 91–97.

[28] P. Umamaheswari and K. Ganesan, A new approach for the solution of uncon-

strained fuzzy optimization problems, AIP Conf. Proc. 2112 (2019), no. Article

ID: 020004.

https://doi.org/10.1063/1.5112189.

[29] G. Vanaja, K. Ganesan, and L. Rathour, Solving fuzzy nonlinear programming

problems with exterior penalty fuzzy valued functions, Adv. Math. Models Appl.

9 (2024), no. 1, 130–146.

https://doi.org/10.62476/amma9130.


	Introduction
	Preliminaries
	Neutrosophic Non Linear Programming Problems (NNLPP)
	Algorithm
	Numerical Example
	An application in Home Appliances
	Result and Discussion
	Conclusion
	References

