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Abstract: The study of atom-bond sum-connectivity index emerged recently as a
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1. Introduction

In chemical sciences, topological indices (TIs) have been found to be useful in

chemical documentation, isomer discrimination, structure-property relationships, and

structure-activity relationships [10, 16]. There has been considerable interest in the
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2 Relation between ABS index with some other topological indices

general problem of determining topological indices as presented by Kulli [22] in 2019.

TIs are best applied to recognize the physical properties, chemical reactions and bi-

ological activities. The numeric values of TIs predict various physical and chemical

properties of the involved organic compounds in the molecular graphs such as vol-

ume, density, pressure, weight, boiling point, freezing point, vaporization point, heat

of formation, and heat of evaporation [25, 27]. Moreover, they are used to study

the quantitative structure-activity relationship (QSAR) and quantitative structure-

property relationship (QSPR) and medical behaviors of different drugs in the subject

of cheminformatics and pharmaceutical industries [10, 15, 30–32]. Aarthi et at. [1]

investigated the maximum value of atom-bond sum-connectivity among the class of

bicyclic graphs on n vertices. They also demonstrated the role of atom-bond sum-

connectivity in explaining structure–property relationship.

In topological indices, the atom-bond connectivity index is one of the celebrated

indices. This topological index was first introduced by Estrada et al. [13] in 1998.

It is a useful topological index employed in studying the stability of alkanes and the

strain energy of cycloalkanes [21]. The atom-bond connectivity index of a nontrivial

graph G, denoted by ABC(G), is defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
,

where du is the degree of vertex u in G. In [13], Estrada et al. used ABC index for

the purpose of modeling thermodynamic properties of organic chemical compounds.

In 2008, Estrada published another paper [12], in which ABC index is used as a tool

to explain the stability of branched alkanes. This captured the attention of several

mathematicians working on topological indices, resulting in a remarkable number of

research papers on the mathematical properties of this topological index [8, 9].

Hasni et al. [19] studied links between the difference of Randić and ABC indices with

certain well-studied topological indices. They derived some bounds for the difference

of Randić index and atom-bond connectivity index with minimum degree δ, maximum

degree ∆, and size of G. The minimum degree δ of G and the maximum degree ∆ of

G are, respectively, defined as follows:

δ = min
v∈V (G)

{degG(v)}, ∆ = max
v∈V (G)

{degG(v)}.

In 2021, Phanjoubami and Mawiong [26] established some new results relating the

Sombor index and some well-studied topological indices: Zagreb indices, forgotten

index, harmonic index, (general) sum-connectivity index and symmetric division deg

index. Moreover, Du, Jahanbani and Sheikholeslami [11] investigated the relationships

between Randic index and several topological indices. Cruz et al. [7] obtained results

on extremal values of vertex-degree based topological indices, such as the generalized

Geometric-Arithmetic indices and the generalized Atom-Bond-Connectivity indices.
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Ali et al. [2] introduced the ABS index by amalgamating the core idea of the SC

and ABC indices, a new molecular descriptor was put forward—the atom-bond sum-

connectivity (ABS) index. They determined the graphs attaining the extreme values

of the ABS index over the classes of (molecular) trees and general graphs of a fixed

order. In their paper, they have shown that ABS index increases when a non-isolated

edge is inserted between any two non-adjacent vertices.

For a (molecular) graph G, the atom-bond sum-connectivity (ABS) index is defined

as

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv
.

This molecular descriptor replaces the denominator dudv in the ABC index by du+dv
for uv ∈ E(G).

Hu and Wang [20] presented the extremal trees with the maximum ABS index among

all trees of a given order with matching number or diameter, respectively. Moreover,

they also determined trees with a perfect matching having the maximum ABS index.

The harmonic index of G is given by

H(G) =
∑

uv∈E(G)

2

du + dv
.

Some results on harmonic index can be found in [33] where Zhong established the

minimum and maximum values of the harmonic index for simple connected graphs

and trees, and characterized the corresponding extremal graphs.

Ali et al. [2] obtained the following sharp upper bound for ABS index in terms of

harmonic index and the size of the graph.

Proposition 1. [2] Let H(G) be the harmonic index of the graph G. If G is a graph with
m edges, then

ABS(G) ≤
√
m(m−H(G)),

with equality if and only if either m = 0 or there is a fixed number k such that du + dv = k
holds for every edge uv ∈ E(G).

The above result was established using the well-known Cauchy-Schwartz Inequality.

Lemma 1 (Cauchy-Schwartz Inequality). For all sequences of real numbers
〈ai〉ni=1 and 〈bi〉ni=1, we have

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
≥

(
n∑

i=1

aibi

)2

,

equality holds if and only if ai = kbi for a nonzero constant k ∈ R.
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In 2023, Lin [24] established results on relations between atom-bond sum-connectivity

index and other connectivity indices particularly the Randić and harmonic indices.

Below are some of the bounds established by Lin [24].

The Randić index of a graph G is given by

R(G) =
∑

uv∈E(G)

1√
dudv

.

Theorem 1. [24] Let G be a connected graph with the maximum degree ∆ and minimum
degree δ. Then √

δ(δ − 1)R(G) ≤ ABS(G) ≤
√

∆(∆− 1)R(G),

with equality if and only if G is regular.

Theorem 2. [24] Let G be a connected graph with the maximum degree ∆ and minimum
degree δ. Then √

δ(δ − 1)H(G) ≤ ABS(G) ≤
√

∆(∆− 1)H(G),

with equality if and only if G is regular.

Recently, Ali et al. [3] made a survey of the mathematical properties of the ABS

index. They collected known bounds and extremal results regarding the ABS index.

Moreover, they proposed a number of open problems and conjectures, arising from

the reported results.

In 2024, Swathi et al. [29] established relations between the atom-bond sum con-

nectivity index with harmonic index, the first, hyper and augmented Zagreb indices,

the general sum-connectivity index, the Randić index, and the sum-connectivity F -

index. Also, Li, Ye, and Lu [23] established sharp upper bounds for the ABS indices

of graphs on the basis of their fixed parameters such as chromatic number, clique

number, connectivity and matching number.

Our focus in this paper is on extremal results and bounds of ABS index with other

degree-based topological indices different from those established in [29].

Consider the graph below:
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Let us examine the values of summands of some distance-based topological indices

with respect to the graph above. Here, dw = 2, dx = 2, dy = 3, and dz = 1.
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Topological Indices Formula wx xy wy yz Value

ABS Index
∑

uv∈E(G)

√
du+dv−2
du+dv

√
2
4

√
3
5

√
3
5

√
2
4 2.96340

Harary Index
∑

uv∈E(G)
2

du+dv

2
4

2
5

2
5

2
4 1.8

ABC Index
∑

uv∈E(G)

√
du+dv−2

dudv

√
2
4

√
3
6

√
3
6

√
2
3 2.93781

Randić Index
∑

uv∈E(G)
1√
dudv

1
2

1√
6

1√
6

1√
3

1.89384

First Zagreb Index
∑

uv∈E(G) du + dv 4 5 5 4 18

Second Zagreb Index
∑

uv∈E(G) dudv 4 6 6 3 19

Sombor Index
∑

uv∈E(G)

√
d2u + d2v 2

√
2
√

13
√

13
√

10 13.20180

Modified Sombor
∑

uv∈E(G)
1√

d2
u+d2

v

1
2
√
2

1√
13

1√
13

1√
10

1.22448

In the ABS index, the edges wx and yz have equal values although the end-vertices

of the edges have different degrees. But the same edges differs in values for the ABC

index. This is due to the replacement of the product in the denominator for ABC

index by the sum of the degrees for ABS index. We will establish their relationships

in Section 2. With the same graph, the value for modified Sombor index is much

smaller than the ABS index. The relationships between these two topological indices

will be established in the second part of Section 4. In the above table, the second

Zagreb index has the highest value. The relationship of this TI with the ABS index

is established in Section 3.

We will now examine the relationships between ABS index with other degree-based

topological indices given the minimum degree and maximum degree of the graph.

2. Relation Between ABS Index with ABC Index

Note that if G has no pendant vertex, then dudv ≥ du + dv for every pair of vertices

u and v in G. Consequently, ABC(G) ≤ ABS(G). Now, we will establish bounds

of ABS index of general graphs in terms of ABC index with minimum degree δ and

maximum degree ∆.

Theorem 3. Let G be a connected graph of order at least 3 with minimum degree δ and
maximum degree ∆. Then

δ√
2∆

ABC(G) ≤ ABS(G) ≤ ∆√
2δ
ABC(G).

Equality holds for both if and only if G is regular.



6 Relation between ABS index with some other topological indices

Proof. Let u, v ∈ V (G) such that uv ∈ E(G). Then

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

=
∑

uv∈E(G)

√
du + dv − 2

dudv
·
√
du + dv√
du + dv

≤
√

2∆

δ

∑
uv∈E(G)

√
du + dv − 2

du + dv

=

√
2∆

δ
ABS(G).

Thus,

ABS(G) ≥ δ√
2∆

ABC(G). (2.1)

Suppose equality holds in 2.1. From the above relations, this means that

√
du + dv√
dudv

=
√

2∆

δ
, which further implies that

du + dv
dudv

=
2∆

δ2
. Thus, there exists k ∈ R such that

du +dv = 2k∆ and dudv = kδ2. Now, 2k∆ = du +dv ≤ 2∆. Consequently, k = 1 and

du = dv = ∆. Hence, δ2 = kδ2 = dudv = ∆2 for every uv ∈ E(G). Thus, du = ∆ = δ

for every u ∈ V (G) and hence G is regular. Conversely, if G is regular then it can be

easily seen that equality holds.

Next we show the second inequality. Now,

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

=
∑

uv∈E(G)

√
du + dv − 2

dudv
·
√
du + dv√
du + dv

≥
√

2δ

∆

∑
uv∈E(G)

√
du + dv − 2

du + dv

=

√
2δ

∆
ABS(G).

Hence,

ABS(G) ≤ ∆√
2δ
ABC(G). (2.2)

Suppose equality holds in 2.2. Then

√
du + dv√
dudv

=

√
2δ

∆
. Similar arguements with

the above gives us du = δ = ∆ for every u ∈ V (G) and conclude that G is regular.

Conversely, if G is regular then it can be easily seen that equality holds.
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3. Relation Between ABS Index with Zagreb Indices

One of the oldest graph invariants is the well-known Zagreb index first introduced

in [18], where Gutman and Trinajstić examined the dependence of total π-electron

energy on molecular structure. For a (molecular) graph G, the first Zagreb index

M1(G) and the second Zagreb index M2(G) are, respectively, defined as follows:

M1(G) =
∑

uv∈E(G)

du + dv, M2(G) =
∑

uv∈E(G)

dudv.

In 2021, Filipovski [14] obtained various bounds of the First Zagreb index in terms of

the degree sequence of a graph.

Now we present an upper bound for the ABS index in terms of the first Zagreb index

M1(G) and harmonic index.

Theorem 4. Let G be a graph of size m. Then

ABS(G) ≤
√

2

2

√
(M1(G)− 2m)H(G).

Proof. Let G denotes a graph with m edges and the first Zagreb index M1(G). By

the ABS definition and the Cauchy-Schwartz inequality, we have

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv

≤

√√√√ ∑
uv∈E(G)

(√
du + dv − 2

)2 ∑
uv∈E(G)

(
1√

du + dv

)2

=

√√√√ ∑
uv∈E(G)

(du + dv − 2)
∑

uv∈E(G)

1

du + dv

=

√
2

2

√
(M1(G)− 2m)H(G)

The proof is complete.

Theorem 4 was established in the paper of Ali et al. [4] (THEOREM 3.4) by using a

slightly different way.

Next, we present bounds for ABS index in terms of the first Zagreb index M1(G)

with minimum degree δ and maximum degree ∆.

We will use the following straightforward result.

Lemma 2. Let G be a connected graph of order at least 3. Then for any two adjacent
vertices u, v ∈ V (G), du + dv ≥ 3.
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Theorem 5. Let G be a connected graph of order at least 3 with minimum degree δ and
maximum degree ∆. Then

1

2∆
√

2∆
M1(G) ≤ ABS(G) <

1

2δ
M1(G).

Proof. Let u, v ∈ V (G) such that uv ∈ E(G). Then by Lemma 2, du + dv − 2 ≥ 1.

Now,

M1(G) =
∑

uv∈E(G)

du + dv

≤ 2∆
∑

uv∈E(G)

√
du + dv
du + dv

(3.1)

≤ 2∆
√

2∆
∑

uv∈E(G)

√
1

du + dv
(3.2)

≤ 2∆
√

2∆
∑

uv∈E(G)

√
du + dv − 2

du + dv
(3.3)

= 2∆
√

2∆ABS(G).

Hence,

ABS(G) ≥ 1

2∆
√

2∆
M1(G). (3.4)

Moreover,

M1(G) =
∑

uv∈E(G)

du + dv

≥ 2δ
∑

uv∈E(G)

√
du + dv
du + dv

> 2δ
∑

uv∈E(G)

√
du + dv − 2

du + dv

= 2δABS(G).

Hence,

ABS(G) <
1

2δ
M1(G). (3.5)

Combining Inequalities 3.4 and 3.5 gives the desired result.

In the above result, sharpness of bounds cannot be attained. This is due to the fact

that if we have equality, then line 3.1 implies that du + dv = 2∆ which means that

∆ = du for every u ∈ V (G) and hence G is regular. But in this case, 1 < du + dv − 2

from lines 3.2 and 3.3. For the upper bound, we use the fact that du+dv > du+dv−2.

We establish sharp bounds of ABS index in terms of first Zagreb index for classes of

graphs without pendant vertices.
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Theorem 6. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. Then √

δ − 1

2∆
√

∆
M1(G) ≤ ABS(G) ≤

√
∆− 1

2δ
√
δ
M1(G).

Equality holds for both if and only if G is regular.

Proof. Let G be a graph with minimum degree δ ≥ 2. Then
√

2δ − 2 > 0. Let

u, v ∈ V (G) such that uv ∈ E(G). Now, Lemma 2 asserts that du + dv − 2 > 0.

Hence,

M1(G) =
∑

uv∈E(G)

du + dv

≤ 2∆
∑

uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≤ 2∆
√

2∆√
2δ − 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
2∆
√

∆√
δ − 1

ABS(G).

Hence,

ABS(G) ≥
√
δ − 1

2∆
√

∆
M1(G). (3.6)

Suppose equality holds in 3.6. Then 2∆ = du + dv. This equality can only be

attained when du = dv = ∆ for every uv ∈ E(G). Consequently, du = δ = ∆ for

every u ∈ V (G) and hence G is regular. Conversely, if G is regular then it can be

easily seen that equality holds.

Next, we show the second inequality. Now,

M1(G) =
∑

uv∈E(G)

du + dv

≥ 2δ
∑

uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≥ 2δ
√

2δ√
2∆− 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
2δ
√
δ√

∆− 1
ABS(G).
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Hence,

ABS(G) ≤
√

∆− 1

2δ
√
δ
M1(G). (3.7)

If equality holds in 3.7, then 2δ = du + dv, which implies that du = dv = δ for every

uv ∈ E(G). Consequently, du = δ = ∆ for every u ∈ V (G) and hence G is regular.

Conversely, if G is regular then it can be easily seen that equality holds.

Corollary 1. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. If G is not regular, then

ABS(G) <

√
∆− 1

2δ
√
δ
M1(G).

Comparing with Theorem 5, we have

√
∆− 1

2δ
√
δ
M1(G) ≤ 1

2δ
M1(G),

which implies that
√

∆− 1 ≤
√
δ. Thus, if G is a graph with ∆ = δ+1, then Corollary

1 is better than Theorem 5.

The next result establishes the bounds of ABS index of G in terms of the second

Zagreb index M2(G) with minimum degree δ and maximum degree ∆.

Theorem 7. Let G be a connected graph of order at least 3 with minimum degree δ and
maximum degree ∆. Then

1

∆2
√

2∆
M2(G) ≤ ABS(G) <

1

δ2
M2(G).

Proof. Let u, v ∈ V (G) such that uv ∈ E(G). Then by Lemma 2, du + dv − 2 ≥ 1.

Now,

M2(G) =
∑

uv∈E(G)

dudv

≤ ∆2
∑

uv∈E(G)

√
du + dv
du + dv

≤ ∆2
√

2∆
∑

uv∈E(G)

√
1

du + dv

≤ ∆2
√

2∆
∑

uv∈E(G)

√
du + dv − 2

du + dv

= ∆2
√

2∆ABS(G).
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Hence,

ABS(G) ≥ 1

∆2
√

2∆
M2(G). (3.8)

Moreover,

M2(G) =
∑

uv∈E(G)

dudv

≥ δ2
∑

uv∈E(G)

√
du + dv
du + dv

> δ2
∑

uv∈E(G)

√
du + dv − 2

du + dv

= δ2ABS(G).

Hence,

ABS(G) <
1

δ2
M2(G). (3.9)

Combining Inequalities 3.8 and 3.9 gives the desired result.

In the above result, the lower bound is not sharp since equating dudv = ∆2 will lead

us to a regular graph in which case du + dv − 1 cannot be equal to 1. Also, in the

upper bound
√
du + dv cannot be equal to

√
du + dv − 2.

In the next result, we establish sharp bounds of ABS index in terms of second Zagreb

index for some classes of graphs.

Theorem 8. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. Then √

δ − 1

∆2
√

∆
M2(G) ≤ ABS(G) ≤

√
∆− 1

δ2
√
δ
M2(G).

Equality holds for both if and only if G is regular.

Proof. Let G be a graph with minimum degree δ ≥ 2. Then
√

2δ − 2 > 0. Let

u, v ∈ V (G) such that uv ∈ E(G). Now, Lemma 2 asserts that du + dv − 2 > 0.

Hence,

M2(G) =
∑

uv∈E(G)

dudv

≤ ∆2
∑

uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≤ ∆2
√

2∆√
2δ − 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
∆2
√

∆√
δ − 1

ABS(G).
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Hence,

ABS(G) ≥
√
δ − 1

∆2
√

∆
M2(G). (3.10)

Suppose that equality holds in 3.10. Then dudv = ∆2, which forces du = dv = ∆ for

every uv ∈ E(G). Consequently, du = ∆ = δ for every u ∈ V (G) and hence G is

regular. Conversely, if G is regular then it can be easily seen that equality holds.

To show the second inequality, we have

M2(G) =
∑

uv∈E(G)

dudv

≥ δ2
∑

uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≥ δ2
√

2δ√
2∆− 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
δ2
√
δ√

∆− 1
ABS(G).

Hence,

ABS(G) ≤
√

∆− 1

δ2
√
δ
M2(G). (3.11)

If equality holds in 3.11, then dudv = δ2 and du = dv = δ for every uv ∈ E(G). By

connectedness of G, we must have du = δ = ∆ for every u ∈ V (G) and thus G is

regular. Conversely, if G is regular then it can be easily seen that equality holds.

Corollary 2. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. If G is not regular, then

ABS(G) <

√
∆− 1

δ2
√
δ
M2(G).

Comparing with Theorem 7, we have

√
∆− 1

δ2
√
δ
M2(G) ≤ 1

δ2
M2(G),

which implies that
√

∆− 1 ≤
√
δ. Thus, if G is a graph with ∆ = δ+1, then Corollary

2 is better than Theorem 7.
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4. Relation Between ABS index with Sombor Index and mod-
ified Sombor index

The Sombor index and modified Sombor index of a graph G are defined respectively

as follows:

SO(G) =
∑

uv∈E(G)

√
d2u + d2v, SOm(G) =

∑
uv∈E(G)

1√
d2u + d2v

.

Both topological indices were introduced in the 2020s, and have already found a va-

riety of chemical, physicochemical, and network-theoretical applications [17]. Some

results on Sombor index can be found in [5, 6]. In 2023, Saha [28] established re-

lations between Sombor index and modified Sombor index with other degree-based

topological indices.

The following result establishes the bounds for ABS index in terms of the Sombor

index of G with minimum degree δ and maximum degree ∆.

Theorem 9. Let G be a connected graph of order at least 3 with minimum degree δ and
maximum degree ∆. Then

1

2∆
√

∆
SO(G) ≤ ABS(G) <

1√
2δ
SO(G).

Proof. Let u, v ∈ V (G) such that uv ∈ E(G). Then by Lemma 2, du + dv − 2 ≥ 1.

Hence,

SO(G) =
∑

uv∈E(G)

√
d2u + d2v

=
∑

uv∈E(G)

√
(d2u + d2v)(du + dv)

du + dv

≤ 2∆
√

∆
∑

uv∈E(G)

√
1

du + dv
(4.1)

≤ 2∆
√

∆
∑

uv∈E(G)

√
du + dv − 2

du + dv
(4.2)

= 2∆
√

∆ABS(G).

Thus,

ABS(G) ≥ 1

2∆
√

∆
SO(G). (4.3)
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Moreover,

SO(G) =
∑

uv∈E(G)

√
d2u + d2v

≥
√

2δ
∑

uv∈E(G)

√
du + dv
du + dv

>
√

2δ
∑

uv∈E(G)

√
du + dv − 2

du + dv

=
√

2δABS(G)

Thus,

ABS(G) <
1√
2δ
SO(G). (4.4)

Combining Inequalities 4.3 and 4.4 gives the desires result.

The above inequalities are not sharp since in the first inequality, equality in 4.1 means

that G is regular. In that case 1 < du + dv − 2 in 4.2. For the second inequality,

du + dv > du + dv − 2.

Sharp bounds is established in the following result by considering classes of graphs

without pendant vertices.

Theorem 10. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. Then √

δ − 1

∆
√

2∆
SO(G) ≤ ABS(G) ≤

√
∆− 1

δ
√

2δ
SO(G).

Equality holds for both if and only if G is regular.

Proof. Let G be a graph with minimum degree δ ≥ 2. Then
√

2δ − 2 > 0. Let

u, v ∈ V (G) such that uv ∈ E(G). Now, Lemma 2 asserts that du + dv − 2 > 0.

Hence,

SO(G) =
∑

uv∈E(G)

√
d2u + d2v

≤
√

2∆
∑

uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≤
√

2∆
√

2∆√
2δ − 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
∆
√

2∆√
δ − 1

ABS(G).
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Thus,

ABS(G) ≥
√
δ − 1

∆
√

2∆
SO(G). (4.5)

If equality holds in 4.5, then
√

2∆ =
√
d2u + d2v, which means that du = dv = ∆ for

every uv ∈ E(G). This further implies that du = ∆ = δ for every u ∈ V (G) and

hence G is regular. Conversely, if G is regular then it can be easily seen that equality

holds.

For the second inequality, we have

SO(G) =
∑

uv∈E(G)

√
d2u + d2v

≥
√

2δ
∑

uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≥
√

2δ
√

2δ√
2∆− 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
δ
√

2δ√
∆− 1

ABS(G).

Hence,

ABS(G) ≤
√

∆− 1

δ
√

2δ
SO(G). (4.6)

If equality holds in 4.6, then
√

2δ =
√
d2u + d2v, which means that du = dv = δ fro

every uv ∈ E(G). Hence du = δ = ∆ for every u ∈ V (G) and conclude that G is

regular. Conversely, if G is regular then it can be easily seen that equality holds.

Corollary 3. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. If G is not regular, then

ABS(G) <

√
∆− 1

δ
√

2δ
SO(G).

Comparing with Theorem 9, we have

√
∆− 1

δ
√

2δ
SO(G) ≤ 1√

2δ
SO(G),

which implies that
√

∆− 1 ≤
√
δ. Thus, if G is a graph with ∆ = δ+1, then Corollary

3 is better than Theorem 9.

Next, we will look at the relationship between the ABS index with the modified

Sombor index. Our result is established in the following theorem.
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Theorem 11. Let G be a connected graph of order at least three with minimum degree δ
and maximum degree ∆. Then

δ√
∆
SOm(G) ≤ ABS(G) <

√
2∆SOm(G).

Proof. Let u, v ∈ V (G) such that uv ∈ E(G). Then by Lemma 2, du + dv − 2 ≥ 1.

Thus,

SOm(G) =
∑

uv∈E(G)

1√
d2u + d2v

≤ 1√
2δ

∑
uv∈E(G)

√
du + dv
du + dv

≤
√

2∆√
2δ

∑
uv∈E(G)

√
1

du + dv

≤
√

∆

δ

∑
uv∈E(G)

√
du + dv − 2

du + dv

=

√
∆

δ
ABS(G).

Hence,

ABS(G) ≥ δ√
∆
SOm(G). (4.7)

Moreover,

SOm(G) =
∑

uv∈E(G)

1√
d2u + d2v

≥ 1√
2∆

∑
uv∈E(G)

√
du + dv
du + dv

>
1√
2∆

∑
uv∈E(G)

√
du + dv − 2

du + dv

=
1√
2∆

ABS(G).

Hence,

ABS(G) <
√

2∆SOm(G). (4.8)

Combining Inequalities 4.7 and 4.8 gives the desired result.
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The above bounds are not sharp since in the lower bound, when
√

2δ =
√
d2u + d2v,

then G will be regular and in that case 1 < du + dv − 2. For the upper bound, we use

the fact that du + dv > du + dv − 2.

We now consider graphs without pendant vertices.

Theorem 12. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. Then

δ
√

2δ − 2√
∆

SOm(G) ≤ ABS(G) ≤ ∆
√

2∆− 2√
δ

SOm(G).

Equality holds for both if and only if G is regular.

Proof. Let G be a graph with minimum degree δ ≥ 2. Then
√

2δ − 2 > 0. Let

u, v ∈ V (G) such that uv ∈ E(G). Now, Lemma 2 asserts that du + dv − 2 > 0.

Hence,

SOm(G) =
∑

uv∈E(G)

1√
d2u + d2v

≤ 1√
2δ

∑
uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≤
√

2∆√
2δ
√

2δ − 2

∑
uv∈E(G)

√
du + dv − 2

du + dv

=

√
∆

δ
√

2δ − 2
ABS(G).

Thus,

ABS(G) ≥ δ
√

2δ − 2√
∆

SOm(G). (4.9)

Suppose equality holds in 4.9. Then
√

2δ =
√
d2u + d2v which leads to du = dv = δ

for every uv ∈ E(G). Consequently, du = δ = ∆ for every u ∈ V (G) and thus G is

regular. Conversely, if G is regular then it can be easily seen that equality holds.

We will show the second inequality. Now,

SOm(G) =
∑

uv∈E(G)

1√
d2u + d2v

≥ 1√
2∆

∑
uv∈E(G)

√
du + dv − 2

du + dv
·
√

du + dv
du + dv − 2

≥
√

2δ√
2∆
√

2∆− 2

∑
uv∈E(G)

√
du + dv − 2

du + dv
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=

√
δ

∆
√

2∆− 2
ABS(G).

Thus,

ABS(G) ≤ ∆
√

2∆− 2√
δ

SOm(G). (4.10)

If equality holds in 4.10, then
√

2∆ =
√
d2u + d2v which leads to du = dv = ∆ for

every uv ∈ E(G). Consequently, du = ∆ = δ for every u ∈ V (G) and therefore G is

regular. Conversely, if G is regular then it can be easily seen that equality holds.

Corollary 4. Let G be a connected graph with minimum degree δ ≥ 2 and maximum
degree ∆. If G is not regular, then

ABS(G) <
∆
√

2∆− 2√
δ

SOm(G).

Comparing with Theorem 11, we have

∆
√

2∆− 2√
δ

SOm(G) ≤
√

2∆SOm(G),

which implies that
√

∆− 1 ≤
√
δ. Thus, if G is a graph with ∆ = δ+1, then Corollary

4 is better than Theorem 11.

It is interesting to note that if G has no pendant vertices, then for any pair of adjacent

vertices u and v in G, dudv ≥ du + dv. Hence, in this case, ABC(G) ≤ ABS(G).

Moreover, ABS(G) = ABC(G) if and only if G is 2-regular.

5. Conclusion

In this work, we have shown some bounds of ABS index in terms of ABC index, first

Zagreb index, second Zagreb index, harmonic index, Sombor index, and modified

Sombor index with minimum degree and maximum degree of a graph. For connected

graphs of order at least 3, we have established sharp bounds of ABS index with ABC

index in terms of minimum degree δ and maximum degree ∆. For relations between

ABS index with other TIs, we were able to establish extremal results for classes

of graph without pendant vertices. We have shown that regular graphs correspond

to extremal graphs. Moreover, for graphs that are not regular, better bounds are

attained when ∆ = δ + 1.

Readers may consider working on extremal results and bounds of ABS index with

other distance-based topological indices.
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