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1. Introduction

This paper presents a combinatorial proof of Cramer’s rule. Such a proof offers a
greater understanding of the underlying reasons for the validity of the result, rather
than merely explaining the methodology [3, 9, 11]. Numerous concise proofs of
Cramer’s rule are available on Wikipedia and its associated references [5, 8, 10].

The rule was first published by Gabriel Cramer (1704-1752) in Appendix I of his Intro-
duction a Uanalyse des lignes courbes algébriques [6], pages 657-659. While Theorem
1.1 is sometimes misattributed-Boyer, Hedman, and others suggest that Colin Maclau-
rin (1698-1746) was already aware of it by 1729 and included it in his posthumous
Treatise of Algebra (1748) [4, 7]. As a matter of fact, both Cramer and Maclaurin
explicitly solved the 3 x 3 case, expressing each unknown as a ratio of two sums of
six terms. They then sketched how these formulas extend to larger systems; neither,
however, used the modern determinant concept, which emerged only in 1771 with
Vandermonde [12].

Furthermore, as observed in [2], Maclaurin’s method for assigning signs to each sum-
mand is flawed. By contrast, Cramer’s approach-determining signs via the parity of
the associated permutation is correct. Hence, the rule rightfully bears his name. In
1841, Carl Gustav Jacobi (1804-1851) introduced the first formal proof of Cramer’s
rule in his paper [8]. However, this is not the earliest known demonstration; in 1825,
Heinrich Ferdinand Scherk (1798-1885) published a 17-page inductive proof on the
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number of unknowns, outlined in [10]. Recently, Doron Zeilberger provided a fully
combinatorial proof in [13]. This paper presents a combinatorial proof of Cramer’s
rule utilizing the Gessel-Viennot-Lindstrom Lemma.

Let T" represent a weighted, acyclic directed graph. Consider P; as a directed path
from vertex X to vertex Y within I', and P, as another path extending from Y to
Z. The concatenation of the two paths, P; and Ps, is denoted as Py (O P, which
traverses from vertex X to vertex Z. A directed edge is represented by the initial
vertex U and the terminal vertex V as UV. Let A and B be two fixed subsets of V()
both of cardinality n respectively called set of initial vertices and set of final vertices,
where V(T') is the vertex set of the graph I'. To these sets, we associate the path
matric Map = (Mij)nxn, where m;; = >, w(P), with w(P) representing the

P:A;—Bj
product of the weights of all edges in the path P.J The notation P : A; — Bj; signifies
a directed path that initiates at the vertex A; and concludes at the vertex B;. A path
system P from A to B consists of a permutation o and n paths P; : A; — B,(;), with
sgn(P) = sgn(o). The weight of P is defined as w(P) = []_, w(P;). We refer to the
path system as vertez-disjoint if no two paths share a common vertex. Let V D(T')
denote the collection of vertex-disjoint path systems. It is straightforward to observe
that det(Mag) = > sgn(P)w(P). However, the Gessel-Viennot-Lindstrom Lemma
P

provides additional insights.

Lemma 1 (Gessel-Viennot-Lindstrom [1]). Let I' be a weighted, acyclic digraph

and Map be the path matriz of T'. Then det(Map) = . sgn(P)w(P).
PEVD(T)

Note that the sum is 0 if no path system exists from A to B. We now present an

almost visual demonstration of Cramer’s rule for solving a system of linear equations.
Consider the following system of equations:

1121 + 1222 + -+ -+ A1p Ty =by

(21T + Q22T + - - - + A2p Ty =bo

p1%1 + ApaTa + - + App Ty =by

This system can be expressed in matrix form as AX = B, where A = (a;j)nxn
represents the n x n matrix, X = (z1,--- ,2,)7 is the column vector of the unknowns,
and B = (b1, ,b,)T is the column vector of constants. Let A; (for i = 1,--- ,n)

denote the matrix obtained by substituting the i-th column of A with the column
vector B.

Theorem 1 (Cramer’s rule [6]). For the system AX = B, consisting of n linear
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equations with n unknowns and det(A) # 0, Cramer’s rule states that

- det(Ai)

Z; (i=1,---,n).

~ det(A)’

Proof. Our objective is to demonstrate that z; det(4) = det(A;) for every i € [n].
Consider the directed graph I' illustrated in Figure 1. The graph I' is a weighted
digraph having directed edge from A; to B; with weight a;; for each ¢,j € [n] and
the weight of the edge Bl—)(2 is x;, for each ¢ € [n]. Let A = {4;,---,A,} represent
the initial set of vertices, while B = {By,---,B;_1,X, Bit1, -+, Bn} denotes the
terminal set of vertices in I'. The weight associated with the edge connecting vertex
A; to vertex Bj in the graph I' is denoted as a;;. Furthermore, the weight of the edge
from vertex B; to vertex X is represented by x;. It is important to note that

Z w(P) = Zajkxb for all j € [n].

P:A; X k=1

Consequently, the i-th column of the path matrix Msp in the graph I' can be ex-
pressed as follows:

n

> akxk
k‘il bl
> askT by
k=1 = .
n bn
Y nkT

>
Il
—
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Furthermore, it is evident that the column Cj,j € [n] \ {i} of the path matrix Map
is represented as:

anj

Thus, the path matrix Map can be formulated as:

n
ail Y a1y I 3T )
k=1
n
L D D R (5
k=1
= A;.
n
An-1)1 D Un-1)kTk ** Qn—1)n
K=1
an1 e Z UpkTk e Apn
k=1
According to Lemma 1, it follows that det(A;) = > sgn(P)w(P). From
PeVD(T)
Figure 1, it is evident that the set P = {Py,---,P,} constitutes a vertex dis-

joint path system in the induced graph I' \ {X}, with the initial vertex set be-
ing {A41,---,A,} and the terminal vertex set being {B,---,B,} if and only if
P={P, - ,P_1,P @&727Pi+17 -++, P,} forms a vertex disjoint path system in
the graph T', where A = {A;,---,A,} and B = {By, -+ ,B;_1,X,Biy1, -+, Bn}
represent the initial and terminal vertex sets of I', respectively. Furthermore, it is
important to observe that w(P) = z;w(P) and sgn(P) = sgn(P). Consequently, we
have

Z sgn(P)w(P) | = =; Z sgn(P)w(P)

PevD(T) PeVD(T\{X})

This concludes the proof.

Example 1. Here we explain the idea of the proof for the case n = 3. Consider the graph
I' in Figure 1.

We aim to demonstrate that det(A4;) = z7det(A). Let us define the sets A =
{A1,As, A3} and B = {X, By, B3} as the initial and terminal sets of vertices in
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Figure 1. I' is a weighted digraph having edge weight a;j; for each directed edge A; to B; and x; for each
edge B; to X.

the graph T', respectively. It is straightforward to observe that w(P) = zyw(P) and
sgn(P) = sgn(P), where P and P represent vertex-disjoint path systems in the graphs
I and T\ {X}, respectively. Consequently, we have the following relationship:

Y. seu(Pw(P) | =a Y. sea(P)uw(P)

PeVD(T) PeVD(I'\{X})
= det(A;) = z1 det(A).

O
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