Research Article

Proper D-lucky edge labeling of human chain graphs

G. Rajini $Ram^{1,2,*}$, S. Hemalatha 1,† K. Anitha 2

Department of Mathematics,
Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women (Autonomous),
Chennai 44, India
*rajini.math@sairam.edu.in
†hemalatha.s@sdnbvc.edu.in

Received: 3 April 2023; Accepted: 17 July 2025 Published Online: 5 August 2025

Abstract: This paper determines the proper *D*-Lucky edge numbers for human chain graphs, circular human chain graphs, strong human chain graphs, and weak human chain graphs.

Keywords: proper *D*-Lucky edge labeling, human chain graph, circular human chain graph, strong human chain graph, weak human chain graph.

AMS Subject classification: 05C38, 05C78, 68R10

1. Introduction

In graph theory, graph labeling is one of the best-studied [2]. Lucky edge labeling was studied by many authors, for instance, see [4]. Also, Mirka Miller [3] gave proof for calculating the *D*-Lucky labeling of a graph. Further, the estimation of *D*-Lucky edge labeling and proof given by Rajini Ram et.al. see [4]. The concept of a human chain, circular human chain, and strong and weak human chain graph was explained by many authors, for instance, see [1, 5]. Here, we have determined the proper *D*-Lucky edge number of a human chain, circular human chain, and strong and weak human chain graphs.

²Department of Mathematics, Sri Sairam Engineering College (Autonomous), Chennai 44, India anitha.math@sairam.edu.in

^{*} Corresponding Author

Definition 1. A human chain graph HC is obtained by a path $u_1, u_2, \ldots u_{2n+1}, n \in N$ joining a cycle of length m and Y-tree, a connected graph that contains no cycle $Y_{m+1}, m \geq 3$ to each u_{2i} for $1 \leq i \leq n$. The vertices of the cycle and Y-tree are $v_1, v_2, \ldots v_{(m-1)n}$ and $w_1, w_2, \ldots w_{mn}$ respectively.

The vertex and edge sets of HC as follows:

```
V(HC) = \{u_i, v_j, w_k : i \le 2n+1, 1 \le j \le (m-1)n, 1 \le k \le mn\} \text{ and } |V| = 2mn+n+1 E(HC) = \{u_i u_{i+1} : 1 \le i \le 2n\} \cup \{u_{2i} w_{m(i-1)+1}; u_{2i} v_{(m-1)i}; u_{2i} v_{(m-1)(i-1)+1}; w_{mi} w_{(mi-2)}; 1 \le i \le n\} \cup \{w_{mi+j} w_{(mi+j+1)}; v_{(m-1)i+j} v_{(m-1)i+j+1}, 0 < i < n-1, 1 < j < m-2\} \text{ and } |E| = 2mn+2n.
```

Definition 2. A circular human chain graph CHC is obtained from a cycle $u_1, u_2, \ldots u_{2n},$ n>2 by joining a cycle of length m and Y- tree, a connected graph that contains no cycle $Y_{m+1}, m \geq 3$ to each $u_{2i}, 1 \leq i \leq n$. The vertices of the cycle and Y-tree Y_{m+1} are $v_1, v_2, \ldots v_{(m-1)n}$ and $w_1, w_2, \ldots w_{mn}$ respectively. The vertex and edge sets of $CHC_{n,m}$ is $V(CHC) = \{u_i, v_j, w_k : 1 \leq i \leq 2n, 1 \leq j \leq (m-1)n, 1 \leq k \leq mn\}$ with |V| = 2mn + n and $E(CHC) = \{u_i u_{i+1} : 1 \leq i \leq 2n - 1\} \cup \{u_1 u_{2n}\} \cup \{u_2 u_{m(i-1)+1}; u_2 u_{(m-1)i}; u_2 u_{(m-1)(i-1)+1}; w_{mi} w_{(mi-2)} : 1 \leq i \leq n\} \cup \{w_{mi+j} w_{(mi+j+1)}; v_{(m-1)i+j} v_{(m-i)+j+1} : 0 < i < n-1, 1 < j < m-2\}$ and |E| = 2mn + 2n.

Definition 3. The Strong human chain graph SHC, n>1, and $m\geq 3$ is obtained from Human chain graph by joining w_{mi} and $w_{m(i+1)-1}:1\leq i\leq n-1$ with common vertices in Y-tree. The vertices of $SHC_{n,m}$ are $u_1,u_2,\ldots,u_{2n+1},\,v_1,v_2,\ldots,v_{(m-1)n},\,w_1,w_2,\ldots,w_{(m-1)n+1}$ and edges of SHC are $\{u_i,u_{i+1}:1\leq i\leq 2n\}\cup\{u_{2i}w_{m(i-1)+1};u_{2i}v_{(m-1)i};u_{2i}v_{(m-1)(i-1)+1}:1\leq i\leq n\}\cup\{v_{(m-1)i+j}v_{(m-1)i+j+1}:0\leq i\leq n-1,1\leq j\leq m-2\}\cup\{w_{mi-m+j}w_{mi-m+j+1}:1\leq i\leq n,1\leq j\leq m-3\}\cup\{w_{(m-1)i+1}w_{(m-1)i+m-1}:1\leq i\leq n-1\}\cup\{w_{m-1}w_{m-2}\}.$

Definition 4. A Weak human chain graph WHC $n \geq 1, m \geq 3$ is obtained from a path $u_1, u_2, \ldots u_{n+1}$ by joining the cycle of length m and Y-tree (Y_{m+1}) to each $u_i : 1 \leq i \leq n$. The vertices and edges of WHC as follows $V(WHC) = \{u_1, u_2, \ldots u_{n+1}, v_1, v_2, \ldots v_{(m-1)n}, w_1, w_2, \ldots w_{mn}\}$ and $E(WHC) = \{u_i, u_{i+1} : 1 \leq i \leq n\} \cup \{u_i w_{m(i-1)+1}; u_i v_{(m-1)(i-1)+1}; u_i v_{(m-1)i} : 1 \leq i \leq n\} \cup \{v_{(m-1)i+j}v_{(m-1)i+j+1} : 0 \leq i \leq n-1\} \cup \{w_{mi+j}w_{mi+j+1} : 0 \leq i \leq n-1, 1 \leq j \leq m-2\} \cup \{w_{mi}w_{mi-2} : 1 \leq i \leq n\}.$

Definition 5. If $l:V(G)\to N$ is a vertex labeling of a graph G, then the labeling of an edge $uv\in E(G)$ is l(uv)=l(u)+l(v)+d(u)+d(v), where d(u) and d(v) are the degrees and l(u) and l(v) are the labeling of vertices u and v respectively. This labeling is called D-Lucky edge labeling if every pair of adjacent edges are distinct. The D-Lucky edge number is denoted by $\eta_{dle}(G)$, is the least positive integer k for which the graph G has D-Lucky edge labeling with the labels $\{1,2,3,\ldots,k\}$. A D-Lucky edge labeling is called proper if $l(u)\neq l(v)$ for every pair of adjacent vertices u and v. The proper D-Lucky edge number of a graph G is denoted by $\eta_{pdle}(G)$, is the least positive integer k for which G has a proper D-Lucky edge labeling with the labels $\{1,2,\ldots,k\}$.

2. Main Results

Theorem 1. For
$$m \ge 4$$
, $\eta_{pdle}(HC) = \begin{cases} 4, & n = 1 \\ 5, & n = 2 \\ 6, & n \ge 3 \end{cases}$

Proof. According to the D-Lucky edge concept, let G be any graph, let $x \in V(G)$ be adjacent to the same degree vertices $y_1, y_2, \ldots y_n$, then the vertices $y_1, y_2, \ldots y_n$ must required distinct n labels. Also, according to the proper D-Lucky edge concept, let $x \in V(G)$ be adjacent to the same degree vertices $y_1, y_2, \ldots y_n$, then the vertices $y_1, y_2, \ldots y_n$ must require distinct labels to each other and also distinct to the common vertex x. So n+1 distinct labels are needed. In the Human chain graph, for $1 \le i \le n$, the vertices $u_1, u_{2n+1}, w_{mi}, w_{mi-1}$ are 1-degree, the vertices w_{mi-2} are 3-degree, u_{2i} are 5-degree vertices. The remaining vertices are 2 degrees. Then $N(u_{2i}) = \{u_{2i-1}, u_{2i+1}, w_{m(i-1)+1}, v_{(m-1)(i-1)+1}, v_{(m-1)i}\}$. We consider three cases.

Case (i)
$$n=1$$
.

In this case, the vertices are $u_1, u_2, u_3, w_1, w_2, \ldots, w_m, v_1, v_2, \ldots, v_{(m-1)}$. We can observe that $N(u_2) = \{u_1, u_3, w_1, v_1, v_{(m-1)}\}$. Among these vertices $w_1, v_1, v_{(m-1)}$ are 2-degree vertices. Therefore $l(v_1) \neq l(v_{m-1}) \neq l(w_1) \neq l(u_2)$. Let $l(v_1) = 1$, $l(v_{m-1}) = 3$, $l(w_1) = 4$, and $l(u_2) = 2$. The 1-degree vertices u_1 and u_3 are adjacent to u_2 . Therefore $l(u_1) \neq l(u_2) \neq l(u_3)$. Already $l(u_2) = 2$. So $l(u_1) = 1$ and $l(u_3) = 3$. Clearly, we need $\eta_{pdle}(HC) \geq 4$. Now,

$$l(v_2, \dots v_{(m-2)}) = \begin{cases} 2, 3, 1, 2, 3, 1, \dots, 2, 4, 1, & \text{for } m \equiv 0 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots, 1, 2, & \text{for } m \equiv 1 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots, 2, 4, & \text{for } m \equiv 2 \pmod{3}. \end{cases}$$

The other vertices of $w_2, w_3, \ldots, w_{m-3}$ are in the sequence 1, 2, 3, 1, 2, 3, For

the remaining vertices set
$$l(w_{m-2}, w_{m-1}, \dots, w_m) = \begin{cases} 1, 2, 4, & \text{for } m \equiv 0 \pmod{3} \\ 2, 1, 3, & \text{for } m \equiv 1 \pmod{3} \\ 3, 1, 4, & \text{for } m \equiv 2 \pmod{3}. \end{cases}$$

In this case, all the vertices in the graph can be labeled within 4 labels and so the Proper D-Lucky edge labeling number requires at most 4.

Case (ii) n=2.

In this case, the vertices are $u_1, u_2, \ldots u_5, w_1, w_2, \ldots w_m, w_{m+1}, \ldots, w_{2m}, v_1, v_2, \ldots, v_m, v_{m+1}, v_{m+2}, \ldots, v_{2(m-1)}$. The vertex u_2 is adjacent to 4 number of 2-degree vertices v_1, v_{m-1}, u_3 , and w_1 . Therefore $l(v_1) \neq l(v_{m-1}) \neq l(u_3) \neq l(w_1) \neq l(u_2)$. So let $l(v_1) = 1, \ l(u_2) = 2, \ l(v_{m-1}) = 3, \ l(u_3) = 4, \ l(w_1) = 5$. Similarly the vertex u_4 , is adjacent to 4 number of 2-degree vertices v_m, v_{m-2}, u_3 , and w_{m+1} . Therefore $l(u_4) \neq l(v_m) \neq l(v_{2(m-1)}) \neq l(w_{m+1}) \neq l(u_3)$. So let $l(u_4) = 1, \ l(v_m) = 2, \ l(v_{2(m-1)}) = 3, \ l(u_3) = 4, \ l(w_{m+1}) = 5$. Clearly, we need $\eta_{pdle}(HC) \geq 5$. Now, let us allocate the labels of vertices as follows

Let
$$l(u_1) = 1$$
, $l(u_5) = 2$,

$$l(v_2, v_3 \dots v_{(m-2)}) = \begin{cases} 2, 3, 1, 2, 3, 1 \dots 2, 4, 1, & \text{for } m \equiv 0 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots 1, 2, & \text{for } m \equiv 1 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots, 2, 4, & \text{for } m \equiv 2 \pmod{3}, \end{cases}$$

$$l(v_2, v_3 \dots v_{(m-2)}) = \begin{cases} 2, 3, 1, 2, 3, 1 \dots 2, 4, 1, & \text{for } m \equiv 0 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots 1, 2, & \text{for } m \equiv 1 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots 1, 2, & \text{for } m \equiv 1 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots, 2, 4, & \text{for } m \equiv 2 \pmod{3}, \end{cases}$$

$$l(v_{m+1}, v_{m+2} \dots v_{2m-4}, v_{2m-3}) = \begin{cases} 1, 3, 2, 1, 3, 2 \dots 1, 4, 2, & \text{if for } m \equiv 0 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 1, 3, 2, & \text{if for } m \equiv 1 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 1, 3, 2, & \text{if for } m \equiv 2 \pmod{3} \end{cases}$$
 The vertices $w_2, w_3, \dots w_{m-3}$ are in the sequence $1, 2, 3, 1, 2, 3, \dots$ Also, the vertices $w_{m+2}, w_{m+3}, \dots w_{2m-3}$ are in the sequence $1, 2, 3, 1, 2, 3, \dots$ For the remaining set

 $w_{m+2}, w_{m+3}, \dots w_{2m-3}$ are in the sequence $1, 2, 3, 1, 2, 3, \dots$ For the remaining set of vertices set

$$l(w_{m-2}, w_{m-1}, \dots w_m) = l(w_{2m-2}, w_{2m-1}, \dots w_{2m}) = \begin{cases} 1, 2, 4, & \text{for } m \equiv 0 \pmod{3} \\ 2, 1, 3, & \text{for } m \equiv 1 \pmod{3} \\ 3, 1, 4, & \text{for } m \equiv 2 \pmod{3} \end{cases}$$

respectively. However, in this case, the minimum label required for proper D-Lucky edge labeling number is 5. Clearly, $\eta_{pdle}(HC) = 5$ when n = 2.

Case (iii). $n \geq 3$.

In this case, the vertices are $u_1, u_2 \dots u_{2n}, u_{2n+1}, w_1, w_2, \dots w_m, w_{m+1}, \dots w_{mn}$ $v_1, v_2, \dots, v_m, v_{m+1}, v_{n(m-1)+2}, \dots, v_{2(m-1)}$. Among these vertices set $l(u_1) = 1$, $l(u_{2n+1})=1$ for odd n and $l(u_{2n+1})=2$ for even n. The vertices $u_{2i}, 2 \leq i \leq n-1$ have 5 adjacent same 2-degree vertices. The vertices $[N(u_{2i})], 2 \leq i \leq n-1$ required a minimum number of 6 distinct labels $\{1, 2, 3, 4, 5, 6\}$. Clearly, we need $\eta_{pdle}(HC) \geq 6$. Let the labeling pattern be as follows. The vertices $u_2, u_4 \dots u_{2n}$ are labeled in the sequence 2, 1, 2, 1. The vertices $u_3, u_5 \dots u_{2n-1}$ are labeled in the sequence $4, 5, 4, 5, \ldots$ The vertices $w_{m(i-1)+2+j}$ for $1 \le i \le n$ and $0 \le j \le m-5$, are labeled in the sequence $1, 2, 3, 1, 2, 3 \dots$ For $1 \le i \le n$ set

$$l(w_{im-2}, w_{im-1}, w_{im}) = \begin{cases} 1, 2, 4, & \text{for } m \equiv 0 \pmod{3} \\ 2, 1, 3, & \text{for } m \equiv 1 \pmod{3} \\ 3, 1, 4, & \text{for } m \equiv 2 \pmod{3}. \end{cases}$$

 $i=2,4,6,\ldots$ and $l(u_{2i})=2,\,i=1,3,5,7\ldots$ For the remaining vertices, the labeling pattern is divided into two cases.

For $i = 2, 4, 6, \ldots$ and $j = 1, 2, \ldots m - 3$, the labeling pattern as follows:

$$l(v_{(m-1)(i-1)+j+1}) = \begin{cases} 1, 3, 2, 1, 3, 2, \dots 1, 4, 2, & \text{if for } m \equiv 0 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 1, 3, 2 & \text{if for } m \equiv 1 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 1, 3, 2 & \text{if for } m \equiv 1 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 4, 1 & \text{if for } m \equiv 2 \pmod{3}. \end{cases}$$

For $i = 1, 3, 5, \ldots$ and $j = 1, 2, \ldots m - 3$, the labeling pattern as follows: $l(v_{(m-1)(i-1)+1}) = 1$, $l(v_{(m-1)i}) = 3$, and

$$l(v_{(m-1)(i-1)+j+1}) = \begin{cases} 2,3,1,2,3,1,\dots 2,4,1, & \text{for } m \equiv 0 \pmod 3 \\ 2,3,1,2,3,1,\dots 1,2 & \text{for } m \equiv 1 \pmod 3 \\ 2,3,1,2,3,1,\dots,2,4, & \text{for } m \equiv 2 \pmod 3 . \end{cases}$$

Clearly, we required proper *D*-Lucky edge labeling number is $\eta_{pdle}(HC) = 6$. Hence, the Proper *D*-Lucky edge labeling number of the Human chain graph if $m \geq 4$, is $\eta_{pdle}(HC) = 4$ if n = 1, $\eta_{pdle}(HC) = 5$ if n = 2 and $\eta_{pdle}(HC) = 6$ if $n \geq 3$.

Example 1. Proper D-Lucky edge labeled Human chain graph for n = 5, m = 4 and k = 4 is shown in Figure 1.

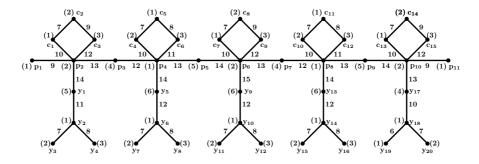


Figure 1. $\eta_{pdle}(HC) = 6$

Theorem 2. For $m \ge 4$, the Proper D-Lucky edge labeling of strong Human chain graph is $\eta_{pdle}(SHC) = 5$ for n = 2 and $\eta_{pdle}(SHC) = 6$ for $n \ge 3$.

Proof. Let (SHC) be the strong human chain graph. For our convenience, let us take $A = \{u_1, u_2, \dots u_{2n+1}, n \in N\}$, $B = \{v_1, v_2, \dots v_{(m-1)n}\}$, $C = \{w_1, w_2, \dots w_{(m-1)n+1}\}$. We consider two cases.

Case (i) n = 2.

In this case, the vertices $u_1, u_2, \ldots u_5, w_1, w_2, \ldots w_m, \ldots w_{(m-1)n+1}, v_1, v_2, \ldots v_m, v_{m+1}, v_{m+2}, \ldots v_{2(m-1)}$. The vertex u_2 , is adjacent to 4 number of 2-degree vertices v_1, v_{m-1}, u_3 , and w_1 . Therefore $l(v_1) \neq l(v_{m-1}) \neq l(u_3) \neq l(w_1) \neq l(u_2)$. So let $l(v_1) = 1, \ l(u_2) = 2, \ l(v_{m-1}) = 3, \ l(u_3) = 4, \ l(w_1) = 5$. Similarly the vertex u_4 is adjacent to 4 numbers of 2-degree vertices v_m, v_{m-2}, u_3 , and w_{m+1} . Therefore $l(u_4) \neq l(v_m) \neq l(v_{2(m-1)}) \neq l(w_{m+1}) \neq l(u_3)$. So let $l(u_4) = 1, \ l(v_m) = 2, \ l(v_{2(m-1)}) = 3, \ l(u_3) = 4, \ l(w_{m+1}) = 5$. Clearly, we need $\eta_{pdle}(SHC) \geq 5$. Now, let us allocate the labels of vertices as follows

Let
$$l(u_1) = 1, l(u_5) = 2,$$

$$l(v_2, v_3 \dots v_{(m-2)}) = \begin{cases} 2, 3, 1, 2, 3, 1, \dots 2, 4, 1, & \text{for } m \equiv 0 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots 1, 2 & \text{for } m \equiv 1 \pmod{3} \\ 2, 3, 1, 2, 3, 1, \dots, 2, 4, & \text{for } m \equiv 2 \pmod{3}, \end{cases}$$

$$l(v_{m+1}, v_{m+2} \dots v_{2m-4}, v_{2m-3}) = \begin{cases} 1, 3, 2, 1, 3, 2, \dots 1, 4, 2, & \text{if for } m \equiv 0 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 1, 3, 2 & \text{if for } m \equiv 1 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots , 4, 1 & \text{if for } m \equiv 2 \pmod{3} \end{cases}$$

The vertices $w_2, w_3, \dots w_{m-3}$ are labeled in the sequence $1, 2, 3, 1, 2, 3, \dots$ Also, the vertices $w_{m+2}, w_{m+3}, \dots w_{(m-1)n-1}$ are labeled in the sequence $1, 2, 3, 1, 2, 3, \dots$. The remaining vertices are labeled in the following pattern: if $m \equiv 0 \pmod{3}$, $l(w_m) = 3$, $l(w_{m-1}) = 2$, $l(w_{m-2}) = 1$, $l(w_{(m-1)n+1}) = 1$, $l(w_{2(m-1)}) = 4$; if $m \equiv 1 \pmod{3}$, except $m \neq 4$, $l(w_m) = 1$, $l(w_{m-1}) = 1$, $l(w_{m-2}) = 2$, $l(w_{(m-1)n+1}) = 1$, $l(w_{2(m-1)}) = 4$; if $m \equiv 2 \pmod{3}$, except $m \neq 5$, $l(w_m) = 2$, $l(w_{m-1}) = 1$, $l(w_{m-2}) = 3$, $l(w_{(m-1)n+1}) = 1$, $l(w_{2(m-1)}) = 4$; if m = 4, $l(w_m) = 2$, $l(w_{m-1}) = 2$, $l(w_{m-2}) = 1$, $l(w_{(m-1)n+1}) = 1$, $l(w_{2(m-1)}) = 3$; and if m = 5, $l(w_m) = 4$, $l(w_{m-1}) = 1$, $l(w_{m-2}) = 2$, $l(w_{(m-1)n+1}) = 1$, $l(w_{2(m-1)}) = 3$.

Case (ii) $n \geq 3$.

In this case, the vertices are $u_1, u_2 \dots u_{2n}, u_{2n+1}, v_1, v_2, \dots v_m, v_{m+1}, v_{n(m-1)+2}, \dots$ $v_{2(m-1)}, w_1, \ldots, w_m, w_{m+1}, \ldots, w_{mn}, v_1$. Among these vertices, $l(u_1) = 1, l(u_{2n+1}) = 1$ for odd n and $l(u_{2n+1}) = 2$ for even n. The vertices u_{2i} , $2 \le i \le n-1$ have 5 numbers of adjacent same 2-degree vertices. The vertices $[N(u_{2i})], 2 \leq i \leq n-1$ required minimum number of 6 distinct labels $\{1, 2, 3, 4, 5, 6\}$. Clearly, we need $\eta_{pdle}(SHC) \geq$ 6. The vertices $u_2, u_4 \dots u_{2n}$ are labeled in the sequence $2, 1, 2, 1 \dots$ The vertices $u_3, u_5 \dots u_{2n-1}$ are labeled in the sequence $4, 5, 4, 5 \dots$ The vertices $w_{m(i-1)+2+i}$, $1 \le i \le n$ and $0 \le j \le m-5$ are labeled in the sequence $1, 2, 3, 1, 2, 3 \dots$

Let $(w_1) = l(w_{m(n-1)+1}) = 5$, $l(w_{im+1}) = 6$, $1 \le i \le n-2$. For the remaining vertices, the labeling format is given below:

if $m \equiv 0 \pmod{3}$, $l(w_m) = 3$, $l(w_{m-1}) = 2$, $l(w_{m-2}) = 1$, $l(w_{2(m-1)i}) = 4$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{(m-1)(2i+1)}) = 1$ for $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 5$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{(m)(2i+1)-2i}) = 3$ for $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$; if $m \equiv 1 \pmod{3}$, $l(w_m) = 1$, $l(w_{m-1}) = 1$, $l(w_{m-2}) = 2$, $l(w_{2(m-1)i}) = 4$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{(m-1)(2i+1)}) = 2$ for $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 5$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 1$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 1$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 1$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 1$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 1$

 $l(w_{(m)(2i+1)-2i}) = 1$ for $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$;

 $l(w_{(m)(2i+1)-2i}) = 1 \text{ for } 1 \le i \le \lfloor \frac{n-1}{2} \rfloor;$ if $m \equiv 2 \pmod{3}$, $l(w_m) = 2$, $l(w_{m-1}) = 1$, $l(w_{m-2}) = 3$, $l(w_{2(m-1)i}) = 4$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{(m-1)(2i+1)}) = 3$ for $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$, $l(w_{2i(m-1)+1}) = 5$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $l(w_{(m)(2i+1)-2i}) = 2 \text{ for } 1 \le i \le \lfloor \frac{n-1}{2} \rfloor.$

Let $l(u_{2i}) = 1$ for even i and $l(u_{2i}) = 2$ for odd i.

For the remaining vertices the labeling pattern divided into two cases.

For
$$i = 2, 4, 6, \dots$$
 and $j = 1, 2, \dots m - 3$, $l(v_{(m-1)(i-1)+1}) = 2$, $l(v_{(m-1)i}) = 3$,
$$l(v_{(m-1)(i-1)+j+1}) = \begin{cases} 1, 3, 2, 1, 3, 2, \dots 1, 4, 2, & \text{if for } m \equiv 0 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 1, 3, 2 & \text{if for } m \equiv 1 \pmod{3} \\ 1, 3, 2, 1, 3, 2, \dots 4, 1 & \text{if for } m \equiv 2 \pmod{3} \end{cases}$$

$$1, 3, 2, 1, 3, 2, \dots, 3, 2 \quad \text{if for } m \equiv 1 \pmod{3}$$

$$1, 3, 2, 1, 3, 2, \dots, 4, 1 \quad \text{if for } m \equiv 2 \pmod{3}$$

For $i = 1, 3, 5, \ldots$ and $j = 1, 2, \ldots m - 3$, $l(v_{(m-1)(i-1)+1}) = 1$, $l(v_{(m-1)i}) = 3$,

$$l(v_{(m-1)(i-1)+j+1}) = \begin{cases} 2,3,1,2,3,1,\dots 2,4,1, & \text{for } m \equiv 0 \pmod{3} \\ 2,3,1,2,3,1,\dots 1,2 & \text{for } m \equiv 1 \pmod{3} \\ 2,3,1,2,3,1,\dots ,2,4, & \text{for } m \equiv 2 \pmod{3} \end{cases}$$

Clearly, we required proper *D*-Lucky edge labeling number is $\eta_{pdle}(SHC) = 6$. Thus, we conclude that the Proper *D*-Lucky edge labeling number of Strong Human chain graph if $m \geq 4$, is $\eta_{pdle}(SHC) = 5$ for n = 2 and $\eta_{pdle}(SHC) = 6$ for $n \geq 3$. \square

Example 2. Proper D-Lucky edge labeled Strong Human chain graph for n=2, m=5, k=5, is shown in Figure 2.

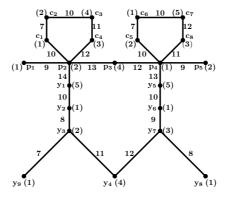


Figure 2. $\eta_{pdle}(SHC) = 5$

Theorem 3. For $n \geq 3$, $\eta_{pdle}(CHC) = 5$ for m = 3 and $\eta_{pdle}(CHC) = 6$ for $m \geq 4$.

Proof. From the structure of circular human chain graph CHC, we notice that u_1, u_2, \ldots, u_{2n} be the vertices of cycle $C_{2n}, v_1, v_2, \ldots, v_{(m-1)n}$ be the vertices of cycle and w_1, w_2, \ldots, w_{kn} be the vertices of Y-tree.

Case (i)
$$m = 3$$
.

Here the maximum degree vertices of CHC are u_{2i} for $1 \le i \le n$. That is $d(u_{2i}) = 5$ for $1 \le i \le n$. Here $N(u_{2i}) = \{u_{2i-1}, u_{2i+1}, w_{m(i-1)+1}, v_{(m-1)(i-1)+1}, v_{(m-1)i} : 1 \le i \le n\}$. These vertices $\{u_{2i-1}, u_{2i+1}, v_{(m-1)(i-1)+1}, v_{(m-1)i}, 1 \le i \le n\}$ are same 2 degrees. That is $d(u_{2i-1}) = d(u_{2i+1}) = d(v_{(m-1)(i-1)+1}) = d(v_{(m-1)i})$. Therefore $l(u_{2i-1}) \ne l(u_{2i+1}) \ne l(v_{(m-1)(i-1)+1}) \ne l(v_{(m-1)i})$. So Proper D-Lucky edge labeling number for these 4 vertices together with u_{2i} required 5 distinct labels. Let it be $\{1, 2, 3, 4, 5\}$. Clearly, we have $\eta_{pdle}(CHC) \ge 5$. Define the labeling pattern as follows: $l(u_1) = 5, l(u_{2n}) = 1$ for even n and $l(u_{2n}) = 3$ for odd n, $l(u_3, u_5 \dots u_{2n-1}) = \begin{cases} 4, 5, 4, 5, \dots, 5, 4, & \text{if } n \text{ is even} \\ 4, 5, 4, 5, \dots, 4, 2, & \text{if } n \text{ is odd,} \end{cases}$

$$\begin{split} &l(u_2,u_4\dots u_{2n}) = \begin{cases} 2,1,2,1,\dots,2,1, &\text{if n is even}\\ 2,1,2,1,\dots,1,3, &\text{if n is odd,} \end{cases} \\ &l(w_{im-2},w_{im-1},w_{im}) = \begin{cases} 1,2,3, &\text{if $i=1,3,5,\dots,n-1$ and n is even}\\ 1,2,3, &\text{if $i=1,3,5,\dots,n-2$ and if n is odd,} \end{cases} \\ &l(w_{im-2},w_{im-1},w_{im}) = \begin{cases} 5,1,2, &\text{if $i=2,4,6,\dots,n$ and n is even}\\ 5,1,2, &\text{if $i=2,4,6,\dots,n-1$ and if n is odd,} \end{cases} \\ &l(v_1) = 1,\ l(v_{(m-1)(i-1)+1}) = \begin{cases} 1, &\text{for $i=1,3,5,\dots,n-1$ and n is even,} \\ 1, &\text{for $i=1,3,5,\dots,n-1$ and n is even,} \end{cases} \\ &l(v_{(m-1)(i-1)+1}) = \begin{cases} 2, &\text{for $i=2,4,6,\dots,n-3$ and n is even,} \\ 1, &\text{for $i=2,4,6,\dots,n$ and n is even,} \end{cases} \\ &l(v_{(m-1)(i)}) = \begin{cases} 3, &\text{for $i=1,2,3,\dots,n-1$ and n is even,} \\ 3, &\text{for $i=1,2,3,\dots,n-1$ and n is even.} \end{cases} \\ &\text{If n is odd, set $l(v_{(m-1)(i)}) = 4$ and $l(v_{(m-1)(i-1)+1}) = 5$, for $i=n-1$. The above \end{cases} \end{split}$$

pattern shows that $\eta_{pdle}(CHC) = 5$.

Case (ii) $m \geq 4$.

Here the maximum degree vertices of CHC are u_{2i} , $1 \le i \le n$. That is $d(u_{2i}) = 5$ for $1 \le i \le n \text{ and } N(u_{2i}) = \{u_{2i-1}, u_{2i+1}, w_{m(i-1)+1}, v_{(m-1)(i-1)+1}, v_{(m-1)i} : 1 \le i \le n\}.$ These vertices $\{u_{2i-1}, u_{2i+1}, v_{(m-1)(i-1)+1}, v_{(m-1)i}, w_{m(i-1)+1} : 1 \leq i \leq n\}$ are the same 2 degrees. That is $d(u_{2i-1}) = d(u_{2i+1}) = d(v_{(m-1)(i-1)+1}) = d(v_{(m-1)i}) =$ $d(w_{m(i-1)+1})$. Therefore $l(u_{2i-1}) \neq l(u_{2i+1}) \neq l(v_{(m-1)(i-1)+1}) \neq l(v_{(m-1)i}) \neq l(v_{(m-1)i})$ $l(w_{m(i-1)+1})$. So Proper D-Lucky edge labeling number for these 5 vertices together with u_{2i} required 6 distinct labels. Let it be $\{1, 2, 3, 4, 5, 6\}$. Hence $\eta_{pdle}(CHC) \geq 6$. Define the labeling pattern as follows.

$$l(u_1) = 6, \ l(u_{2n}) = 1 \text{ for even } n \text{ and } l(u_{2n}) = 3 \text{ for odd } n,$$

$$l(u_3, u_5 \dots u_{2n-1}) = \begin{cases} 4, 5, 4, 5, \dots 4, & \text{if } n \text{ is even} \\ 4, 5, 4, 5, \dots 5, & \text{if } n \text{ is odd,} \end{cases}$$

$$l(u_2, u_4 \dots u_{2n}) = \begin{cases} 2, 1, 2, 1, \dots 2, 1 & \text{if } n \text{ is even} \\ 2, 1, 2, 1, \dots 1, 3, & \text{if } n \text{ is odd.} \end{cases}$$

The vertices $w_{m(i-1)+2+j}$ for $1 \le i \le n$ and $0 \le j \le m-5$, are labeled in the sequence $1, 2, 3, 1, 2, 3 \dots$

For
$$1 \le i \le n$$
, $l(w_{im-2}, w_{im-1}, w_{im}) = \begin{cases} 1, 2, 4 & \text{for } m \equiv 0 \pmod{3} \\ 2, 1, 3 & \text{for } m \equiv 1 \pmod{3} \\ 3, 1, 4 & \text{for } m \equiv 2 \pmod{3}. \end{cases}$

$$l(v_1) = 1, \ l(v_{(m-1)(i-1)+1}) = \begin{cases} 1, & \text{for } i = 1, 3, 5, \dots n \text{ and } n \text{ is odd} \\ 1, & \text{for } i = 1, 3, 5, \dots n-1 \text{ and } n \text{ is even,} \end{cases}$$

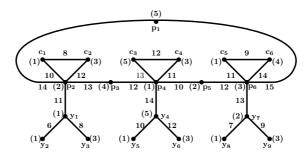
$$l(v_{(m-1)(i-1)+1}) = \begin{cases} 2, & \text{for } i = 2, 4, 6, \dots n-1 \text{ and } n \text{ is odd} \\ 2, & \text{for } i = 2, 4, 6, \dots n \text{ and } n \text{ is even,} \end{cases}$$

$$l(v_{(m-1)(i)}) = \begin{cases} 3, & \text{for } i = 1, 2, 3, \dots n-1 \text{ and } n \text{ is odd} \\ 3, & \text{for } i = 1, 2, 3, \dots n \text{ and } n \text{ is even.} \end{cases}$$

If n is odd and i=n, $l(v_{(m-1)(i)})=2$. Let $l(u_{2i})=1$ for even i and $l(u_{2i})=2$ for odd i. For the remaining vertices the labeling pattern divided into two cases.

$$\begin{aligned} &\text{For } i=2,4,6,\dots\text{ and } j=1,2,\dots m-3,\\ &l(v_{(m-1)(i-1)+j+1}) = \begin{cases} 1,3,2,1,3,2\dots,1,4,2 & \text{if for } m\equiv 0 \pmod 3\\ 1,3,2,1,3,2,\dots,1,3,2 & \text{if for } m\equiv 1 \pmod 3\\ 1,3,2,1,3,2,\dots 4,1 & \text{if for } m\equiv 2 \pmod 3,\\ l(v_{(m-1)(i-1)+1}) = 1, \ l(v_{(m-1)i}) = 3, \text{ and for } i=1,3,5,\dots \text{ and } j=1,2,\dots m-3\\ &l(v_{(m-1)(i-1)+j+1}) = \begin{cases} 2,3,1,2,3,1\dots,2,4,1 & \text{for } m\equiv 0 \pmod 3\\ 2,3,1,2,3,1,\dots,1,2 & \text{for } m\equiv 1 \pmod 3\\ 2,3,1,2,3,1,\dots,2,4 & \text{for } m\equiv 2 \pmod 3. \end{cases} \end{aligned}$$
 It follows that $\eta_{pdle}(CHC) = 6$ and the proof is complete.

Example 3. Proper D-Lucky edge labeled Circular Human chain graph for n=3, m=3, k = 3, is shown in Figure 3



 $\eta_{ extbf{pdle}}(extbf{CHC}) = \mathbf{5}$ Figure 3.

Theorem 4. For $n \geq 3$, $\eta_{pdle}(WHC) = 3$ for m = 3 and $\eta_{pdle}(WHC) = 4$ for $m \geq 4$.

Proof. Let WHC be a weak human chain graph. Let the vertices WHC are as follows: $A = \{u_1, u_2, \dots u_{n+1}, n \in N\}, B = \{v_1, v_2, \dots v_{m-1}\}, C = \{w_1, w_2, \dots w_{m-1}\}.$ Case (i) m = 3.

From the structure of WHC, the degree of vertices u_2, u_3, \ldots, u_n are same. Also, for $i = 1, 2, \dots n - 1$, the vertices u_i and u_{i+1} are adjacent to each other. Since u_2 and u_3 are adjacent, $l(u_2) \neq l(u_3)$. Similarly, up to u_{n-1} , u_n are adjacent $l(u_3) \neq l(u_4), \ldots, l(u_{n-1}) \neq l(u_n)$. The labeling of the vertices $u_2, u_3, \ldots u_{n+1}$ are in the sequence $2, 3, 1, 2, 3, 1, \ldots, l(v_2) = 2, l(v_1) = 1, l(u_1) = 3,$

$$l(v_{(m-1)i}) = \begin{cases} 3, & i \not\equiv 0 \pmod{3} \\ 2, & i \equiv 0 \pmod{3}, \end{cases}$$

$$l(v_{(m-2)i}) = \begin{cases} 1, & i \not\equiv 1 \pmod{3}, \\ 2, & i \equiv 1 \pmod{3}, \end{cases}$$

$$l(w_{(im+1)}) = \begin{cases} 2, & i \not\equiv 1 \pmod{3}, \\ 1, & i \equiv 1 \pmod{3}, \end{cases}$$

$$l(w_{im+1}) = \begin{cases} 2, & i \not\equiv 1 \pmod{3}, \\ 1, & i \equiv 1 \pmod{3}, \end{cases}$$

$$l(w_{im+1}) = 1 \text{ for } i = 1, 4, 7, 10 \text{ and } l(w_{im+1}) = 2 \text{ for } i = 0, 2, 5, 8. \text{ Hence}$$

$$\eta_{pdle}(WHC) = 3 \text{ for } m = 3.$$

Case (ii) m > 3.

In this case, the vertices are $u_1, u_2 \dots u_{n+1}, w_1, w_2, \dots w_m, w_{m+1}, \dots w_m, v_1, v_2, \dots v_m$, $v_{m+1}, \ldots v_{n(m-1)}$. The vertices $u_{i+1}, 1 \leq i \leq n-1$ have 3 adjacent same 2-degree vertices. The vertices in $N(u_{i+1})$ for, $1 \leq i \leq n-1$ required a minimum number of 4 distinct labels $\{1,2,3,4\}$. Hence $\eta_{pdle}(WHC) \geq 4$. Let the labeling pattern as follows. Let $l(u_{n+1}) = 1$; the vertices $u_2, u_3 \dots u_n$ are labeled in the sequence $2,3,4,\ldots$; $l(u_1)=3;\ w_{m(i-1)+2+j}$ for $1\leq i\leq n$ and $0 \leq j \leq m-5$, are labeled in the sequence 1,2,3,1,2,3...; for $1 \leq i \leq n$,

$$l(w_{im-2}, w_{im-1}, w_{im}) = \begin{cases} 1, 2, 4, & \text{for } m \equiv 0 \pmod{3} \\ 2, 1, 3, & \text{for } m \equiv 1 \pmod{3} \\ 3, 1, 4 & \text{for } m \equiv 2 \pmod{3}. \end{cases}$$
Let $l(w_1) = l(w_{m(n-1)+1}) = 5, l(w_{im+1}) = 6 \text{ for } 1 \le i \le n-2.$

$$\begin{cases} 3, & \text{for } i \equiv 0 \pmod{3} \\ 4, & \text{for } i \equiv 1 \pmod{3} \\ 2, & \text{for } i \equiv 2 \pmod{3}, \end{cases}$$

Let
$$l(u_{(i+1)}) = \begin{cases} 3, & \text{for } i \equiv 0 \pmod{3} \\ 4, & \text{for } i \equiv 1 \pmod{3} \\ 2, & \text{for } i \equiv 2 \pmod{3} \end{cases}$$

 $l(u_{2i}) = 1$ for i = 2, 4, 6... and $l(u_{2i}) = 2$, i = 1, 3, 5... For the remaining vertices, the labeling pattern divided into two cases.

the labeling pattern divided into two cases. For
$$i=2,4,6,\ldots$$
 and $j=1,2,\ldots m-3$, $l(v_{(m-1)(i-1)+1})=2$, $l(v_{(m-1)i})=3$ and
$$l(v_{(m-1)(i-1)+j+1})=\begin{cases} 1,3,2,1,3,2\ldots,1,4,2 & \text{for } m\equiv 0\pmod{3}\\ 1,3,2,1,3,2,\ldots,1,3,2 & \text{for } m\equiv 1\pmod{3}\\ 1,3,2,1,3,2,\ldots,4,1 & \text{for } m\equiv 2\pmod{3}\\ 1,3,2,1,3,2,\ldots,4,1 & \text{for } m\equiv 2\pmod{3}\\ 1,3,2,1,3,2,\ldots,4,1 & \text{for } m\equiv 0\pmod{3}\\ 1,3,2,1,3,2,\ldots,4,1 & \text{for } m\equiv 0\pmod{3}\\ 1,3,2,1,3,2,\ldots,4,1 & \text{for } m\equiv 0\pmod{3}\\ 1,3,2,1,2,3,1,\ldots,2,4,1 & \text{for } m\equiv 0\pmod{3}\\ 1,3,2,3,1,2,3,1,\ldots,2,4,1 & \text{for } m\equiv 1\pmod{3}\\ 1,3,2,3,1,2,3,1,\ldots,2,4,1 & \text{for } m\equiv 1\pmod{3}\\ 1,3,2,3,1,2,3,1,\ldots,2,4 & \text{for } m\equiv 2\pmod{3}\\ 1,3,2,3,1,2,3,1,\ldots,2,4 & \text{for } m\equiv 2\pmod{3}$$

Proper D-Lucky edge labeled Weak Human chain graph for n = 5, m =6, k = 6, is shown in Figure 4.

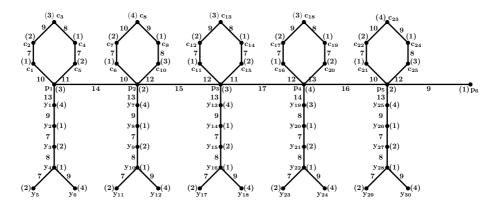


Figure 4. $\eta_{pdle}(WHC) = 4$

3. Conclusion

This paper determines the proper D-lucky edge numbers for human chain graphs, circular human chain graphs, strong human chain graphs, and weak human chain graphs.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

- K. Anitha and B. Selvam, Lucky labeling on human chain graph, J. Appl. Sci. Comput. 6 (2019), no. 6, 1545–1565.
- [2] N. DEO, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India Pvt., Limited, 2004.
- [3] M Miller, I. Rajasingh, D.A. Emilet, and D.A. Jemilet, d-lucky labeling of graphs, Procedia Comput. Sci. 57 (2015), 766–771. https://doi.org/10.1016/j.procs.2015.07.473.
- [4] G. Rajini Ram, S. Hemalatha, and K. Anitha, d-lucky edge labeling of path families, AIP Conf. Proc. 2282 (2020), no. 1, Article ID: 020032 https://doi.org/10.1063/5.0028309.
- [5] ______, D-lucky edge labeling of strong and weak human chain networks, J. Phys. Conf. Ser. 1724 (2021), Article ID: 012031.
 http://doi.org/10.1088/1742-6596/1724/1/012031.