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Abstract: In this paper, we study a quadratic minimization problem over the in-

tersection of a ball and a reverse ball constraints that includes generalized trust-region

subproblem (TRS). Using the structure of the problem, we prove that it can be solved
to global optimality by solving at most three TRS or two TRS with an extra linear con-

straint. Then we present an efficient TRS-based algorithm to solve it. Computational

experiments illustrate that our new algorithm outperforms the ones in the literature,
specially the algorithm for generalized TRS, on three widely used test classes.
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1. Introduction

Variants of nonconvex quadratically constrained quadratic programming (QCQP)

problem due to their importance are studied in the literature [1, 4, 6, 8, 10, 19, 21]. A

widely used technique for tackling QCQPs involves semidefinite programming (SDP)

relaxation. This approach often yields exact solutions in specific scenarios, such as the

∗ Corresponding Author



2 Quadratic optimization with a ball and a reverse ball constraints

trust-region subproblem (TRS), which is a crucial component in addressing broader

nonlinear programming challenges [12]. However, in general the SDP relaxation is

not exact. In a most recent work, Burer and Ye gave some sufficient conditions under

which SDP relaxation of general QCQPs is exact [9]. For more details on the SDP

relaxation and related works on QCQPs, we refer to [24] and references therein.

Some studies also took advantages of the problem structure and developed more spe-

cialized efficient algorithms to solve the underlying QCQPs. For example, in [22] the

authors have studied a nonconvex quadratic optimization problem with two quadratic

constraints, one of them is convex and developed a two-parameters eigenvalue based

algorithm to solve it. In [7] the authors have developed a branch and bound algorithm

for a quadratic program with balls and reverse ball constraints that solves TRSs at

each node. A global search algorithm is developed in [16] which integrates branch and

bound method and alternative direction method to solve a variant of QCQPs with a

few negative eigenvalues and convex constraints. In [3] the authors developed an effi-

cient generalized eigenvalue-based algorithm for a QCQP with one constraint. Also,

in [25] the authors studied a similar problem to [16] and by utilizing simultaneous

diagonalization and difference of convex decomposition, developed an efficient second

order cone relaxation to solve it.

In this paper, we consider the following quadratic minimization problem:

min
1

2
xTAx+ aTx

||x− c1||2 ≤ δ2
1 , (1.1)

||x− c2||2 ≥ δ2
2 ,

where A ∈ Rn×n is a symmetric matrix, a, x, c1, c2 ∈ Rn, and δ1, δ2 ∈ R. It is a

special case of QCQPs and when c1 = c2 it contains generalized TRS (GTRS) [20]

min
1

2
xTAx+ aTx

l ≤ xTBx− 2cTx ≤ u, (1.2)

as a special case for positive definite B. An application of (1.1) for example is the

robust portfolio optimization models, where the covariance matrix is indefinite due to

estimation errors or missing data [8, 11]. The goal here is to minimize risk (variance)

subject to lower and upper bounds on the portfolio weights norm which is in the form

of (1.1). Other subjects that (1.1) might appear are the so called robust sparse signal

recovery and sensor localization problems [7, 15].

The SDP relaxation of (1.1) is as follows:

min
x,X

1

2
trace(AX) + aTx

trace(BX)− 2cT1 x+ cT1 c1 ≤ δ2
1 ,

trace(X)− 2cT2 x+ cT2 c2 ≥ δ2
2 , (1.3)

X � xxT .
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When the Lagrangian has positive semidefinite Hessian at global solution, this relax-

ation is exact [18]. However, SDP suffers from high computational costs specially for

large-scale problems, which is O(n4.5 log 1
ε ) where ε is the desired accuracy. Thus,

in this paper, using the structure of problem, we prove that for solving (1), it is

sufficient to solve at most three TRSs or two extended TRS (eTRS) (TRS with an

additional linear constraint), which is O(n3). The rest of the paper is organized as

follows. Section 2 gives the main results and new algorithm. Section 3, discusses the

computational experiments conducted to evaluate the performance of the algorithm

compared to the similar algorithms in the literature. Finally, in Section 4 we con-

clude the paper by summarizing the key findings and suggesting some future research

directions.

2. Mains results and algorithm

Here, we show that (1.1) can be solved by solving three TRSs or two eTRSs for which

efficient generalized eigenvalue based algorithms are developed in [2, 23]. To do so,

we use the following notations:

• B = {x | ||x− c1||2 ≤ δ2
1}, ∂B = {x | ||x− c1||2 = δ2

1},

• E = {x | ||x− c2||2 ≥ δ2
2}, Ec = {x | ||x− c2||2 < δ2

2},

• ∂E = {x | ||x− c2||2 = δ2
2}, M = B ∩ E ,

• U = {x | x ∈ ∂B, (c1 − c2)Tx ≥ α12},

• V = {x | x ∈ ∂E , (c1 − c2)Tx ≥ α12},

• α12 = 1
2

(
cT1 c1 − cT2 c2 − δ2

1 + δ2
2

)
.

The following lemma discusses the case where the second constraint is redundant as

shown in Fig. 1(c).

Lemma 1. If ||c1 − c2|| > δ1 + δ2, then ||x− c2||2 ≥ δ22 is redundant.

Proof. Let x ∈ B, then

||x− c2|| =||x− c2 + c1 − c1|| ≥ ||c2 − c1|| − ||x− c1|| > δ2 + δ1 − ||x− c1|| > δ2

=⇒ ||x− c2|| > δ2 =⇒ x ∈ E .

Thus, B ⊂ E and then B ∩ E = B.

The infeasible case (Fig. 1(a)) and singleton feasible region also are discussed in the

following lemma.
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Lemma 2. Let δ1 ≤ δ2. If ||c1−c2|| < δ2−δ1, then (1.1) is infeasible. If ||c1−c2|| = δ2−δ1,
and δ2 > δ1 then the feasible region of (1.1) is a singleton.

Proof. Let x ∈ B, then

||x− c2|| =||x− c2 + c1 − c1|| ≤ ||c2 − c1||+ ||x− c1|| < δ2 − δ1 + ||x− c1|| ≤ δ2.

Thus, x /∈ E and then B ∩ E = ∅. The second part follows directly from triangle

inequality.

(a) The first constraint circle is
inside the circle related to the

second constraint, empty
feasible region (B ⊆ Ec).

(b) The second constraint circle
is inside the first circle,

nonempty feasible region
(Ec ⊆ B).

(c) Two disjoint circles,
nonempty feasible region

(B ⊆ E).

(d) The two circles intersect,
nonempty feasible region

(B − Ec 6= ∅, Ec − B 6= ∅).

Figure 1. All possible cases for (1.1) in R2.

From Lemma 2, if B ⊆ Ec then (1.1) is infeasible (Fig 1(a)). Suppose this is not the

case, then the following three cases may occur for x∗, the optimal solution of (1.1):

• Case 1: Ec ⊆ B (Fig 1(b)). It is clear that in this case δ2 < δ1. The following

three subcases may occur:
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• Case 1.1: x∗ is the optimal solution of the following TRS with equality con-

straint:

min
1

2
xTAx+ aTx

||x− c1||2 = δ2
1 . (2.1)

• Case 1.2: x∗ is the optimal solution of the following TRS with equality con-

straint:

min
1

2
xTAx+ aTx

||x− c2||2 = δ2
2 . (2.2)

• Case 1.3: x∗ is strictly between the boundary of the two circles i.e.,

||x∗ − c1||2 < δ2
1 and ||x∗ − c2||2 > δ2

2 . Therefore, A is positive definite ([17])

and x∗ is the optimal solution of the following problem:

min
1

2
xTAx+ aTx

||x− c1||2 ≤ δ2
1 . (2.3)

• Case 2: B ⊆ E (Fig 1(c)). From Lemma 1, constraint ||x − c2||2 ≥ δ2
2 is

redundant. Then, for solving (1.1), it is sufficient to solve (2.3).

• Case 3: B − Ec 6= ∅, Ec − B 6= ∅ and B ∩ E 6= ∅ (Fig 1(d)). In this case, the

following two cases may occur:

• Case 3.1: ||x∗ − c1||2 < δ2
1 and ||x∗ − c2||2 > δ2

2 .

This is similar to the Case 1.3.

• Case 3.2: x∗ ∈ ∂M. This case is discussed in the following theorem.

Theorem 1. Let B − Ec 6= ∅, Ec −B 6= ∅ and B ∩ E 6= ∅ (Fig 1(d)). Then ∂M = U ∪ V.

Proof. (=⇒) Let x ∈ ∂M, then

||x− c1||2 = δ2
1 or ||x− c2||2 = δ2

2 .

• Case 1.1: ||x − c1||2 = δ2
1 . Since ∂M ⊂ M, we have x ∈ M, thus we have

||x− c2||2 ≥ δ2
2 . This further implies that

||x− c1||2 − δ2
1 = 0 ≤ ||x− c2||2 − δ2

2

=⇒ xTx− 2cT1 x+ cT1 c1 − δ2
1 ≤ xTx− 2cT2 x+ cT2 c2 − δ2

2

=⇒ (c1 − c2)Tx ≥ α12 =⇒ x ∈ U . (2.4)
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• Case 1.2: ||x− c2||2 = δ2
2 . Also, we have ||x− c1||2 ≤ δ2

1 , thus

0 = ||x− c2||2 − δ2
2 ≥ ||x− c1||2 − δ2

1

=⇒ xTx− 2cT2 x+ cT2 c2 − δ2
2 ≤ xTx− 2cT1 x+ cT1 c1 − δ2

2

=⇒ (c1 − c2)Tx ≥ α12 =⇒ x ∈ V. (2.5)

From (2.4) and (2.5), we have ∂M⊆ U ∪ V.

(⇐=) Now, let x ∈ U ∪ V.

• Case 2.1: Let x ∈ U , then

||x− c1||2 = δ2
1 , (c1 − c2)Tx ≥ α12,

and

||x− c1||2 − δ2
1 = 0 ≤ ||x− c2||2 − δ2

2 =⇒ x ∈ ∂M. (2.6)

• Case 2.2: Let x ∈ V. From definition of V, we have

||x− c2||2 = δ2
2 , (c1 − c2)Tx ≥ α12,

therefore

0 = ||x− c2||2 − δ2
2 ≥ ||x− c1||2 − δ2

1 =⇒ x ∈ ∂M.

From (2.6) and (2), we have U ∪ V ⊆ ∂M.

According to Theorem 1, the optimal solution in Case 3.2 can be found by solving

the following two eTRSs:

min
1

2
xTAx+ aTx

||x− c1||2 = δ2
1 , (2.7)

(c1 − c2)Tx ≥ α12,

and

min
1

2
xTAx+ aTx

||x− c2||2 = δ2
2 , (2.8)

(c1 − c2)Tx ≥ α12.

The above solution procedure for solving (1.1) is summarized in Algorithm 1.
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Algorithm 1
Step 0: A (matrix), a (vector), c1, c2 (vectors), δ1, δ2 (positive scalars).

Outpute: Optimal solution x∗ or infeasibility status.
Step 1: Check the feasibility

1: if δ2 ≥ δ1 and ‖c1 − c2‖ < δ2 − δ1 then

2: return “Problem (1.1) is infeasible”
3: end if

Step 2 (Case 1):

4: if δ2 ≤ δ1 and ‖c1 − c2‖ < δ1 − δ2 then
5: x∗1 ← Solve subproblem (2.1)

6: x∗2 ← Solve subproblem (2.2)

7: x∗3 ← Solve subproblem (2.3)
Step 3: Select the best solution

8: x∗ ← argminx∈{x∗
1 ,x

∗
2 ,x

∗
3}

(
1
2
xTAx+ aT x

)
9: return x∗

10: end if

Step 4 (Case 2):
11: if ‖c1 − c2‖ > δ1 + δ2 then

12: x∗ ← Solve subproblem (2.3)
13: return x∗

14: end if

Step 5 (Case 3):
15: x∗ ← Solve subproblem (2.3)

16: if x∗ ∈M then

17: return x∗

18: else

19: x∗4 ← Solve subproblem (2.7)

20: x∗5 ← Solve subproblem (2.8)
21: x∗ ← argminx∈{x∗

4 ,x
∗
5}

(
1
2
xTAx+ aT x

)
22: return x∗

23: end if

3. Numerical experiments

In this section, we compare Algorithm 1 with the AEA algorithm from [13], the RW

algorithm from [20], CVX software [14], and the ’fmincon’ function from MATLAB

across various classes of test problems. It is important to note that CVX is employed

only when the SDP relaxation is exact. Additionally, the RW algorithm from [20] is

used for comparison when the GTRS instances are generated. All experiments are

conducted in MATLAB R2015a on a laptop with a 2.50 GHz processor and 8 GB of

RAM. The notations used in the tables can be found in Table 1.

• Class 1:

The following lemma is used to generate test instances of this class.

Lemma 3 (Lemma 2, [5]). Let A be a symmetric matrix with λ1 < min{0, λ2}.
Denote the eigenvector corresponding to λ1 by v1. Then, there exists a linear term a
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Table 1. Tables’ Notations

Notation Description

n Dimension of problem
Den Density of A

CPU(NA) CPU time of Algorithm 1

CPU(Fmin) CPU time of the ’fmincon’ function of MATLAB
CPU(CVX) CPU time of CVX

CPU(AEA) CPU time of the AEA algorithm of [13]

CPU(RW) CPU time of the RW algorithm of [13]
FNA Objective function value of Algorithm 1

FFmin Objective function value of ’fmincon’ function in matlab

FCV X Objective function value of CVX
FAEA Objective function value of the AEA algorithm of [13]

FRW Objective function value of the RW algorithm of [20]
OOM MATLAB run to out of memory

such that the vector (v1+c1) represents a local non-global minimum (LNGM) of (3.1):

min
1

2
xTAx+ aTx

||x− c1||2 ≤ δ21 . (3.1)

Moreover (−v1 + c1) is the global solution of (3.1).

Using this lemma, first we randomly generate a TRS instance of the form (3.1)

that has an LNGM. We consider c2 = (2τ − 1)v1 + τc1 such that τ ≥ 1 and

2|1 − τ |‖v1‖ < δ2 < 2τ‖v1‖. Then, the constraint ||x − c2||2 ≥ δ2
2 is added

such that the global minimizer of TRS, (−v1 + c1), to be infeasible but the

LNGM [23], (v1 + c1), remains feasible (See Fig. 2). The corresponding results

are summarized in Table 2, where we compare the Algorithm 1 with the AEA

algorithm of [13] and ’fmincon’ function of MATLAB. From this table, we can

conclude that Algorithm 1 solves all instance, while AEA and ’fmincon’ are

able to solve instances with n ≤ 100. Algorithm 1 is the fastest, ’fmincon’ is

the second one and AEA has the worst CPU time.

• Class 2:

First, we generate random TRS instances of the form (3.1) for which hard

case 2 occurs [12]. Let x∗1 and x∗2 be two optimal solutions of (3.1). Also let

c2 = (2τ − 1)x∗1 + τc1 such that τ ≥ 1 and 2|1− τ |‖v1‖ < δ2 < 2τ . In this case,

x∗1 is outside of the feasible region of (1.1) and x∗2 is in the feasible region (Fig.

3). Since the optimal solution of TRS (3.1) is inside the feasible region, then

the Lagrangian has positive definite Hessian, and as a result SDP relaxation is

exact. The comparison results with CVX which solves SDP relaxation, and the

AEA algorithm are reported in Table 3. As can be seen, Algorithm 1 solves all

instances below 1 second, CVX solves instances up to dimension 500 and AEA
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Figure 2. 2: Global solution of TRS (3.1), 4: LNGMs of TRS (3.1).

Table 2. Comparison of objective values and CPU times of Algorithm 1 with the AEA algorithm of [13] and

’fmincon’ function of MATLAB for Class 1 instances.

n CPU(NA) CPU(AEA) FNA − FAEA CPU(Fmin) FNA − FFmin

5 0.25 8.45 3.21× 10−9 0.58 −1.99× 10−6

10 0.27 11.06 2.58× 10−9 0.64 −3.99× 10−6

15 0.25 15.50 8.69× 10−9 0.67 −3.99× 10−6

25 0.25 24.87 4.28× 10−8 0.69 −3.99× 10−6

30 0.26 29.67 3.84× 10−8 0.70 −3.99× 10−6

50 0.27 55.54 1.84× 10−8 0.85 −7.91× 10−6

100 0.27 205.95 4.26× 10−7 0.97 −1.98× 10−4

150 0.27 − − 1.28 −0.07
200 0.27 − − 1.48 2.98
500 0.27 − − − −
700 0.28 − − − −
1000 0.32 − − − −

solves instances up to dimension 15. CVX has the second best CPU time and

AEA has the worst.

• Class 3:

In this class, we generate random instances in the form of GTRS to compare

with the RW algorithm designed for GTRS [20] as well. Let A be a positive

Table 3. Comparison of objective values and CPU times of Algorithm 1 with the AEA algorithm of [13] and

CVX software for Class 2 instances.

n CPU(NA) CPU(AEA) FNA − FAEA CPU(SDP) FNA − FSDP

5 0.03 1001.81 −9.35× 10−9 2.06 −7.53× 10−8

10 0.06 1053.65 −5.48× 10−9 2.11 −4.72× 10−8

15 0.09 1008.81 −7.25× 10−9 2.15 −7.60× 10−8

20 0.08 − − 2.12 −1.65× 10−8

25 0.08 − − 2.15 −2.39× 10−8

30 0.08 − − 2.18 −3.53× 10−7

50 0.08 − − 2.26 −3.82× 10−7

100 0.08 − − 2.85 −4.38× 10−6

200 0.09 − − 5.51 −4.47× 10−6

300 0.14 − − 12.73 −4.35× 10−6

500 0.16 − − 152.28 −3.85× 10−6

700 0.3 − − OOM −
1000 0.9 − − OOM −
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Figure 3. 2: Global solution of TRS, 4: LNGMs of TRS.

semidefinite matrix, c1 and c2 be zero vectors and δ1 > 1. We generate x̄

randomly such that ‖x̄‖ < δ1. Then we let a = −Ax̄, thus x̄ becomes the

optimal solution of TRS (3.1). Now, we choose δ2 such that ‖x̄‖ < δ2 < δ1 and

thus the optimal solution of TRS (3.1) is not in the feasible region of problem

(1.1) (Fig 4). The comparison results are reported in Table 4. As we see,

for dimensions n ≤ 3000, Algorithm 1 and RW yield nearly identical objective

function values; however, Algorithm 1 has better CPU time. For n > 3000,

Algorithm 1 finds global solution while the RW algorithm is not able to do so.

As before, AEA algorithm has the worst CPU time and is not able to solve

instnces for n > 100.

Figure 4. 2: Global solution of TRS.
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Table 4. Comparison of objective values and CPU times of Algorithm 1 with the AEA algorithm of [13] and RW

algorithm of [20] for Class 3 instances.

n Den CPU(NA) CPU(AEA) FNA − FAEA CPU(RW) FNA − FRW

5 1 0.27 13.27 6.75× 10−9 0.58 1.45× 10−12

10 1 0.27 14.79 2.13× 10−9 0.58 1.11× 10−12

50 1 0.32 49.64 6.81× 10−8 0.84 −1.72× 10−9

100 1 0.38 170.03 4.62× 10−7 0.96 −2.66× 10−8

200 1 0.57 − − 1.75 −7.63× 10−10

300 1 0.62 − − 1.95 −1.61× 10−9

700 1 1.52 − − 4.23 −2.97× 10−11

1500 1 7.31 − − 16.60 −4.18× 10−10

2000 0.1 3.75 − − 9.34 −1.81× 10−8

3000 0.1 4.88 − − 29.64 −2.93× 10−8

4000 0.1 14.82 − − 35.34 −28.89
5000 0.1 4.35 − − 30.08 −3.61
7000 0.001 6.85 − − 54.42 −3.65
10000 0.001 22.40 − − 174.37 −3.54
20000 0.0001 31.45 − − − −
20000 0.0001 54.69 − − − −
50000 0.0001 204.34 − − − −
100000 0.00001 359.69 − − − −

4. Conclusions

In this paper, we examine a quadratic minimization problem constrained by the in-

tersection of a ball and a reverse ball. By leveraging the problem’s structure, we

demonstrate that it can be effectively addressed by solving either three trust-region

subproblems or two trust-region subproblems with an additional linear constraint.

This approach not only simplifies the optimization process but also enhances compu-

tational efficiency. We conducted extensive experiments to evaluate the performance

of our proposed method in comparison to existing techniques found in the literature.

The results indicate that our approach consistently outperforms traditional methods,

providing faster convergence and improved accuracy across various test cases. Fur-

thermore, our findings suggest that the structured nature of the nonconvex quadratic

minimization problem allows for a more refined exploration of the feasible region and

facilitating better optimization outcomes. Extending this approach to the case where

there are several ball constraints could be considered as a future work.
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