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Abstract: The elliptic Sombor index is a topological index based on vertex degree
introduced by Gutman. Suppose G = (V (G), E(G)) is a finite, connected, and simple

graph with V (G) = {w1, w2, ..., wp}. Suppose dG(wi) is the degree of wi, for 1 ≤ i ≤ p.

We use ES(G) to represent the Sombor elliptic matrix G which is a p× p matrix and

its (i, j)-entry is equal to (dG(wi) + dG(wj))
√

d2
G(wi) + d2

G(wj) if wiwj ∈ E(G), and

zero otherwise. We introduce and investigate the elliptic Sombor energy and elliptic
Sombor Estrada index, both base on the eigenvalues of the elliptic Sombor matrix. In

addition, we prove some bounds for these new graph invariants.
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1. Introduction

Let G = (V (G), E(G)) be a finite, connected, and simple graph of order |V (G)| = p

and size |E(G)| = q where V (G) = {w1, w2, . . . , wp} is the vertex set of G and E(G)

denotes the edge set of G. The degree of vi is the number of first neighbors of the

vertex vi, i = 1, 2, . . . , p and it is denoted by dG(vi). G is called complete graph if

every two vertices of it are adjacent and is denoted by Kp.

∗ Corresponding Author



2 The elliptic Sombor energy of graphs

Let B be a real bivariate function defined over R×R with condition B(r, s) = B(s, r)

for all non-negative real number r and s. The topological index based on vertex

degree [11] TI is defined by

TI(G) =
∑

vivj∈E(G)

B(dG(vi), dG(vj).

In [11], Gutman listed 26 types of topological indices based on vertex degree, for

instance, the different type of Zagreb indices [2], Randić indices [7], and Sombor

index. A molecular graph [5] is a connected graph where its vertices are atoms

and its edges are covalent bonds between these atoms. Topological indices contain

information on the atom-connectivity molecular refractivity, the nature of atoms,

molecular volume, the bond multiplicity, etc.

The Sombor index (briefly SI) was defined by Gutman [11] as follows

SO(G) =
∑

wiwj∈E(G)

√
d2
G(wi) + d2

G(wj), (1.1)

and the elliptic Sombor index ( briefly ESI) [11, 12] is defined by

ESO(G) =
∑

wiwj∈E(G)

(dG(wi) + dG(wj))
√
d2
G(wi) + d2

G(wj). (1.2)

Also, Gutman and Trinajstic in 1972 [13] introduced the Zagreb indices as follow:

M1(G) =
∑

w∈V (G)

d2
G(w) =

∑
wv∈E(G)

(dG(w) + dG(v)),

M2(G) =
∑

wv∈E(G)

(dG(w)dG(v)).

Then Furtula and Gutman in 2015 [9] defined F-index by

F (G) =
∑

w∈V (G)

dG(w)3 =
∑

uv∈E(G)

(dG(w)2 + dG(v)2).

In 2004, Li and Zhao [16] defined the general first Zagreb index of a graph G as

Mα
1 (G) =

∑
w∈V (G)

dG(w)α =
∑

wv∈E(G)

(dG(w)α−1 + dG(v)α−1), for α ∈ R \ {0, 1}.
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For especial case, α = 4 it is called Y-index and denoted by Y (G), that is, Y (G) =∑
w∈V (G) dG(w)4. The general Randić index [6] is defined by

Mα
2 (G) =

∑
wv∈E(G)

(dG(w)dG(v))α, for α ∈ R \ {0, 1},

and the (α, β)-Zagreb indices are defined by

Z(α,β)(G) =
∑

vw∈E(G)

(dG(w)αdG(v)β + dG(w)βdG(v)α), for (α, β) 6= (0, 0).

The ESI has the mathematical properties and chemical applications. Kulli [15] pro-

vided ESI on some chemical graphs. Rada et al. [18] studied elliptic Sombor index

of benzenoid systems. Also, Espinal et al. [8] studied ESI on some chemical graphs.

Chanda and Iyer [4], studied the SI of generalized Siperpiṕski graphs and generalized

Mycielskian graphs and obtained some upper and lower bounds for them. Also, Liu

[17] investigated multiplicative SI on some graphs such as unicyclic graphs and trees.

On the other hand, spectral graph theory using matrix theory and linear algebra plays

a fundamental role in study of matrix graphs. Spectral graph theory is interesting

to many mathematicians and graph energy is an interesting topic in spectral graph

theory. The eigenvalues of matrix corresponding to a topological index are related

to most principal invariants of a graph. In a molecular graph, Gutmann [13] defined

the relationship between the total electron energy and the graph energy. After than,

many matrices were defined based on topological indices. For instance, Zagreb matrix

[14], seidel matrix [3], Sombor matrix [10], etc. In [1] Alikhani et al. investigated the

elliptic Sombor energy of some graphs such as path graphs, cycle graphs, star graphs,

complete bipartite graphs, k-regular graphs, and Petrerson graph.

Motivated as the above works, we investigate the elliptic Sombor energy and elliptic

Sombor Estrada index of a graph. In addition, we prove some bounds for these new

graph invariants.

2. Elliptic Sombor energy and elliptic Sombor Estrada index

For a simple finite graph G with V (G) = {w1, . . . , wp} the elliptic Sombor matrix is

defined by ES(G) = [sij ]p×p where

sij =

{
(dG(wi) + dG(wj))

√
d2
G(wi) + d2

G(wj) if wiwj ∈ E(G),

0 otherwise.

Let I be a p × p unit matrix. The elliptic Sombor characteristic polynomial PES(G)

is determined as follows

PES(G)(Λ) = det(ΛI − ES(G)).
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All eigenvalues of ES(G) are real becuase ES(G) is a symmetric matrix, and we

denoted by Λ1 ≥ Λ2 ≥ · · · ≥ Λp. The elliptic Sombor energy of G is defined by

EES(G) =

p∑
i=1

|Λi| (2.1)

and the elliptic Sombor Estrada index of G is defined as follows

ESE(G) =

p∑
i=1

eΛi . (2.2)

Example 1. Let G = Kr. The (i, j)-entry of ES(Kr) is 2
√

2(r − 1)2 if i 6= j and zero
otherwise. Then

ES(Kr) =


0 2

√
2(r − 1)2 2

√
2(r − 1)2 . . . 2

√
2(r − 1)2

2
√

2(r − 1)2 0 2
√

2(r − 1)2 . . . 2
√

2(r − 1)2

2
√

2(r − 1)2 2
√

2(r − 1)2 0 . . . 2
√

2(r − 1)2

...
...

...
...

...

2
√

2(r − 1)2 2
√

2(r − 1)2 2
√

2(r − 1)2 . . . 0

 .

The elliptic Sombor characteristic polynomial rES(Kr) is determined by

PES(Kr)(Λ) = det(ΛI − ES(Kr)) =
(

Λ− 2
√

2(r − 1)3
)(

Λ + 2
√

2(r − 1)2
)r−1

which has a root 2
√

2(r − 1)3 and (r − 1) roots −2
√

2(r − 1)2. The elliptic Sombor energy
of graph Kr is given by

EES(Kr) = 4
√

2(r − 1)3

and the elliptic Sombor Estrada index of Kr is obtained as follows

ESE(Kr) = e2
√

2(r−1)3 + (r − 1)e−2
√

2(r−1)2 .

3. Some bounds for elliptic Sombor energy

In the following, we study the elliptic Sombor energy and give some bounds for it. Let

Nk =
∑p
i=1(Λi)

k be the k-th spectral moment of the elliptic Sombor matrix ES(G),

and recall that Nk = Tr((ES(G))k).

Theorem 1. Let G represent a graph consisting of p vertices, characterized by its edge
set E(G). The elliptic Sombor matrix associated with this graph is denoted as ES(G), and
the eigenvalues of this matrix are ordered as Λ1 ≥ Λ2 ≥ · · · ≥ Λp. Then

i) N1 =
∑p

i=1 Λi = 0,
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ii) N2 =
∑p

i=1(Λi)
2 = 2

(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
,

iii) N3 =
∑p

i=1(Λi)
3 = 2

∑
∆

∏
vw∈E(∆)(dG(w) + dG(v))

√
d2
G(w) + d2

G(v),

iv) N4 =
∑p

i=1(Λi)
4 = 2

∑
2

∏
wv∈E(2)(dG(w) + dG(v))

√
d2
G(w) + d2

G(v),

where ∆ and 2 are a triangle and a cycle of order four in the graph G, respectively.

Proof. i) By definition ES(G), (i, i)-entry of ES(G) is equal to zero for i = 1, 2, ,̇p.

Then the trace of ES(G) is zero.

ii) Let V (G) = {w1, . . . , wp}. The diagonal elements of (ES(G))2 are

((ES(G))2)ii =

p∑
k=1

sijsji =

p∑
k=1

(sij)
2 =

∑
k∈{1,2,...,p}
wiwk∈E(G)

(sij)
2

=
∑

k∈{1,2,...,p}
wiwk∈E(G)

(dG(wi) + dG(wk))2(d2
G(wi) + d2

G(wk)).

Thus,

Tr((ES(G))2) =

p∑
i=1

∑
j∈{1,2,...,p}
wiwj∈E(G)

(dG(wi) + dG(wj))
2(d2

G(wi) + d2
G(wj))

= 2
∑

wiwj∈E(G)

(dG(wi) + dG(wj))
2(d2

G(wi) + d2
G(wj))

= 2
∑

wiwj∈E(G)

{d4
G(wi) + d4

G(wj) + 2d2
G(wi)d

2
G(wj)}

+2
∑

wiwj∈E(G)

{2dG(wi)dG(wj)(d
2
G(wi) + d2

G(wj))}

= 2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
.

iii) Since the diagonal elements of (ES(G))3 are

((ES(G))3)ii =

p∑
j=1

sij((ES(G))2)ji =
∑

j∈{1,2,...,p}
wiwj∈E(G)

sij((ES(G))2)ji

=
∑

j∈{1,2,...,p}
wiwj∈E(G)

sij ∑
k∈{1,2,...,p}

wjwk∈E(G), wkwi∈E(G)

sjkski

 .
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Hence,

Tr((ES(G))3) =

p∑
i=1

∑
j∈{1,2,...,p}
wiwj∈E(G)

sij ∑
k∈{1,2,...,p}

wjwk∈E(G), wkwi∈E(G)

sjkski


= 2

∑
∆

∏
ab∈E(∆)

(dG(a) + dG(b))
√
d2
G(a) + d2

G(b).

iv) Since the diagonal elements of (ES(G))4 are

((ES(G))3)ii =

p∑
j=1

sij((ES(G))3)ji =
∑

j∈{1,2,...,p}
wiwj∈E(G)

sij((ES(G))3)ji

=
∑

j∈{1,2,...,p}
wiwj∈E(G)

sij

 ∑
k∈{1,2,...,p}
wjwk∈E(G)

sjk ∑
l∈{1,2,...,p}

wkwl∈E(G), wlwi∈E(G)

sklsli


 .

Therefore,

Tr((ES(G))4) =

p∑
i=1

∑
j∈{1,2,...,p}
wiwj∈E(G)

sij

 ∑
k∈{1,2,...,p}
wjwk∈E(G)

sjk ∑
l∈{1,2,...,p}

wkwl∈E(G), wlwi∈E(G)

sklsli




= 2
∑
2

∏
ab∈E(2)

(dG(a) + dG(b))
√
d2
G(a) + d2

G(b).

Theorem 2. Let G represent a graph consisting of p vertices. The elliptic Sombor matrix
associated with this graph is denoted as ES(G), and the eigenvalues of this matrix are ordered
as Λ1 ≥ Λ2 ≥ · · · ≥ Λp. Then

Λ1 ≤

√
2(p− 1)

p

√
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G).

Proof. For i = 1, 2, . . . , p, suppose xi and yi are real numbers. The Cauchy-Schwarz

inequality leads to (
p∑
i=1

xiyi

)2

≤

(
p∑
i=1

x2
i

)(
p∑
i=1

y2
i

)
. (3.1)
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If we consider xi = Λi, yi = 1, and 2 ≤ i ≤ p, in inequality (3.1), we deduce(
p∑
i=2

Λi

)2

≤ (p− 1)

p∑
i=2

Λ2
i . (3.2)

Using Theorem 1, we conclude that

(−Λ1)
2 ≤ (p− 1)

(
2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
− Λ2

1

)
. (3.3)

By solving the last inequality with respect to Λ1, we get

Λ1 ≤

√
2(p− 1)

p

√
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G).

Theorem 3. Let G represent a graph consisting of p vertices, the elliptic Sombor matrix
associated with this graph is denoted as ES(G) and P = det(ES(G)). Then

|EES(G)| ≥
√

2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ P

2
p .

Proof. By definition of the elliptic Sombor energy, we get

|EES(G)|2 =

(
p∑
i=1

|Λi|

)2

=

p∑
i=1

|Λi|2 +
∑
i 6=j

1≤i,j≤p

|Λi||Λj |

= 2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+
∑
i 6=j

|Λi||Λj |.

For non-negative real number x1, . . . , xp, by the arithmetic-geometric mean inequalty,

we obtain

1

p

p∑
i=1

xi ≥

(
p∏
i=1

xi

) 1
p

. (3.4)

Using (3.4), we deduce

1

p(p− 1)

∑
1≤i 6=j≤p

|Λi||Λj | ≥

 ∏
1≤i 6=j≤p

|Λi||Λj |

 1
p(p−1)

=

(
p∏
i=1

|Λi|

) 2
p

= (det(ES(G)))
2
p = P

2
p .

Therefore,

|EES(G)|2 ≥ 2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ P

2
p .

We get the inequality stated in Theorem 3.
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Theorem 4. Let G represent a graph consisting of p vertices with ES(G) being its elliptic
Sombor matrix, Λ1 ≥ Λ2 ≥ · · · ≥ Λp are its eigenvalues and |Λ1| and |Λp| are the maximum
and minimum of the absolute value of {Λ1,Λ2, . . . ,Λp}. Then

2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ p|Λ1||Λp|

(|Λ1|+ |Λp|)
≤ EES(G).

Equality is true if and only if |Λi| = |Λp| or |Λi| = |Λ1| for 1 ≤ i ≤ p.

Proof. Assume that (x1, . . . , xp) and (y1, . . . , yp) are positive real numbers, satisfy

the condition rxi ≤ yi ≤ Rxi for i = 1, 2, ,̇p and some real constants r,R. The

Diaz-Metcalf inequality yields

p∑
i=1

(y2
i + rRx2

i ) ≤ (r +R)

p∑
i=1

xiyi

and equality holds if and only if yi = Rxi or yi = rxi for 1 ≤ i ≤ p. Putting yi = |Λi|,
xi = 1, r = |Λp|, and R = |Λ1| in Diaz-Metcalf inequality, it follows that

p∑
i=1

|Λi|2 + p|Λ1||Λp| ≤ (|Λ1|+ |Λp|)EES(G).

From Theorem 1, we conclude that

2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ p|Λ1||Λp| ≤ (|Λ1|+ |Λp|)EES(G).

This completes the proof.

Theorem 5. Let G represent a graph consisting of p vertices with ES(G) being its elliptic
Sombor matrix. Then

EES(G) ≤
√

2p
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
.

Proof. Taking xi = 1 and yi = |Λi| in Cauchy-Schwarz inequality (3.1), we arrive at

(EES(G))2 =

(
p∑
i=1

|Λi|

)2

≤ p

(
p∑
i=1

|Λi|2
)

= 2p
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
.

By simplifying it, we derive the required result.

Theorem 6. Let G represent a graph consisting of p vertices with ES(G) being its elliptic
Sombor matrix. Then

EES(G) ≤
√

2(p− 1)
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ pP

2
p .
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Proof. Let z1, . . . , zp be non-negative real numbers. We have

p

1

p

p∑
j=1

zj −

 p∏
j=1

zj

 1
p

 ≤ p p∑
j=1

zj −

 p∑
j=1

√
zj

2

. (3.5)

Inserting zj = Λ2
j in (3.5), we infer

p

1

p

p∑
j=1

Λ2
j −

 p∏
j=1

Λ2
j

 1
p

 ≤ p p∑
j=1

Λ2
j −

 p∑
j=1

|Λj |

2

.

Using Theorem 1, we infer

2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
− pP

2
p

≤ 2p
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
− (EES(G))2.

By simplifying it, we deduce the required result.

Theorem 7. Let G represent a graph consisting of p vertices with ES(G) being its elliptic
Sombor matrix such that the maximum of {|Λ1|, |Λ2|, . . . , |Λp|} is greater or equal to 1. Then

e
−
√

2(M5
1 (G)+2M2

2 (G)+2Z(3,1)(G)) ≤ EES(G) ≤ e

√
2(M5

1 (G)+2M2
2 (G)+2Z(3,1)(G)).

Proof. By definition of the EES(G) and using the arithmetic-geometric mean in-

equality, we get

EES(G) =

p∑
j=1

|Λj | = p

1

p

p∑
j=1

|Λj |

 ≥ p
 p∏
j=1

|Λj |

 1
p

.

By virtue the inequality p
(∑p

j=1
1
aj

)−1

≥
(∏p

j=1 |Λj |
) 1

p

for some positive numbers

a1, . . . .ap, we get

p

 p∏
j=1

|Λj |

 1
p

≥ p2

 p∑
j=1

1

|Λj |

−1

≥ p2

 p∑
j=1

1

|Λj |

p∑
j=1

|Λj |

−1

.

Let y1 ≤ y2 ≤ · · · ≤ yp and z1 ≤ z2 ≤ · · · ≤ zp be real numbers. The Chebishev’s

inequality, implies that  p∑
j=1

yj

 p∑
j=1

zj

 ≤ p p∑
j=1

yjzj .



10 The elliptic Sombor energy of graphs

Taking yj = 1
|Λj | and zj = |Λj | in Chebishev’s inequality, one gets

p∑
j=1

1

|Λj
|
p∑
j=1

|Λj | ≤ p2.

Then

p

 p∏
j=1

|Λj |

 1
p

≥ 1 ≥ 1∑p
j=1 e

|Λj |
≥ 1∑p

j=1

∑
k≥0

|Λj |k
k!

=
1∑

k≥0
1
k!

(∑p
j=1 |Λj |k

)
≥ 1∑

k≥0
1
k!

(∑p
j=1 |Λj |2

) k
2

=
1∑

k≥0
1
k!

(
2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)) k
2

= e
−
√

(2(M5
1 (G)+2M2

2 (G)+2Z(3,1)(G))).

Therefore, we have

EES(G) ≥ e−
√

2(M5
1 (G)+2M2

2 (G)+2Z(3,1)(G)).

On the other hand,

EES(G) =

p∑
j=1

|Λj | ≤
p∑
j=1

e|Λj | =

p∑
j=1

∑
k≥0

|Λj |k

k!
=
∑
k≥0

1

k!

 p∑
j=1

|Λj |k


≤
∑
k≥0

1

k!

 p∑
j=1

|Λj |2
 k

2

=
∑
k≥0

1

k!

(
2
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)) k
2

= e

√
2(M5

1 (G)+2M2
2 (G)+2Z(3,1)(G)).

4. Some bounds for elliptic Sombor Estrada index

In the following, for a given graph G we obtain some bounds for the elliptic Sombor

Estrada index.
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Theorem 8. Let G represent a graph consisting of p vertices with ES(G) being its elliptic
Sombor matrix. Then

ESE(G) ≥ p + M5
1 (G) + 2M2

2 (G) + 2Z(3,1)(G)

+
1

3

∑
∆

∏
ab∈E(∆)

(dG(a) + dG(b))
√

d2
G(a) + d2

G(b)

+
1

12

∑
2

∏
ab∈E(2)

(dG(a) + dG(b))
√

d2
G(a) + d2

G(b).

Proof. Since ex ≥ 1 + x+ x2

2 + x3

6 + x4

24 , we deduce

ESE(G) =

p∑
i=1

eΛi ≥
p∑
i=1

(
1 + (Λi) +

(Λi)
2

2
+

(Λi)
3

6
+

(Λi)
4

24

)
= p+N1 +

N2

2
+
N3

6
+
N4

24
.

Replacing N1, N2, N3, and N4 from Theorem 1 in the above inequality, we conclude

the required inequality.

Theorem 9. Let G represent a graph consisting of p vertices with ES(G) being its elliptic
Sombor matrix. Then

ESE(G) ≤ p− 1 + e

√
2(M5

1 (G)+2M2
2 (G)+2Z(3,1)(G)).

Proof. Let Λ1, . . . ,Λα be positive elliptic Sombor eigenvalue of ES(G) and

Λα+1, . . . ,Λp be non-positive elliptic Sombor eigenvalue of ES(G). Function f(x) =

ex is a monotonically increase on (−∞,+∞). Then

ESE(G) =

p∑
j=1

eΛj ≤ (p− α) +

α∑
j=1

eΛj = (p− α) +

α∑
j=1

∑
r≥0

(Λj)
r

r!

= p+
∑
r≥1

1

r!

α∑
j=1

(Λj)
r ≤ p+

∑
r≥1

1

r!

 α∑
j=1

(Λj)
2

 r
2

≤ p+
∑
r≥1

1

r!

 p∑
j=1

(Λj)
2

 r
2

= p− 1 +
∑
r≥0

1

r!

 p∑
j=1

(Λj)
2

 r
2

= p− 1 + e

√
2(M5

1 (G)+2M2
2 (G)+2Z(3,1)(G)).
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Theorem 10. Let G represent a graph consisting of p vertices with ES(G) being its
elliptic Sombor matrix. Then

ESE(G) ≥
√

2n
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+

√
2n

3

∑
∆

∏
ab∈E(∆)

(dG(a) + dG(b))
√

d2
G(a) + d2

G(b)

+

√
p

6

∑
2

∏
ab∈E(2)

(dG(a) + dG(b))
√

d2
G(a) + d2

G(b)

+M5
1 (G) + 2M2

2 (G) + 2Z(3,1)(G).

Proof. Suppose that Λ1, . . . ,Λp is the elliptic Sombor eigenvalue of ES(G). Since

ex ≥ 1 + x+ x2

2 + x3

6 + x4

24 , we get

(ESE(G))2 =

p∑
j=1

p∑
k=1

eΛj+Λk

≥
p∑
j=1

p∑
k=1

(
1 + Λj + Λk +

(Λj + Λk)2

2
+

(Λj + Λk)3

6
+

(Λj + Λk)4

24

)

=

p∑
j=1

p∑
k=1

(
1 + Λj + Λk +

Λ2
j + Λ2

k

2
+ ΛjΛk +

Λ3
j + Λ3

k

6

)

+

p∑
j=1

p∑
k=1

(
1

2
ΛjΛk(Λj + Λk) +

Λ4
j + Λ4

k

24
+

1

4
Λ2
jΛ

2
k +

1

2
ΛjΛk(Λ2

j + Λ2
k)

)
.

Applying Theorem 1, we have

p∑
j=1

p∑
k=1

(Λj + Λk) = 0,

p∑
j=1

p∑
k=1

ΛjΛk =

 p∑
j=1

Λj

2

= 0,

p∑
j=1

p∑
k=1

Λ2
j + Λ2

k

2
= p

p∑
j=1

Λ2
j = 2n

(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
,

p∑
j=1

p∑
k=1

Λ3
j + Λ3

k

6
=
p

3

p∑
j=1

Λ3
j =

2n

3

∑
∆

∏
ab∈E(∆)

(dG(a) + dG(b))
√
d2
G(a) + d2

G(b),

p∑
j=1

p∑
k=1

1

2
ΛjΛk(Λj + Λk) = 0,

p∑
j=1

p∑
k=1

Λ4
j + Λ4

k

24
=

p

12

p∑
j=1

Λ3
j =

p

6

∑
2

∏
ab∈E(2)

(dG(a) + dG(b))
√
d2
G(a) + d2

G(b),
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p∑
j=1

p∑
k=1

1

4
Λ2
jΛ

2
k =

1

4

 p∑
j=1

Λ2
j

2

=
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)2
,

p∑
j=1

p∑
k=1

1

2
ΛjΛk(Λ2

j + Λ2
k) = 0.

Combining the above equations, we obtain the inequality stated in Theorem 10.

Theorem 11. Let G represent a graph consisting of p vertices with ES(G) being its
elliptic Sombor matrix. Then

ESE(G) ≥
√

p2 + 4
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
. (4.1)

Proof. Suppose that Λ1, . . . ,Λp is the elliptic Sombor eigenvalue of ES(G). We get

(ESE(G))2 =

p∑
j=1

p∑
k=1

eΛj+Λk =

p∑
j=1

e2λj + 2
∑
j<k

eΛj+Λk .

Also, we deduce

∑
j<k

eΛj+Λk ≥ p(p− 1)

∏
j<k

eΛjeΛk

 2
p(p−1)

= p(p− 1)

 p∏
j=1

eΛj

 2
p

= p(p− 1)e
2
p

∑p
j=1 Λj = p(p− 1),

and

p∑
j=1

e2λj =

p∑
j=1

∑
r≥0

(2λj)
r

r!
= p+ 2

p∑
j=1

Λ2
j +

p∑
j=1

∑
r≥3

(2λj)
r

r!
.

We consider a multiplier β ∈ [0, 8] and we find

p∑
j=1

e2λj ≥ p+ 4
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ β

p∑
j=1

∑
r≥3

(2λj)
r

r!

= (1− β)p+ (4− β)
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ βESE(G).

Therefore,

(ESE(G))2 ≥ (p− β)p+ (4− β)
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
+ βESE(G).
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By solving the above inequality with respect to ESE(G), we deduce

ESE(G) ≥ β

2
+

√
(
β

2
− p)2 + (4− β)

(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
. (4.2)

Function f(x) = x
2 +
√

(x2 − p)2 + (4− x)
(
M5

1 (G) + 2M2
2 (G) + 2Z(3,1)(G)

)
is a mono-

tonically decreasing function with respect to x on [0, 8] for p ≥ 2 and p2 ≥ 1. Setting

β = 0 into (4.2), we get (4.1).
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