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Abstract: For a given integer k ≥ 1, a subset S of vertices of a graph G is a k-
limited packing if |NG[v] ∩ S| ≤ k for all v ∈ V (G), where NG[v] denotes the closed

neighborhood of a vertex v in G. The k-limited packing number, Lk(G), is the maxi-

mum cardinality of a k-limited packing in G. In this paper we present a probabilistic
lower bound for the k-limited packing number of a graph. In particular we improve a

previous lower bound given in [Discrete Appl. Math. 184 (2015), 146–153]. We also

present a randomized algorithm for the k-limited packing number of a graph.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). The order and size

of a graph G denoted n(G) and m(G), are |V (G)| and |E(G)|, respectively. Two

vertices u and v of G are adjacent if uv ∈ E(G), and are called neighbors. The open

neighborhood NG(v) of a vertex v in G is the set of neighbors of v, while the closed

neighborhood of v is the set NG[v] = {v} ∪ NG(v). A packing (sometimes called a

2-packing in the literature) of G is a set S of vertices such that NG[u] ∩ NG[v] = ∅
for every two distinct vertices u, v ∈ S, and the packing number of G, ρ(G), is the

maximum cardinality of a packing in G. An open packing of G is a set S of vertices

such that NG(u) ∩ NG(v) = ∅ for every two distinct vertices u, v ∈ S, and the open
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2 Lower bounds on the k-limited packing number of a graph

packing number of G, ρ0(G), is the maximum cardinality of an open packing in G.

The concept of a packing in graphs is very well studied in the literature, see, for

example, in [7, 11].

Limited packings in graphs were introduced by Gallant, Gunther, Hartnell and Rall [4]

in 2010 as a generalization of packing in graphs. For a given integer k ≥ 1, Gallant

et al. defined a subset of S of vertices of a graph G to be a k-limited packing if

|NG[v] ∩ S| ≤ k for all v ∈ V (G). The k-limited packing number, Lk(G), is the

maximum cardinality of a k-limited packing in G. When k = 1, a 1-limited packing

is precisely a packing, that is, L1(G) = ρ(G). We note that if k > ∆(G) where

∆(G) denotes the maximum degree among all vertices in G, then Lk(G) = n(G). The

concept of limited packing was further studied, for example, in [10, 12].

Total limited packings in graphs were introduced by Moghaddam, Mojdeh and

Samadi [8] in 2016. For a given integer k ≥ 1, Moghaddam et al. defined a sub-

set of S of vertices of a graph G to be a k-total limited packing if |NG(v) ∩ S| ≤ k

for all v ∈ V (G). The k-total limited packing number, Lk,t(G), is the maximum car-

dinality of a k-total limited packing in G. When k = 1, a 1-total limited packing is

precisely an open packing, that is, L1,t(G) = ρ0(G). We note that if k ≥ ∆(G), then

Lk,t(G) = n(G).

We remark that k-limited packing and k-total limited packing is related to multiple

domination (also called `-tuple domination in the literature) and multiple total dom-

ination (also called `-tuple total domination in the literature) in graphs. For recent

books on domination in graphs, we refer the reader to [5, 6].

A powerful tool to obtain bounds for various combinatorial objects is the probabilistic

method. We refer the reader to the excellent book by Alon and Spencer [1] on the

state of the art on the probabilistic method. Gagarin and Zverovich [3] developed

a new probabilistic approach to limited packing number in graphs, resulting in the

following lower bound for the k-limited packing number of a graph.

Theorem 1. ([3]) If G is a graph of order n with maximum degree ∆(G) = ∆ ≥ k ≥ 1,
then

Lk(G) ≥ kn

(k + 1) k

√(
∆
k

)
(∆ + 1)

.

2. Main results

Our contributions in this paper are twofold. Firstly we prove a (new) probabilistic

lower bound for the k-limited packing number of a graph that improves the bound

given in Theorem 1.
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Theorem 2. If G is a graph of order n with maximum degree ∆(G) = ∆ ≥ k ≥ 1, then

Lk(G) ≥ kn

(k + 1) k

√(
∆
k

)
(∆ + 1)

(
1 +

(
1− 1

k

√(
∆+1
k+1

)
(1 + k)

)(1+∆))
.

A proof of Theorem 2 is given in Section 3. The bound in Theorem 2 is an improve-

ment of the bound in Theorem 1. Since
(

∆+1
k+1

)
= 1 when k = ∆ and since

(
1−

(
1(

∆+1
k+1

)
(1 + k)

) 1
k
)
→ 0

as k →∞, an identical proof as that given in [3] yields that the bound of Theorem 2

is asymptotically best possible. We also remark that an improvement of the bound

in Theorem 1 is presented in [9]. However in the proof of this result given in [9] they

formed a set, namely, X ∪ D (see [9]) and claimed that it is a k-limited packing,

which is not correct in general. In fact if a vertex outside D is adjacent to more than

k vertices of D, then X ∪D is not a k-limited packing. We remark that in [2] a lower

bound for the k-limited packing number of a graph for large values of k is established.

Our result in Theorem 2 holds for all k ≥ 1.

Our second contribution is to present a randomized algorithm to find a k-limited

packing set whose size satisfies the bound of Theorem 2. We present our randomized

algorithm in Section 4.

3. Proof of Theorem 2

In this section, we present a proof of Theorem 2. Let G be a graph of order n with

maximum degree ∆(G) = ∆. For k a positive integer, we note that if k ≥ ∆ + 1, then

Lk(G) = n(G). For a positive integer t ≤ ∆ + 1, we define

c̃t = c̃t(G) =

(
∆ + 1

t

)
.

We present next our key lemma.

Lemma 1. If G is a graph of order n with maximum degree ∆(G) = ∆ ≥ k ≥ 1 and if
0 < p < 1, then there is a k-limited packing set L of G such that

|L| ≥ α
(

1 + (1− p)(1+∆)

)
,

where α = pn(1− pk c̃k+1).
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Proof. Let A ⊆ V (G) be a set obtained by choosing each vertex v ∈ V (G), in-

dependently, with probability p, and let B = {v ∈ V (G) : N [v] ∩ A = ∅} and

B′ = {v ∈ V (G) : NG[v] ⊆ B}. It is evident that degG[B](v) = degG(v) for every

vertex v ∈ B′.
We follow the proof of Theorem 1 given in [3]. For m ∈ {k, . . . ,∆}, we denote

Am = {v ∈ A : |N(v) ∩A| = m}.

For each set Am, we form a set A′m in the following way. For every vertex v ∈ Am, we

select m− (k− 1) (arbitrary) neighbors from NG(v)∩A and add them to A′m. Thus,

|A′m| ≤ (m− k + 1)|Am| for each m ∈ {k, . . . ,∆}. For m ∈ {k + 1, . . . ,∆}, we let

Bm = {v ∈ V (G) \A : |NG(v) ∩A| = m}.

For each set Bm, we form a set B′m in the following way. For every vertex v ∈ Bm,

we select m − k (arbitrary) neighbors from NG(v) ∩ A for every vertex v ∈ Bm and

adding them to B′m. Thus, |B′m| ≤ (m− k)|Bm| for each m ∈ {k + 1, . . . ,∆}. Let

X = A \

(( ∆⋃
m=k

A′m

)
∪
( ∆⋃

m=k+1

B′m

))
.

It is proved in [3] that

E(|X|) ≥ pn− pk+1n

∆−k∑
m=0

(m+ 1)c̃m+k+1p
m(1− p)∆−k−m = pn(1− pk c̃k+1) = α.(3.1)

Since for a random variable T , we have Pr(T ≥ E(T )) > 0, there is such a subset X

such that X is a k-limited packing set in G and |X| ≥ α.

Now we consider B as a fixed set and can assume that B′ 6= ∅, since B can be viewed

as a randomly chosen subset of G. Thus we focus here on the graph G[B]. Let D ⊆ B′
be a set obtained by choosing each vertex v ∈ B′, independently, with probability p.

For m ∈ {k, . . . ,∆}, we let

Dm = {v ∈ D : |NG(v) ∩D| = m}.

For each set Dm, we form a set D′m in the following way. For every vertex v ∈ Dm,

we select m− (k−1) (arbitrary) neighbors from NG(v)∩D and add them to D′m. We

note that |D′m| ≤ (m− k+ 1)|Dm| for each m ∈ {k, . . . ,∆}. For m ∈ {k+ 1, . . . ,∆},
we let

Fm = {v ∈ B \D : |N(v) ∩D| = m}.
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For each set Fm, we form a set F ′m by selecting m − k (arbitrary) neighbors from

NG(v) ∩ D for every vertex v ∈ Fm. We note that |F ′m| ≤ (m − k)|Fm| for each

m ∈ {k + 1, . . . ,∆}. Let

Y = D \

(( ∆⋃
m=k

D′m

)
∪
( ∆⋃

m=k+1

F ′m

))
.

By construction, the resulting set Y is a k-limited packing set for G[B]. We note that

E(|Y |) ≥ E(|D|)−
( ∆⋃

m=k

E(|D′m|)
)
−
( ∆⋃

m=k+1

E(|F ′m|)
)

≥ E(|D|)−
( ∆⋃

m=k

(m− k + 1)E(|Dm|)
)
−
( ∆⋃

m=k+1

(m− k)E(|Fm|)
)
.

It is evident that E(|D|) = p|B′|. With an analogous and similar arguments to that

used to establish Inequality (3.1) (given in [3]) we infer that

E(|D′m|) ≤ pm+1(1− p)∆−mcm|B|

and

E(|F ′m|) ≤ pm(1− p)∆−m+1cm|B|.

By our earlier observations, we therefore infer that

E(|Y |) ≥ p|B| − pk+1|B|
∆−k∑
m=0

(m+ 1)c̃m+k+1p
m(1− p)∆−k−m

= p|B|(1− pk c̃k+1). (3.2)

Since for a random variable T , we have Pr(T ≥ E(T )) > 0, there is a subset Y ⊆ B′

such that Y is a k-limited packing set in G[B] and |Y | ≥ p|B|(1− pk c̃k+1).

We now return to the graph G and view B and Y as subsets of V (G), where A

is chosen randomly and where |B| is a random variable. It is evident that the set

X ∪ Y is a k-limited packing set for G, since |NG[v] ∩ (X ∪ Y )| ≤ k for all v ∈ V (G).

Moreover,

E(|X ∪ Y |) = E(|X|+ |Y |) = E(|X|) + E(|Y |)
≥ α+ p(1− pk c̃k+1)E(|B|)
≥ α+ p(1− pk c̃k+1)n(1− p)1+∆

= α(1 + (1− p)1+∆)

= α(1 + 1(1− p)1+∆).

Therefore, there is a k-limited packing set L such that |L| ≥ α(1 + 1(1 − p)1+∆), as

desired.
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Letting

p =

(
1(

∆+1
k+1

)
(1 + k)

) 1
k

,

it is proved in [3] that

α ≥ kn

(k + 1) k

√(
∆

k

)
(∆ + 1)

.

Thus as a consequence of the above lower bound on α, as an application of Lemma 1

we immediately infer our main result, namely Theorem 2. Recall its statement.

Theorem 2. If G is a graph of order n with maximum degree ∆(G) = ∆ ≥ k ≥ 1,

then

Lk(G) ≥ kn

(k + 1) k

√(
∆

k

)
(∆ + 1)

(
1 +

(
1− 1

k

√(
∆+1
k+1

)
(1 + k)

)(1+∆))
.

As remarked in Section 2, the bound of Theorem 2 is asymptotically best possible.

Since any k-limited packing is a k-total limited packing, we have the following imme-

diate lower bound for the k-total limited packing number of a graph.

Theorem 3. If G is a graph of order n with maximum degree ∆(G) = ∆ ≥ k ≥ 1, then

Lk,t(G) ≥ kn

(k + 1) k

√(
∆
k

)
(∆ + 1)

(
1 +

(
1− 1

k

√(
∆+1
k+1

)
(1 + k)

)(1+∆))
.

4. A randomized algorithm

Gagarin and Zverovich [3] presented a randomized algorithm, namely Algorithm 1 in

[3], to find a k-limited packing set whose size satisfies the bound of Theorem 1. In

this section we develop the randomized Algorithm 1 (presented in [3]), and present a

randomized algorithm to find a k-limited packing set whose size satisfies the bound

of Theorem 2.

Our algorithm can be implemented to run in O(n2) time. In Line 2 to Line 15,

this algorithm constructs a k-limited packing set by recursively removing unwanted

vertices from the initially constructed set A. Lines 1–15 can be implemented in O(n2)
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time, as they are precisely the lines of Algorithm 1 of [3]. In Line 16 the algorithm

forms the graph G[B] by removing each vertex v such that N [v] ∩ A 6= ∅ from G,

and this can be done in O(n + m) steps. In Lines 17–20, it forms the subset B′ in

O(n+m) steps. In Lines 22–34 the algorithm mimics the computations of Lines 2-15 to

constructs a k-limited packing set by recursively removing unwanted vertices from the

initially constructed set D, and as it was seen it can be done in O(n2) steps. Finally

in Line 35, the algorithm does an extension of the preliminary k-limited packing set

X ∪ Y . For this purpose, checking whether X ∪ Y is maximal or extending X ∪ Y
to a maximal k-limited packing can be done in O(n+m) time, since it examines the

vertices of V (G)\ (X ∪Y ) one by one to decide whether to add them to the set X ∪Y
or not.

Algorithm 1 Randomized k-limited packing

Input: A graph G and an integer k with 1 ≤ k ≤ ∆.

Output: A k-limited packing set L of G.

1: Compute p =

(
1

c̃k+1(1+k)

) 1
k

2: Initialize A = ∅, D = ∅ and B′ = ∅
3: for each vertex v ∈ V (G) do

4: with probability p, decide whether v ∈ A or v 6∈ A.

5: end for

6: for each vertex v ∈ V (G) do

7: Compute r = |NG(v) ∩A|
8: if v ∈ A and r ≥ k then

9: Remove any r − k + 1 vertices of NG(v) ∩A from A

10: end if

11: if v 6∈ A and r > k then

12: Remove any r − k vertices of NG(v) ∩A from A

13: end if

14: end for

15: Put X = A

16: Form a set B by removing each vertex v such that N [v] ∩A 6= ∅ from G

17: for each vertex v ∈ B do

18: if N [v] ⊆ B then

19: B′ = B′ ∪ {v}
20: end if

21: end for

22: for each vertex v ∈ B′ do

23: with probability p, decide whether v ∈ D or v 6∈ D.

24: end for

25: for each vertex v ∈ B do

26: Compute r = |NG(v) ∩D|
27: if v ∈ D and r ≥ k then

28: Remove any r − k + 1 vertices of NG(v) ∩D from D
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29: end if

30: if v 6∈ D and r > k then

31: Remove any r − k vertices of NG(v) ∩D from D

32: end if

33: end for

34: Put Y = D

35: Extend X ∪ Y to a maximal k-limited packing L

36: Return L

5. Concluding Remarks

In Lemma 1 we have shown that a graph G of order n with ∆(G) = ∆ ≥ k ≥ 1 has a

k-limited packing set of cardinality at least α(1 + (1− p)(1+∆)), where 0 < p < 1 and

α = pn

(
1− pk

(
∆ + 1

k + 1

))
.

It would be interesting to study if this lower bound can be further improved to α(1 +

s(1− p)(1+∆)) for each integer s. If this can be proved, then the bound of Theorem 2

will be improved to

Lk(G) ≥ kn

(k + 1) k

√(
∆

k

)
(∆ + 1)

(
1 + s

(
1− 1

k

√(
∆+1
k+1

)
(1 + k)

)(1+∆))

for each integer s.
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