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Abstract: The energy of a graph G is determined by the absolute sum of its eigen-
values. Similar to this concept, the distance energy, Harary Energy, Seidel energy,

complementary distance energy and reciprocal complementary distance energy are all
defined based on the eigenvalues of their respective matrices. In this paper, we study

these energies on the complement of a regular graph G in terms of the energy of G.

We explore exact relationships among these energies. Recent studies have explored
equienergetic graphs concerning the adjacency and distance matrices. In this paper,

we provide graphs illustrating the equienergetic properties with respect to six matrices.
The results obtained extend some of the existing findings.

Keywords: complement of a graph, Energy, distance energy, Harary energy, comple-
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1. Introduction

Molecular matrices play a crucial role in providing structural descriptors for quanti-

tative structure property relationships (QSPR) and quantitative structure activity
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2 Interconnections between the different energies

relationships (QSAR) models, as they encode topological information in versatile

ways. In the literature, many molecular matrices have been defined, such as the

distance matrix, Harary matrix, complementary distance matrix and reciprocal

complementary distance matrix.

Structural-property models for the boiling temperature, vaporization enthalpy,

standard Gibbs energy of formation, refractive index and density of alkanes are

developed using structural descriptors calculated from the CD-matrix [13, 14].

Consequently, the QSPR models can be derived using the complementary distance

matrix. The Harary index, which is obtained from the Harary matrix, has been

successfully tested in several structure-property relationships. It is used to predict

physical properties such as critical pressure, critical temperature, surface tension,

boiling point, melting point, heat of evaporation, molar refraction and molar volume

of alkanes [16]. Therefore, it is meaningful to explore the mathematical properties

and chemical applications of these matrices.

In this article, we consider all the graphs to be simple and connected. The degree

of a vertex ux denoted as dx, defined as the number of edges which are incident

to it. If G is said to be r-regular then each vertex of G is of degree r. The length

of the shortest path connecting any two vertices vx and vy is the distance between

the vertices vx and vy and is denoted by dxy. The diameter of G is the maximum

distance between any two vertices and is denoted by diam(G).

The adjacency matrix of graph G is defined as A(G) = [axy], in which axy = 1, if vx is

adjacent to vy otherwise axy = 0. The distance matrix is expressed as D(G) = [dxy]

if x 6= y and 0 otherwise. The Harary matrix [12], which is also known as reciprocal

distance matrix [14], is expressed as H(G) = [hrxy] where hrxy = 1
dxy

if x 6= y and

0 otherwise. The complementary distance matrix [13], of a graph G is expressed as

CD(G) = [cdxy] where cdxy = 1 + diam(G) − dxy if x 6= y and 0 otherwise. The

reciprocal complementary distance matrix [13], of a graph G, denoted by RD(G),

is expressed as RD(G) = [rdxy] where rdxy = 1
1+diam(G)−dxy

if x 6= y and 0 otherwise.

The Seidel matrix of graph G is defined as S(G) = [sxy], in which sxy = 1, if vx is not

adjacent to vy, sxy = −1, if vx is adjacent to vy and sxy = 0 if x = y. The eigenvalues

associated with the adjacency, distance, Harary, complementary distance, reciprocal

complementary distance matrix and Seidel matrix are known as the adjacency (or

A), distance (or D), Harary (or H), complementary distance (or CD), reciprocal

complementary distance (or RD) and Seidel (or S) eigenvalues of the graph G,

respectively.

The concept of A-energy, introduced by I. Gutman in 1978 [5], denotes the absolute

sum of all eigenvalues of a graph G, symbolized as EA(G). This idea extends to

any matrix M associated with a graph G, with a zero trace, defining the M -energy

as the absolute sum of its eigenvalues, denoted by EM (G). Consequently, we have
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the H-energy EH(G) [4], D-energy ED(G) [11], CD-energy ECD(G) [21], RD-energy

ERD(G) [28] and S-energy ES(G) [6] accordingly. Two graphs G1 and G2 of the same

order are termed M -equienergetic if their M -energies exhibit no difference, expressed

as EM (G1)− EM (G2) = 0. For additional notation and terminology, we follow [2].

Let n+G, n−G and n0G represents the count of positive, negative and zero eigenvalues of

graph G respectively. Some studies on H-energy, CD-energy, RD-energy, D-energy

and equienergetic graphs can be seen in [1, 4, 17, 18, 20–22, 28]. Indulal [9, 10],

presented an open problem aimed at characterizing or constructing families of graphs

that exhibit equienergetic properties concerning both adjacency and distance matri-

ces. Ramane et al. [24] have introduced some families of graphs that demonstrate

equienergetic behavior with respect to both the adjacency and distance matrices. Re-

lationships among various graph energies were previously investigated in [29], while

the study of multiply equienergetic graphs was presented in [7]. This prompts fur-

ther exploration into scenarios where different matrices associated with graphs that

exhibit equienergetic characteristics.

The main findings rely on the following existing results.

Proposition 1. [24] Consider a graph G that is r-regular and has order n. If the
A-eigenvalues of G are λk; k = 1, 2, . . . , n, then

n∑
k=1

| λk + 2 |= EA(G) + 2n− 4n−G + 2
∑

λk∈(−2,0)

(λk + 2).

Let G represent the complement of a graph G.

Theorem 1. [2] Consider a graph G that is r-regular and has order n. If r = λ1,
λk; k = 2, 3, . . . , n are the A-eigenvalues of G, then the complement G of G is an (n− r−1)-
regular graph with the A-eigenvalues n− r − 1, −(1 + λk); k = 2, 3, . . . , n.

Theorem 2. [1] Consider a graph G that is r-regular and has order n. If r = λ1,
λk; k = 2, 3, . . . , n are the A-eigenvalues of G and diam(G) ≤ 2, then the H-eigenvalues of
G are 1

2
(n+ r − 1), 1

2
(λk − 1); k = 2, 3, . . . , n.

Theorem 3. [21] Consider a graph G that is r-regular and has order n. If r = λ1,
λk; k = 2, 3, . . . , n are the A-eigenvalues of G and diam(G) ≤ 2, then the CD-eigenvalues of
G are n+ r − 1, λk − 1; k = 2, 3, . . . , n.

Theorem 4. [28] Consider a graph G that is r-regular and has order n. If r = λ1,
λk; k = 2, 3, . . . , n are the A-eigenvalues of G and diam(G) ≤ 2, then the RD-eigenvalues of
G are n− 1− r

2
, −(1 + λk

2
); k = 2, 3, . . . , n.

Theorem 5. [3] Consider a graph G that is r-regular and has order n. If r = λ1,
λk; k = 2, 3, . . . , n are the A-eigenvalues of G and diam(G) ≤ 2, then the D-eigenvalues of
G are 2n− r − 2, −(λk + 2); k = 2, 3, . . . , n.
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Theorem 6. [15] Consider a graph G that is r-regular and has order n, then diam(G) ≤ 2
or diam(G) ≤ 2.

Let the order of iterated line graphs Lk(G) of r-regular graph be nk; k = 0, 1, 2, . . .,

where L0(G) = G and L1(G) = L(G).

Proposition 2. [25] Consider a graph G that is r(≥ 3)-regular and has order n0, then
the graphs Lk(G) for every k > 1 have same degree and have all negative eigenvalues equal
to −2 and EA(Lk(G)) = 4(nk − nk−1).

Theorem 7. [15] Consider a graph G that is r-regular and has order n(≥ 8), then
diam(Lk(G)) = 2 for every k ≥ 1.

Let n−G1
and n−G2

represent the number of negative A-eigenvalues of the graphs G1

and G2, respectively.

Proposition 3. [23] Consider the graphs Gk; k = 1, 2 that are rk-regular and both have
same order n. If Gk; k = 1, 2 are the A-equienergetic graphs which have no A-eigenvalues in
the interval (−1, 0), then the graphs Gk; k = 1, 2 are A-equienergetic if and only if r1+n

−
G1

=

r2 + n−G2
.

Theorem 8. [19] Consider the graphs Gk; k = 1, 2 that are rk-regular and both have
same order n, then the graphs Lk(G1) and Lk(G2) are S-equienergetic for every k ≥ 1.

2. Main Results

If one aims to fully investigate a regular graph G, then Theorem 6 guarantees that it

suffices to consider G under the condition that diam(G) ≤ 2. This leads us to discuss

the following explicit relation among ERD(G), EA(G) and ED(G):

Theorem 9. Consider a graph G that is r-regular and has order n. If r = λ1, λk; k =
2, 3, . . . , n are the A-eigenvalues of G and diam(G) ≤ 2, then

2ERD(G) = 2n− 2n+
G − 2

∑
λk∈(0,1)

(λk − 1) + EA(G) = ED(G).

Proof. Let η1, η2, . . . , ηn and λ1 ≥ λ2 ≥ · · · ≥ λn be the RD and A-eigenvalues of

G, respectively. If diam(G) ≤ 2, then by Theorems 4 and 1, the RD-eigenvalues of
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G are 1
2 (n+ r − 1), 1

2 (λk − 1); k = 2, 3, · · · , n. Therefore, the RD-energy of G is

ERD(G) =

n∑
k=1

|ηk| =
1

2

(
n+ r − 1 +

n∑
k=2

|λk − 1|

)

2ERD(G) = n+

n∑
k=1

|λk − 1|

= n+
∑
λk≤1

(−λk + 1) +
∑
λk≥1

(λk − 1)

= n+
∑
λk≤1

−λk + nλ[λn, 1] +
∑
λk>1

λk − nλ(1, λ1]

= nλ[λn, 1]− nλ(1, λ1] +
∑
λk≤0

|λk|+
∑

λj∈(0,1]

−λk +
∑
λk>1

λk, (2.1)

where nλ(I) denotes the count of A-eigenvalues of G that are contained in the interval

I. The A-energy EA(G) of a graph G can be expressed as

EA(G) =
∑
λk≤0

| λk | +
∑

λk∈(0,1]

λk +
∑
λk>1

λk. (2.2)

The inertia of G can be expressed as

n = nλ[λn, 1] + nλ(1, λ1] = nλ(0, 1] + nλ(1, λ1] + n0 + n−. (2.3)

By equalities (2.2) and (2.3), the equality (2.1) becomes

2ERD(G) = n+ n+ EA(G)− 2nλ(1, λ1]− 2
∑

λk∈(0,1]

λk

= 2n+ EA(G) + 2nλ(0, 1]− 2n+G − 2
∑

λk∈(0,1]

λk

= 2n+ EA(G)− 2n+G + 2nλ(0, 1]− 2
∑

λk∈(0,1]

(λk − 1)− 2nλ(0, 1]

= 2n+ EA(G)− 2n+G − 2
∑

λk∈(0,1)

(λk − 1).

The equality 2ERD(G) = ED(G) follows directly from the interrelations between D-

eigenvalues and RD-eigenvalues by Theorems 5, 4 and 1 which concludes the proof.

The following are useful factors when discussing immediate results based on Theorem

9.
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1.
∑

λk∈(0,1)
(λk − 1) = 0 if only if there are no A-eigenvalues λk in the open interval

(0, 1).

2. For each A-eigenvalue λk ∈ (0, 1) of a graph G, we get −
∑

λk∈(0,1)
(λk − 1) > 0

and n−G +
∑

λk∈(0,1)
(λk − 1) > 0.

With help of these, we arrive at the following results:

Corollary 1. Consider a graph G that is r-regular and has order n with diam(G) ≤ 2,
then

n− n+
G +

1

2
EA(G) ≤ ERD(G) < n+

1

2
EA(G).

The left side of the inequality attains equality if and only if G does not possess any A-
eigenvalues within the interval (0, 1).

Let n+G1
and n+G2

represent the number of positive A-eigenvalues in G1 and G2, re-

spectively.

Corollary 2. Consider the graphs Gk; k = 1, 2 that are rk-regular and both have
same order n with diam(Gk) ≤ 2. If Gk; k = 1, 2 are A-equienergetic graphs, then their
complements Gk; k = 1, 2 are RD-equienergetic if and only if

n+
G1

+
∑

λ
′
k∈(0,1)

(λ
′
k − 1) = n+

G2
+

∑
λ
′′
k ∈(0,1)

(λ
′′
k − 1).

In particular, when Gk; k = 1, 2 do not possess any A-eigenvalues within the interval (0, 1),
the graphs Gk; k = 1, 2 are RD-equienergetic if and only if n+

G1
= n+

G2
.

The equality ED(G) = 2ERD(G) in Theorem 10 implies that if there exist graphs

meeting the conditions of Theorem 10 and are D-equienergetic, then they are also

RD-equienergetic and vice versa. Based on this observation, we derive the following

result:

Corollary 3. Consider the graphs Gk; k = 1, 2 that are rk-regular and both have same
order n with diam(Gk) ≤ 2. Then Gk; k = 1, 2 are RD-equienergetic graphs if and only if
they are D-equienergetic graphs.

The following theorem presents an explicit relation among EH(G), EA(G) and ECD(G).

Theorem 10. Consider a graph G that is r-regular and has order n. If r = λ1,
λk; k = 2, 3, . . . , n are the A-eigenvalues of G and diam(G) ≤ 2, then

2EH(G) = 4n− 2r − 4− 4n−G + 2
∑

λk∈(−2,0)

(λk + 2) + EA(G) = ECD(G).
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Proof. Let σ1, σ2, . . . , σn and λ1 ≥ λ2 ≥ · · · ≥ λn be the H and A-eigenvalues of G,

respectively. If diam(G) ≤ 2, then by Theorems 1 and 2, the H-eigenvalues of G are
1
2 (2n− r − 2), 1

2 (−λk − 2); k = 2, 3, . . . , n. Therefore, the H-energy of G is

EH(G) =

n∑
k=1

|σk| =
1

2

(
2n− r − 2 +

n∑
k=2

|−λk − 2|

)

2EH(G) = 2n− 2r − 4 +

n∑
k=1

|−λk − 2|

= 2n− 2r − 4 + EA(G) + 2n− 4n−G + 2
∑

λk∈(−2,0)

(λk + 2)

by Proposition 1

= 4n− 2r − 4− 4n−G + 2
∑

λk∈(−2,0)

(λk + 2) + EA(G).

The equality 2EH(G) = ECD(G) follows directly from the interrelations between H-

eigenvalues and CD-eigenvalues from Theorems 2, 3 and 1 which concludes the proof.

The following are useful factors when discussing immediate results based on Theorem

10.

1.
∑

λk∈(−2,0)
(λk+2) = 0 if only if there are no A-eigenvalues λk in the open interval

(−2, 0).

2. For each A-eigenvalue λk ∈ (−2, 0) of a graph G, we get
∑

λk∈(−2,0)
(λk + 2) > 0

and 2n−G −
∑

λk∈(−2,0)
(λk + 2) > 0.

With help of these, we arrive at the following results.

Corollary 4. Consider a graph G that is r-regular and has order n with diam(G) ≤ 2,
then

2n− r − 2− 2n−G +
1

2
EA(G) ≤ EH(G) < 2n− r − 2 +

1

2
EA(G).

The left side of the inequality attains equality if and only if G does not possess any A-
eigenvalues within the interval (−2, 0).

Now, we proceed to provide a characterization to construct H-equienergetic graphs

by using Theorem 10. Let the A-eigenvalues of regular graphs G1 and G2 be denoted

by λ
′

k; k = 1, 2, . . . , n and λ
′′

k ; k = 1, 2, . . . , n respectively. Also, let n−G1
and n−G2

represent the number of negative A-eigenvalues in G1 and G2 respectively.
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Corollary 5. Consider the graphs Gk; k = 1, 2 that are rk-regular and both have
same order n with diam(Gk) ≤ 2. If Gk; k = 1, 2 are A-equienergetic graphs, then their
complements Gk; k = 1, 2 are H-equienergetic if and only if

r1 + 2n−G1
−

∑
λ
′
k∈(−2,0)

(λ
′
k + 2) = r2 + 2n−G2

−
∑

λ
′′
k ∈(−2,0)

(λ
′′
k + 2).

In particular, when Gk; k = 1, 2 do not possess any A-eigenvalues within the interval (−2, 0),
the graphs Gk; k = 1, 2 are H-equienergetic if and only if r1 + 2n−G1

= r2 + 2n−G2
.

Similarly to Corollary 4 and Corollary 5, we have the following results:

Corollary 6. Consider a graph G that is r-regular and has order n with diameter
diam(G) ≤ 2, then

4n− 2r − 4− 4n−G + EA(G) ≤ EH(G) < 4n− 2r − 4 + EA(G).

The left side of the inequality attains equality if and only if G does not possess any A-
eigenvalues within the interval (−2, 0).

Corollary 7. Consider the graphs Gk; k = 1, 2 that are rk-regular and both have
same order n with diam(Gk) ≤ 2. If Gk; k = 1, 2 are A-equienergetic graphs, then their
complements Gk; k = 1, 2 are H-equienergetic if and only if

r1 + 2n−G1
−

∑
λ
′
k∈(−2,0)

(λ
′
k + 2) = r2 + 2n−G2

−
∑

λ
′′
k ∈(−2,0)

(λ
′′
k + 2).

In particular, when Gk; k = 1, 2 do not possess any A-eigenvalues within the interval (−2, 0),
the graphs Gk; k = 1, 2 are H-equienergetic if and only if r1 + 2n−G1

= r2 + 2n−G2
.

The equality ECD(G) = 2EH(G) in Theorem 10 implies that if there exist graphs

meeting the conditions of Theorem 10 and are H-equienergetic, then they are also

CD-equienergetic and vice versa. Based on this observation, we derive the following

result.

Corollary 8. Consider the graphs Gk; k = 1, 2 that are rk-regular and both have same
order n with diam(Gk) ≤ 2, then Gk; k = 1, 2 are H-equienergetic graphs if and only if they
are CD-equienergetic graphs.

Theorem 11. Consider the graphs Gj; j = 1, 2 that are r(≥ 3)-regular and both have
same order n(≥ 8), then the graphs Lk(Gj); j = 1, 2 are A-equienergetic, H-equienergetic
and CD-equienergetic for all k > 1.
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Proof. Consider the graphs Gj ; j = 1, 2 which are r(≥ 3)-regular and both have

same order n, then the graphs Lk(Gj), for all k > 1, exhibit no A-eigenvalues in the

interval (−2, 0) and are A-equienergetic as per Proposition 2. Moreover, both graphs

Lk(Gj) have the same order and degree. According to Proposition 3, the graphs

Lk(Gj); j = 1, 2, are also A-equienergetic. If n ≥ 8, then by Theorem 7, the graphs

Lk(Gj); j = 1, 2, both have diameter 2. Consequently, as per Corollary 5, these

graphs are H-equienergetic. Now, by Corollary 8, these graphs are CD-equienergetic.

Thus, the graphs Lk(Gj); j = 1, 2, are both A-equienergetic, H-equienergetic and

CD-equienergetic for all k > 1.

Remark 1. In the papers [17, 26], the authors presented H-equienergetic and CD-
equienergetic graphs Lk(Gj); j = 1, 2, for the r-regular graphs Gj of order n, with the
constraint r ≤ n−1

2
. However, Theorem 11 does not impose any such restriction.

Example 1. The regular iterated line graphs, denoted as G1 = Lk(Kn,n × Kn−1) and
G2 = Lk(Kn−1,n−1 ×Kn), have the same order and degree. Here, the symbol × represents
the Cartesian product. These graphs exhibit A-equienergetic properties, sharing an equal
number of negative A-eigenvalues that lie outside the interval (−2, 0) for all k ≥ 1 and
n ≥ 5 [27]. According to Theorem 7, the diameter of both G1 and G2 is 2. Consequently,
these graphs are H-equienergetic for all n ≥ 5 and k ≥ 1 by Corollary 5. Furthermore,
they are also A-equienergetic for all n ≥ 4 and k ≥ 0 [27]. Thus, these graphs exhibit
both A-equienergetic and H-equienergetic properties for all n ≥ 5 and k ≥ 1. Also, the
graphs G1 and G2 have the same number of positive A-eigenvalues which do not have any
eigenvalues in the interval (0, 1) for all k ≥ 1 and n ≥ 6 [27]. Therefore, the graphs G1

and G2 are RD-equienergetic for all n ≥ 6 and k ≥ 1 by Corollary 2. Hence, for all n ≥ 6
and k ≥ 1, the graphs G1 and G2 are A-equienergetic, H-equienergetic, CD-equienergetic,
RD-equienergetic and D-equienergetic.

Theorem 12. Consider the graphs Gj; j = 1, 2 that are r(≥ 4)-regular and both
have same order n(≥ 8), then the graphs Lk(Gj); j = 1, 2 are D-equienergetic and RD-
equienergetic for all k > 1.

Proof. If the graphs Gj ; j = 1, 2 are r(≥ 4)-regular, then as mentioned in the

Remark 3.5 of [24], for all k > 1, the graphs Lk(Gj); j = 1, 2, exhibit the same

count of positive A-eigenvalues, each at least 2. Additionally, these graphs are A-

equienergetic and share the same degree, as indicated by Proposition 2. For all n ≥ 8,

in accordance with Theorem 7, the graphs Lk(Gj); j = 1, 2, have the diameter 2.

Consequently, following Corollary 2, these graphs are RD-equienergetic for all k > 1.

Now, by applying Corollary 3, these graphs are also D-equienergetic.

Remark 2. In the papers [8, 22], the authors presented D-equienergetic and RD-
equienergetic graphs Lk(Gj); j = 1, 2, for the r-regular graphs Gj of order n, with the
constraint r ≤ n−1

2
. However, Theorem 12 does not impose any such condition.

Note 1. Given any graph G, it is well known that ES(G) = ES(G). Therefore, If Gj ;
j = 1, 2 are r(≥ 4)-regular graphs, both of same order n(≥ 8), then by Theorems 11, 12
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and 8 the graphs Lk(Gj); j = 1, 2 are A-equienergetic, D-equienergetic, H-equienergetic,
CD-equienergetic, RD-equienergetic and S-equienergetic for all k > 1.

There are certain classes of graphs with the diameter of G and diameter of G is at

most 2 such as strongly regular graphs and the graphs Kn × Km;n > 2,m > 2.

On such classes of graphs, we present the following explicit relations among various

energies:

Theorem 13. Consider a graph G that is regular and has order n. If diam(G) ≤ 2 and
diam(G) ≤ 2, then

ED(G) = ECD(G) = 2EH(G) = 2ERD(G) = 2n− 2n+
G − 2

∑
λi∈(0,1)

(λi − 1) + EA(G).

Proof. If diam(G) ≤ 2 and diam(G) ≤ 2, then the proof directly follows from the

interconnections among the eigenvalues of the involved matrices and Theorem 9.

Conclusion

In this paper, we have studied the energy concept pertaining to matrices A, D, H,

CD and RD of regular graphs, examining their interconnections. This investigation

could be expanded to uncover clear energy relationships within non-regular graphs,

especially by examining n(≥ 5) matrices associated with graphs.
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[7] A. Ilic, M. Bašic, and I. Gutman, Triply equienergetic graphs, MATCH Commun.

Math. Comput. Chem. 64 (2010), no. 1, 189–200.

[8] G. Indulal, D-spectrum and D-energy of complements of iterated line graphs of

regular graphs, Algebr. Struct. Appl. 4 (2017), no. 1, 53–58.

https://doi.org/10.29252/asta.4.1.51.

[9] , Distance equienergetic graphs, International Conference on Graph Con-

nections (ICGC) (Kottayam, Kerala), Bishop Chulaparambil Memorial College

and Mahatma Gandhi University, August 2020.

[10] , Distance equienergetic graphs, Weekly e-seminar on Graphs, Matrices

and Applications, IIT Kharagpur, 2020.

[11] G. Indulal, I. Gutman, and A. Vijayakumar, On distance energy of graphs,

MATCH Commun. Math. Comput. Chem. 60 (2008), no. 2, 461–472.

[12] O. Ivanciuc, T.S. Balaban, and A.T. Balaban, Chemical graphs with degenerate

topological indices based on information on distances, J. Math. Chem. 14 (1993),

no. 1, 21–33.

https://doi.org/10.1007/BF01164642.

[13] O. Ivanciuc, T. Ivanciuc, and A.T. Balaban, The complementary distance matrix,

a new molecular graph metric, ACH-Models Chem. 137 (2000), no. 1, 57–82.
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