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Abstract: The study of topological descriptors is very beneficial in determining
the underlying topologies of graphs and networks. An extensive collection of graph-

associated numerical descriptors has been used to examine the whole structure of net-
works. In this analysis, eccentricity-based topological indices have secured a significant

place in theoretical chemistry and nanotechnology. Also, graph products conveniently

play an essential role in many combinatorial applications, graph decompositions, pure
mathematics, and applied mathematics. In this article, we derive the precise results for

the eccentric adjacency index of some graph products such as composition, Indu-Bala,
Cartesian, disjunction, and symmetric difference products. Furthermore, we implement
these outcomes to deduce the eccentric adjacency index for certain significant classes
of chemical structures in the factors of graph products. The chemical significance of
the index is also investigated.

Keywords: topological indices, eccentric adjacency index, graph operations, QSPR
analysis.
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1. Introduction

Throughout the paper, all graphs are connected and simple. For a given graph H,

the sets E(H) and V(H) denotes the edge and the vertex sets, respectively. For H, the
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2 Eccentric adjacency index of graph operations and its applications

size and order are denoted by t and s, respectively. The degree of a vertex w ∈ V(H)

is the number of adjacent edges to w in H and written as degH(w). For w ∈ V(H),

NH(w) is the set of all adjacent vertices of w in H and ωH(w) =
∑

w′∈N(w)

degH(w′).

For vertices w,w′ ∈ V(H), the distance dH(w,w′) is the length of smallest path from

w to w′ in H and eccentricity eccH(w) is defined as eccH(w) = max
w′∈V(H)

dH(w,w′).

The radius rH and the diameter dH of H are described by rH = min
w∈V(H)

eccH(w) and

dH = max
w∈V(H)

eccH(w), respectively. The center of H is the subgraph of it, induced by

the set of vertices with minimum eccentricity and is presented by C(H). A graph H
is said to be a self-centered graph if H ∼= C(H). The vertices with degree s − 1 and

eccentricity 1 in H are known as the well-connected vertices in H and the set of all

such vertices is denoted as Γ(H). The graph K1 with unique vertex is considered to be

a well-connected graph. The notions Cs, Ks and Ps are used for the cycle, complete

graph and path, respectively.

Graph theory have a number of applications in chemistry such as proteomics, Quan-

titative structure-property and activity correlations, graph polynomials for analysis

of structures, isomer enumeration, quantum chemistry, spectroscopy, numarical and

other procedures for prediction of toxicity of chemical compounds [4, 8, 14–17, 26–

29, 31]. The QSAR/QSPR studies develop correlation between the properties of

chemical compounds and molecular connectivity, therefore graph-theoretical proper-

ties develop the principles for the drug discovery and the computer-aided predictive

toxicology. As a consequence, successful uses of QSPR/QSAR studies have stimulated

the emergence of various topological invariants of chemical graphs [9, 26–31, 35–37].

The intermolecular interactions depend upon the degree criterions, distance and more-

over, a number of physico-chemical characteristics of chemical compounds have been

proven to interrelate with topological indices as a decent initial points. A topo-

logical index is a numeric quantity that characterizes the properties like guest-host

interactions, receptor binding propensity, protein-drug interactions, toxicity, dermal

penetrations, drug metabolomics, etc., of a molecular graph. Therefore, topological

indices are much appealing tool of statistical approximation for securing structure-

activity relations. There are many classes of topological indices; such as distance,

degree and eccentricity based indices of graphs.

The Zagreb indices are the famous molecular descriptors, and these indices have rec-

ognizable applications in chemistry. In 1972, Gutman and Trinajstić [25] introduced

the first Zagreb index which is based upon the degree of vertices in H. The first and

second Zagreb indices of H can be described as:

M1(H) =
∑

w∈V(H)

deg2
H(w), M2(H) =

∑
ww′∈E(H)

degH(w) degH(w′).

In the present-day literature, many eccentricity based indices have been presented;

one of the most known index is the eccentric connectivity index. The eccentric con-

nectivity index contribute in the foreseeability of pharmaceutical characteristics and
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furnish leads for the establishment of safe and applicable anti-HIV compounds [19].

Sharma et al. [40] defined the eccentric connectivity index as follows:

ξc(H) =
∑

w∈V(H)

degH(w)eccH(w).

The connective eccentricity and the total eccentricity indices of H are the modification

of eccentric connectivity index (see [23]). These are described as follows:

ξce(H) =
∑

w∈V(H)

degH(w)

eccH(w)
, τ(H) =

∑
w∈V(H)

eccH(w).

Also, the modification of connective eccentricity and eccentric connectivity indices is

known as the eccentric adjacency index [20, 24] and can be described as follows:

ξad(H) =
∑

w∈V(H)

ωH(w)

eccH(w)
. (1.1)

Gupta et al. [24] examined the interconnection of anti-HIV activity of HEPT deriva-

tives with the first order molecular eccentric adjacency and connectivity indices. The

exactness of prediction of ξad(H) is more than ninety percent, thus it designs an ex-

tensive potential for the studies of QSAR/QSPR. The implementation of this index

makes it noteworthy to investigate their mathematical characteristics and it is much

appealing for the mathematicians to research the insights of this descriptor.

Now we represent a new index which is modification of total eccentricity index known

as the inverse total eccentricity index [34] of H. It is described as:

τ−1(H) =
∑

w∈V(H)

1

eccH(w)
.

By different graph operations, one can design a new graph from given graphs, and

also some interesting chemical graphs can be obtained as an outcome of these graph

operations of some known graphs. The correlations attained for various characteristics

of graph operations in the form of characteristics of their respective components,

it is a worthwhile tool in the discussion of characteristics of some nanostructures

and molecular graphs. There are vast studies regarding the characteristics of graph

operations, for instance; see [1–3, 5–7, 10, 12, 13, 18, 21, 22, 32–34, 38, 41].

In this paper, we are interested to find eccentric adjacency index of some graph

operations. Then, we perform our results to compute the eccentric adjacency index

of certain significant categories of graphs in the type of elements of graph operations.

The chemical significance of the index is also explored.

Before the discussion of our main results, let us give the first Zagreb index, eccentric

adjacency index, connective eccentricity index and inverse total eccentricity index of

Ps, Cs and Ks.
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M1(Ps) = 4s− 6, M1(Cs) = 4s, M1(Ks) = s(s− 1)2,

ξad(Cs) =
4s⌊ s
2

⌋ , ξce(Cs) =
2s⌊ s
2

⌋ , τ−1(Cs) =
s⌊ s
2

⌋ ,
ξad(Ks) = s(s− 1)2, ξce(Ks) = s, τ−1(Ks) = s(s− 1).

Proposition 1. [11, 20, 33, 34] For the graphs Ps, Cs and Ks, we have

ξad(Ps) =


2 if s = 2,
4 if s = 4,
2( 2

s−1
+ 3

s−2
+ 4

s−3
+ 4

s−4
+ · · ·+ 4

bs/2c+1
) + 4

bs/2c if s > 3 is odd,

2( 2
s−1

+ 3
s−2

+ 4
s−3

+ 4
s−4

+ · · ·+ 4
s/2

) if s > 4 is even.

ξce(Ps) =


2

s− 1
+ 4( 1

s−2
+ 1

s−3
+ · · ·+ 1

bs/2c+1
) + 2

bs/2c if s is odd,

2

s− 1
+ 4( 1

s−1
+ 1

s−2
+ · · ·+ 4

s/2
) if s is even.

τ−1(Ps) =

{
2( 1

s−1
+ 1

s−2
+ 1

s−3
+ · · ·+ 1

bs/2c+1
) + 1

bs/2c if s is odd,

2( 1
s−1

+ 1
s−2

+ 1
s−3

+ · · ·+ 1
s/2

) if s is even.

2. Composition of graphs

The composition of H1 and H2 graphs is represented by H1[H2]. Its vertex set is

V(H1) × V(H2) and (w1, w2)(w′1, w
′
2) ∈ E(H1[H2]) if w1w

′
1 ∈ E(H1) or w1 = w′1 and

w2w
′
2 ∈ E(H1). Next lemma gives some properties, which will be worthwhile in our

leading result.

Lemma 1. Let H1 � K1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2,
respectively. Then

(a) ωH1[H2]((w1, w2)) = s2
2ωH1(w1) + ωH2(w2) + 2t2 degH1

(w1) + s2 degH1
(w1) degH2

(w2).

(b) eccH1[H2]((w1, w2)) =


eccH1(w1), if w1 /∈ Γ(H1),
1, if w1 ∈ Γ(H1), w2 ∈ Γ(H2),
2, if w1 ∈ Γ(H1), w2 /∈ Γ(H2).


In the upcoming result, we derive the closed formula of the composition of H1 and

H2.

Theorem 1. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respec-
tively. Then

ξad(H1[H2]) = s3
2ξ

ad(H1) +
s2

2

2
(|Γ(H2)| − s2)

∑
w1∈Γ(H1)

ωH1(w1) +

(
τ−1(H1)− 1

2
|Γ(H1)|

)
M1(H2)

+ 4s2t2ξ
ce(H1) +

|Γ(H1)|
2

∑
w2∈Γ(H2)

ωH2(w2)− 2s2t2(s1 − 1)|Γ(H1)|+ 1

2
(s1 − 1)

|Γ(H1)||Γ(H2)| (4t2 + s2(s2 − 1)) .
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Proof. By using Lemma 1 in (1.1), we obtain

ξad(H1[H2])

=
∑

w1∈V(H1)\Γ(H1)

∑
w2∈V(H2)

n2
2ωH1(w1) + ωH2(w2) + 2t2 degH1

(w1)

+ s2 degH1
(w1) degH2

(w2)

eccH1(w1)

+
∑

w1∈Γ(H1)

∑
w2∈Γ(H2)

s2
2ωH1(w1) + ωH2(w2) + 2t2(s1 − 1) + s2(s1 − 1)(s2 − 1)

1

+
∑

w1∈Γ(H1)

∑
w2∈V(H2)\Γ(H2)

s2
2ωH1

(w1) + ωH2
(w2) + 2t2(s1 − 1) + s2(s1 − 1) degH2

(w2)

2

= s2
2

∑
w1∈V(H1)\Γ(H1)

∑
w2∈V(H2)

ωH1
(w1)

eccH1(w1)
+

∑
w1∈V(H1)\Γ(H1)

1

eccH1(w1)

∑
w2∈V(H2)

ωH2(w2)

+ 2t2
∑

w1∈V(H1)\Γ(H1)

∑
w2∈V(H2)

degH1
(w1)

eccH1(w1)
+ s2

∑
w1∈V(H1)\Γ(H1)

degH1
(w1)

eccH1(w1)∑
w2∈V(H2)

degH2
(w2) + s2

2

∑
w1∈Γ(H1)

∑
w2∈Γ(H2)

ωH1(w1) +
∑

w1∈Γ(H1)

∑
w2∈Γ(H2)

ωH2(w2)

+
∑

w1∈Γ(H1)

∑
w2∈Γ(H2)

(2t2(s1 − 1) + s2(s1 − 1)(s2 − 1))

+
s2

2

2

∑
w1∈Γ(H1)

∑
w2∈V(H2)\Γ(H2)

ωH1
(w1) +

1

2

∑
w1∈Γ(H1)

∑
w2∈V(H2)\Γ(H2)

ωH2
(w2)

+
1

2

∑
w1∈Γ(H1)

∑
w2∈V(H2)\Γ(H2)

2t2(s1 − 1) +
s2(s1 − 1)

2

∑
w1∈Γ(H1)

∑
w2∈V(H2)\Γ(H2)

degH2
(w2)

= s3
2

ξad(H1)−
∑

w1∈Γ(H1)

ωH1(w1)

+
(
τ−1(H1)− |Γ(H1)|

)
M1(H2) + 2t2s2(ξce(H1)

− (s1 − 1)|Γ(H1)|) + 2t2s2(ξce(H1)− (s1 − 1)|Γ(H1)|) + s2
2|Γ(H2)|

∑
w1∈Γ(H1)

ωH1
(w1)

+ |Γ(H1)|
∑

w2∈Γ(H2)

ωH2
(w2) + |Γ(H1)||Γ(H2)|(2t2(s1 − 1) + s2(s1 − 1)(s2 − 1))

+
s2

2

2
(s2 − |Γ(H2)|)

∑
w1∈Γ(H1)

ωH1(w1) +
|Γ(H1)|

2

M1(H2)−
∑

w2∈Γ(H2)

ωH2(w2)


+ t2(s1 − 1)|Γ(H1)| (s2 − |Γ(H2)|) +

1

2
s2(s1 − 1)|Γ(H1)| (2t2 − (s2 − 1)|Γ(H2)|)

= s3
2ξ
ad(H1) +

s2
2

2
(|Γ(H2)| − s2)

∑
w1∈Γ(H1)

ωH1
(w1) +

(
τ−1(H1)− 1

2
|Γ(H1)|

)
M1(H2)

+ 4s2t2ξ
ce(H1) +

|Γ(H1)|
2

∑
w2∈Γ(H2)

ωH2
(w2)− 2s2t2(s1 − 1)|Γ(H1)|

+ 2t2(s1 − 1)|Γ(H1)||Γ(H2)|+ 1

2
s2(s1 − 1)(s2 − 1)|Γ(H1)||Γ(H2)|.
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This finishes the proof.

Example 1. The Catlin graph is the composition of C5 and K3, with |Γ(C5)| = 0,∑
w1∈Γ(C5)

ωC5(w1) = 0, |Γ(K3)| = 3 and
∑

w2∈Γ(K3)

ωK3(w2) = 12, has the eccentric adjacency

index 480, by the use of Theorem 1.

Figure 1. The graphs Ps[P2], Cs[P2] and C5[K3].

Example 2. The fence graph is the composition of Ps and P2 with |Γ(Ps)| = 0 for s ≥ 3,∑
w1∈Γ(Ps)

ωPs(w1) = 0 for s ≥ 3, |Γ(P2)| = 2,
∑

w2∈Γ(P2)

ωP2(w2) = 2. From Theorem 1 and

Proposition 1, we have

ξad(Ps[P2]) =



36, if s = 2,
60, if s = 3,

52s

s− 1
+

84

s− 2
+ 100

 1

s− 3
+

1

s− 4
+ · · ·+ 1⌊ s

2

⌋
 , if s > 2 is even,

52s

s− 1
+

84

s− 2
+ 100

 1

s− 3
+

1

s− 4
+ · · ·+ 1⌊ s

2

⌋
+ 1

+

50⌊ s
2

⌋
+ 1

, if s > 3 is odd.

Example 3. The closed fence graph is the composition of Cs and P2, with |Γ(Cs)| = 0,∑
w1∈Γ(Cs)

ωCs(w1) = 0, |Γ(P2)| = 2,
∑

w2∈Γ(P2)

ωP2(w2) = 2, for s ≥ 4. Based on Theorem 1

and Proposition 1, we get ξad(Cs[P2]) =
50s⌊ s
2

⌋ .
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3. Indu-Bala product

The join of graphs H1 and H2, recognized as H1 +H2, is the disjoint union of graphs

H1 and H2 along with all the edges joining V(H1) and V(H2). Now the Indu-Bala

product H1HH2 is constructed from two disjoint copies of H1 +H2 by connecting the

corresponding vertices in the two copies of H2. The order and size of H1HH2 are

2(s1 + s2) and 2t1 + 2t2 + 2s1s2 + s2, respectively. Upcoming lemma describes the

distinct properties of this product.

Lemma 2. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respectively.
Then

(a) ωH1HH2(w) =

{
ωH1(w) + s2 degH1

(w) + 2t2 + s2(s1 + 1), if w ∈ V(H1),
ωH2(w) + (s1 + 2) degH2

(w) + 2t1 + s1(s2 + 1) + 1, if w ∈ V(H2).

(b) eccH1HH2(w) =

{
3, if w ∈ V(H1),
2, if w ∈ V(H2).

Next, we compute the eccentric adjacency index of H1HH2.

Theorem 2. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respec-
tively. Then

ξad(H1HH2) =
2

3
M1(H1) +M1(H2) + s1s2

(
2

3
s1 + s2 +

5

3

)
+

10

3
(s2t1 + s1t2) + 4t2 + s2.

Proof. By using Lemma 2 in (1.1), we get

ξad(H1HH2) = 2
∑

w1∈V(H1)

ωH1(w1) + s2 degH1
(w1) + 2t2 + s2(s1 + 1)

3

+ 2
∑

w1∈V(H2)

ωH2(w1) + (s1 + 2) degH2
(w1) + 2t1 + s1(s2 + 1) + 1

2

ξad(H1HH2) =
2

3

 ∑
w1∈VH1

ωH1(w1) + s2

∑
w1∈V(H1)

degH1
(w1) +

∑
w1∈V(H1)

(2t2 + s2(s1 + 1))


+

∑
w1∈VH2

ωH2(w1) + (s1 + 2)
∑

w1∈V(H2)

degH2
(w1) +

∑
w1∈V(H2)

(2t1 + s1(s2 + 1) + 1)

=
2

3
M1(H1) +

4

3
s2t1 +

2s1

3
(2t2 + s2(s1 + 1)) +M1(H2) + 2t2(s1 + 2)

+ s2(2t1 + s1(s2 + 1) + 1)

=
2

3
M1(H1) +M1(H2) + s1s2

(
2

3
s1 + s2 +

5

3

)
+

10

3
(s2t1 + s1t2) + 4t2 + s2.

This finishes the proof.
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Example 4. (1) ξad(Ps1HPs2) =
s1s2

3
(2s1 + 3s2 + 25)− 2

3
s1 +

17

3
s2 − 14.

(2) ξad(Ps1HCs2) =
s1s2

3
(2s1 + 3s2 + 25) +

8

3
s1 +

17

3
s2 − 4.

(3) ξad(Cs1HCs2) =
s1s2

3
(2s1 + 3s2 + 25) +

8

3
s1 + 9s2.

4. Cartesian product

The Cartesian product H1⊗H2 of graphs H1 and H2 has V(H1⊗H2) = V(H1)×V(H2)

and (w1, w2)(w′1, w
′
2) is an edge in H1⊗H2 if w′1 = w1 and w2w

′
2 ∈ E(H2), or w1w

′
1 ∈

E(H1) and w2 = w′2. First, we state the lemma that gives the properties of Cartesian

product.

Lemma 3. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respectively.
Then

(a) ωH1⊗H2(w1, w2) = ωH1(w1) + ωH2(w2) + 2 degH1
(w1) degH2

(w2).

(b) eccH1⊗H2(w1, w2) = eccH1(w1) + eccH2(w2).

Now, we describe the expression of eccentric adjacency index of H1 ⊗H2 · · · ⊗Hm in

the form of factor graphs.

Theorem 3. Let H1,H2, . . . ,Hm be sm-vertex graphs with size tm, where 1 ≤ m ≤ s,
respectively. Then A ≤ ξad(H1 ⊗H2 · · · ⊗Hm) ≤ B, where

A =
1

m∑
l=1

dHl

 m∑
l=1

M1(Hl)

m∏
n=1,n6=l

sn + 8

m−1∑
l=1

tl

m∑
k>l

tk m∏
n=1,n6=l,k

sn

 ,

B =
1

m∑
l=1

rHl

 m∑
l=1

M1(Hl)

m∏
n=1,n6=l

sn + 8

m−1∑
l=1

tl

m∑
k>l

tk m∏
n=1,n6=l,k

sn

 .

Equalities hold if and only if H1,H2, . . . ,Hm are self-centered graphs.

Proof. By using Lemma 3 in (1.1), we obtain

ξad(H1 ⊗H2) =
∑

w1∈V(H1)

∑
w2∈V(H2)

ωH1
(w1) + ωH2

(w2) + 2 degH1
(w1) degH2

(w2)

eccH1
(w1) + eccH2

(w2)

≥ 1

dH1 + dH2

(
s2

∑
w1∈V(H1)

ωH1(w1) + s1

∑
w2∈V(H2)

ωH2(w2)

+ 2
∑

w1∈V(H1)

degH1
(w1)

∑
w2∈V(H2)

degH2
(w2)

) (4.1)
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=
1

dH1
+ dH2

(s2M1(H1) + s1M1(H2) + 8t1t2) . (4.2)

By applying induction on m. From result in (4.2), the result for m = 2 is valid. Let

m ≥ 3 and consider that the theorem satisfies for m. Use H = H1 ⊗ H2 · · · ⊗ Hm.

Then we have

ξad(H1 ⊗H2 · · · ⊗Hm ⊗Hm+1)

= ξad(H⊗Hm+1)

=
1

m∑
l=1

dHl
+ dHm+1

(
m∑
l=1

M1(Hl)
m∏

n=1,n6=l

sn + 8

m−1∑
l=1

ti

m∑
k>l

tk m∏
n=1,n6=l,k

sn


+ |V(H)|M1(Hm+1) + 8tm+1|E(H)|

)

=
1

m∑
l=1

dHl
+ dHm+1

(
m∑
l=1

M1(Hl)
m∏

n=1,n6=l

sn + 8

m−1∑
l=1

tl

m∑
k>l

tk m∏
n=1,n6=l,k

sn



+ (s1s2 . . . sm)M1(Hm+1) + 8tm+1

m∑
l=1

tl

m∏
n=1,n6=l

sn

)

=
1

m+1∑
l=1

dHl

m+1∑
l=1

M1(Hl)
m+1∏

n=1,n6=l

sn + 8

m∑
l=1

tl

m+1∑
k>l

tk m+1∏
n=1,n6=l,k

sn

 .

where |E(H)| =
m∑
l=1

tl
m∏

n=1,n6=l
sn. Analogously, we can derive

ξad(H1⊗H2 · · ·⊗Hm⊗Hm+1) ≤ 1
m∑
l=1

rHl

 m∑
l=1

M1(Hl)
m∏

n=1,n6=l

sn + 8
m−1∑
l=1

tl

m∑
k>l

tk m∏
n=1,n6=l,k

sn

 .

The proof is complete.

As a conclusion of Theorem 3, we obtain an expression for the eccentric adjacency

index of j-th Cartesian power of H.

Corollary 1. Let H be a s-vertex graph and j be a positive integer. Then

sj−2

rH

(
sM1(H) + 4t2(j − 1)

)
≥ ξad(Hj) ≥ sj−2

dH

(
sM1(H) + 4t2(j − 1)

)
.
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Example 5. Let S = Cl1 ⊗ Cl2 and R = Pl1 ⊗ Cl2 , for some integers l1, l2 ≥ 3, denote a
C4-nanotorus and C4-nanotube, respectively. Then from Theorem 3 and Proposition 1, we

get ξad(S) =
32l1l2⌊

l1
2

⌋
+

⌊
l2
2

⌋ and
l2(8l1 − 7)

l1 +

⌊
l2
2

⌋
− 1

≤ ξad(R) ≤ l2(8l1 − 7)⌊
l1
2

⌋
+

⌊
l2
2

⌋ .

Example 6. Let H = Pa ⊗ Pb be the rectangular grid, depicted in Fig 2. From Theorem
3 and Proposition 1, we have

2(8ab− 7a− 7b+ 4)

a+ b− 2
≤ ξad(H) ≤ 2(8ab− 7a− 7b+ 4)⌊a

2

⌋
+

⌊
b

2

⌋ .

1 2 3

2

a-1

b-1

1

2

3

f

Figure 2. The rectangular grid Pa ⊗ Pb and the ladder graph P2 ⊗ Pj+1.

Example 7. The ladder graph Lj = P2 ⊗ Pj+1 with 2j + 2 vertices is constructed by j
squares (see Figure 2). By Theorem 3 and Proposition 1, we get

2(9j − 1)

j + 1
≤ ξad(Lj) ≤

2(9j − 1)

1 +

⌊
j

2

⌋ .

Example 8. A connected graph with vertices in type of k-tuples (w1, w2, . . . , wk) where
0 ≤ wl ≤ sl − 1, sl ≥ 2, and (w1, w2, . . . , wk)(w′1, w

′
2, . . . , w

′
k) is an edge if the corre-

lated tuples differ in exactly one place, is written by Hs1,s2,...,sk =
k⊗

l=1

Ksl and known

as a Hamming graph. From Theorem 3 and Proposition 1, we get ξad(Hs1,s2,...,sk ) =

1

k

(
k∏

l=1

sl

)(
k∑

l=1

(sl − 1)

)2

.

If s1 = s2 = · · · = sk = 2, then the k-dimensional Hamming graph is named as a hypercube,
and it is expressed by Qk (shown in Fig 3). Then ξad(Qk) = ξad(Kk

2 ) = k2k.
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Figure 3. The hypercube graphs Q4, Rook’s graph of K3 and K2, and 8-Prism.

Example 9. For a s-prism graph, K2 ⊗ Cs, the eccentric adjacency index is given by

ξad(K2 ⊗ Cs) =


36s

s+ 2
, if s is even,

36s

s+ 1
, if s is odd.

Example 10. The Rook’s graph is obtained by the Cartesian product of Kl1 and Kl2 .

Then ξad(Kl1 ⊗Kl2) =
l1l2(l1 + l2 − 2)

2
.

5. Disjunction

The disjunction of H1 and H2, is a graph with V(H1 ∨ H2) = V(H1) × V(H2) and

(w1, w2)(w′1, w
′
2) ∈ E(H1 ∨ H2) whenever w2w

′
2 ∈ E(H2) or w1w

′
1 ∈ E(H1), indicated

as H1 ∨ H2. The order of H1 ∨ H2 is s1s2, and size is t1s
2
2 + t2s

2
1 − 2t1t2. First, we

state following lemma in which we present some properties of disjunction of graphs.

Lemma 4. Let H1 � K1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2,
respectively. Then

(a) ωH1∨H2(w1, w2) = (s2
2 − 2t2)ωH1(w1) + (s2

1 − 2t1)ωH2(w2) + 2(s1t2 degH1
(w1) +

s2t1 degH2
(w2))

−s2ωH1(w1) degH2
(w2)− s1ωH2(w2) degH1

(w1) + ωH1(w1)ωH2(w2).

(b) eccH1∨H2(w1, w2) =

{
1, if w1 ∈ Γ(H1), w2 ∈ Γ(H2),
2, otherwise.

In the upcoming theorem, we present the result on the eccentric adjacency index for

H1 ∨H2.

Theorem 4. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respec-
tively. Then
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ξad(H1 ∨H2) =
1

2
|Γ(H2)|(s2 − 2t2)

∑
w1∈Γ(H1)

ωH1(w1) +
1

2
s2(s2

2 − 2t2 − (s2 − 1)|Γ(H2)|)M1(H1)

+
1

2
|Γ(H1)|(s1 − 2t1)

∑
w2∈Γ(H2)

ωH2(w2) +
1

2
s1(s2

1 − 2t1 − (s1 − 1)|Γ(H1)|)M1(H2)

+ 3|Γ(H1)||Γ(H2)|(s1t2(s1 − 1) + s2t1(s2 − 1)) +
1

2
(2s1s2t2 − s1M1(H2))∑

w2∈V(H2)\Γ(H2)

degH2
(w2) +

1

2
(2s1s2t2 − s2M1(H1))

∑
w1∈V(H1)\Γ(H1)

degH1
(w1)

+
1

2
M1(H1)M1(H2) +

1

2

∑
w2∈Γ(H2)

ωH2(w2)
∑

w1∈Γ(H1)

ωH1(w1).

Proof. By using Lemma 4 in (1.1), we obtain

ξad(H1 ∨H2)

=
∑

w1∈Γ(H1)

∑
w2∈Γ(H2)

((s2
2 − 2t2)ωH1

(w1) + (s2
1 − 2t1)ωH2

(w2) + 2(s1t2 degH1
(w1)

+ s2t1 degH2
(w2))− s2ωH1

(w1) degH2
(w2)− s1ωH2

(w2) degH1
(w1) + ωH1

(w1)ωH2
(w2))

+
1

2

∑
w1∈V(H1)\Γ(H1)

∑
w2∈Γ(H2)

((s2
2 − 2t2)ωH1

(w1) + (s2
1 − 2t1)ωH2

(w2) + 2(s1t2 degH1
(w1)

+ s2t1 degH2
(w2))− s2ωH1

(w1) degH2
(w2)− s1ωH2

(w2) degH1
(w1) + ωH1

(w1)ωH2
(w2))

+
1

2

∑
w1∈V(H1)

∑
w2∈V(H2)\Γ(H2)

((s2
2 − 2t2)ωH1(w1) + (s2

1 − 2t1)ωH2(w2) + 2(s1t2 degH1
(w1)

+ s2t1 degH2
(w2))− s2ωH1(w1) degH2

(w2)− s1ωH2(w2) degH1
(w1) + ωH1(w1)ωH2(w2))

+
1

2

∑
w1∈V(H1)

∑
w2∈V(H2)

((s2
2 − 2t2)ωH1(w1) + (s2

1 − 2t1)ωH2(w2) + 2(s1m2 degH1
(w1)

+ s2t1 degH2
(w2))− s2ωH1(w1) degH2

(w2)− s1ωH2(w2) degH1
(w1) + ωH1(w1)ωH2(w2))

=
1

2
(s2

2 − 2m2)|Γ(H2)|
∑

w1∈Γ(H1)

ωH1(w1) +
1

2
s2(s2

2 − 2t2)

( ∑
w1∈Γ(H1)

ωH1(w1)

+
∑

w1∈V(H1)\Γ(H1)

ωH1(w1)

)
+

1

2
(s2

1 − 2t1)|Γ(H1)|
∑

w2∈Γ(H2)

ωH2(w2) +
1

2
s1(s2

1 − 2t1)

 ∑
w2∈Γ(H2)

ωH2
(w2) +

∑
w2∈V(H2)\Γ(H2)

ωH2
(w2)

+ |Γ(H1)||Γ(H2)|(2s1t2(s1 − 1)

+ 2s2t1(s2 − 1) + s2t1(s1 − 1) + s1t2(s2 − 1))− s2(s2 − 1)|Γ(H2)|
(

1

2

∑
w1∈V(H1)\Γ(H1)

ωH1(w1)
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+
∑

w1∈Γ(H1)

ωH1
(w1)

)
− s1(s1 − 1)|Γ(H1)|

(
1

2

∑
w2∈V(H2)\Γ(H2)

ωH2
(w2) +

∑
w2∈Γ(H2)

ωH2
(w2)

)

+ s1t2s2

∑
w1∈V(H1)\Γ(H1)

degH1
(w1) + s2t1s1

∑
w2∈V(H2)\Γ(H2)

degH2
(w2)− 1

2
s2

( ∑
w1∈Γ(H1)

ωH1
(w1)

+
∑

w1∈V(H1)\Γ(H1)

ωH1
(w1)

) ∑
w2∈V(H2)\Γ(H2)

degH2
(w2)− 1

2
s1

( ∑
w2∈Γ(H2)

ωH2
(w2)

+
∑

w2∈V(H2)\Γ(H2)

ωH2
(w2)

) ∑
w1∈V(H1)\Γ(H1)

degH1
(w1) +

∑
w2∈Γ(H2)

ωH2
(w2)

( ∑
w1∈Γ(H1)

ωH1
(w1)

+
1

2

∑
w1∈V(H1)\Γ(H1)

ωH1
(w1)

)
+

1

2

∑
w2∈V(H2)\Γ(H2)

ωH2
(w2)

( ∑
w1∈Γ(H1)

ωH1
(w1)

+
∑

w1∈V(H1)\Γ(H1)

ωH1(w1)

)

=
1

2
(s2

2 − 2t2)|Γ(H2)|
∑

w1∈Γ(H1)

ωH1
(w1) +

1

2
s2(s2

2 − 2t2)
∑

w1∈V(H1)

ωH1
(w1) +

1

2
(s2

1 − 2t1)|Γ(H1)|

∑
w2∈Γ(H2)

ωH2
(w2) +

1

2
s1(s2

1 − 2m1)
∑

w2∈V(H2)

ωH2
(w2) + 3|Γ(H1)||Γ(H2)|(s1t2(s1 − 1)

+ s2t1(s2 − 1))− 1

2
s2(s2 − 1)|Γ(H2)|

∑
w1∈V(H1)

ωH1(w1)− 1

2
s2(s2 − 1)|Γ(H2)|

∑
w1∈Γ(H1)

ωH1(w1)

− 1

2
s1(s1 − 1)|Γ(H1)|

∑
w2∈V(H2)

ωH2
(w2)− 1

2
s1(s1 − 1)|Γ(H1)|

∑
w2∈Γ(H2)

ωH2
(w2)

+ s1s2t2
∑

w1∈V(H1)\Γ(H1)

degH1
(w1)− 1

2
s1

∑
w2∈V(H2)

ωH2
(w2)

∑
w1∈V(H1)\Γ(H1)

degH1
(w1)

+ s1s2t1
∑

w2∈V(H2)\Γ(H2)

degH2
(w2)− 1

2
s2

∑
w1∈V(H1)

ωH1(w1)
∑

w2∈V(H2)\Γ(H2)

degH2
(w2)

+
1

2

∑
w2∈Γ(H2)

ωH2(w2)
∑

w1∈Γ(H1)

ωH1(w1) +
1

2

∑
w2∈Γ(H2)

ωH2(w2)
∑

w1∈V(H1)

ωH1(w1)

+
1

2

∑
w2∈V(H2)\Γ(H2)

ωH2
(w2)

∑
w1∈V(H1)

ωH1
(w1)

=
1

2
|Γ(H2)|(s2 − 2t2)

∑
w1∈Γ(H1)

ωH1
(w1) +

1

2
s2(s2

2 − 2t2 − (s2 − 1)|Γ(H2)|)M1(H1)

+
1

2
|Γ(H1)|(s1 − 2t1)

∑
w2∈Γ(H2)

ωH2(w2) +
1

2
s1(s2

1 − 2t1 − (s1 − 1)|Γ(H1)|)M1(H2)

+ 3|Γ(H1)||Γ(H2)|(s1t2(s1 − 1) + s2t1(s2 − 1)) +
1

2
(2s1s2t2 − s1M1(H2))∑

w2∈V(H2)\Γ(H2)

degH2
(w2) +

1

2
(2s1s2t2 − s2M1(H1))

∑
w1∈V(H1)\Γ(H1)

degH1
(w1)

+
1

2
M1(H1)M1(H2) +

1

2

∑
w2∈Γ(H2)

ωH2
(w2)

∑
w1∈Γ(H1)

ωH1
(w1).
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This completes the proof.

Example 11. (1) ξad(Ks1∨Ks2) = s1s
2
2(s1−1)2(2−s2)+s2

1s2(s2−1)2(2−s1)+s1s2(s1−
1)(s2 − 1)(4s1s2 − s1 − s2 + 1).

(2) ξad(Cs1 ∨ Cs2) =


2s1s2(s1 + s2)2 − 8s1s2(s1 + s2 + 1), if s1 ≥ 4 and s2 ≥ 4,
6(s3

2 + s2
2 − 2s2 − 3), if s1 = 3 and s2 ≥ 4,

6(s3
1 + s2

1 − 2s1 − 3), if s2 = 3 and s1 ≥ 4,
996, if s1 = 3 and s2 = 3.

6. Symmetric difference

The symmetric difference H1⊕H2 of H1 and H2, is a graph with V(H1⊕H2) = V(H1)×
V(H2) and (w1, w2)(w′1, w

′
2) ∈ E(H1 ⊕H2) whenever w2w

′
2 ∈ E(H2) or w1w

′
1 ∈ E(H1)

but not both. The order of H1 ⊕H2 is s1s2, and size is t1s
2
2 + t2s

2
1 − 4t1t2. Now, we

present certain features of the symmetric difference of graphs.

Lemma 5. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respectively.
Then

(a) ωH1⊕H2(w1, w2) = (s2
2 − 2t2)ωH1(w1) + (s2

1 − 2t1)ωH2(w2) + 2(s1t2 degH1
(w1) +

s2t1 degH2
(w2))

−2s2ωH1(w1) degH2
(w2)− 2s1ωH2(w2) degH1

(w1) + 2ωH1(w1)ωH2(w2).

(b) eccH1∨H2(w1, w2) = 2.

Now, we present the expression of the eccentric adjacency index of graphs.

Theorem 5. Let H1 and H2 be s1-vertex and s2-vertex graphs of size t1 and t2, respec-
tively. Then

ξad(H1⊕H2) =
1

2
(s2(s2

2−6t2)M1(H1)+s1(s2
1−6t1)M1(H2))+4s1s2t1t2 +M1(H1)M1(H2).

Proof. By using Lemma 5 in (1.1), we obtain

ξad(H1 ⊕H2)

=
1

2

∑
w1∈V(H1)

∑
w2∈V(H2)

((s2
2 − 2t2)ωH1

(w1) + (s2
1 − 2t1)ωH2

(w2) + 2(s1t2 degH1
(w1)

+ s2t1 degH2
(w2))− 2s2ωH1

(w1) degH2
(w2)− 2s1ωH2

(w2) degH1
(w1) + 2ωH1

(w1)ωH2
(w2))

=
1

2
(s2(s2

2 − 2t2)M1(H1) + s1(s2
1 − 2t1)M1(H2) + 4s1t2s2t1 + 4s2t1s1t2 − 4s2t2M1(H1)

− 4s1t1M1(H2) + 2M1(H1)M1(H2))

=
1

2
(s2(s2

2 − 6t2)M1(H1) + s1(s2
1 − 6t1)M1(H2)) + 4s1s2t1t2 +M1(H1)M1(H2).

This completes the proof.
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Example 12. (1) ξad(Ps1 ⊕ Ps2) = 2s1s2(s1 + s2)2 − 3(s3
1 + s3

2 − 8s1s2(s2 + 2s1 + 1) +
18(s2

1 + s2
2 + 21(s1 + s2)− 36.

(2) ξad(Ps1 ⊕ Cs2) = 2s1s2(s1 + s2)2 − 3s2
2(s2 − 6) + 24s2 − 4s1s2(4s2 + 3s1 + 1).

(3) ξad(Cs1 ⊕ Cs2) = 2s1s2(s1 + s2)(s1 + s2 − 6s1s2)− 16s1s2.

7. Chemical Relevance

Topological indices have become increasingly accessible, with their numbers contin-

uously expanding. Many of these indices are derived purely through mathematical

approaches, often overlooking their chemical significance. To bridge this gap, a set of

practical guidelines has been established to assist in selecting an appropriate molecular

descriptor from numerous available options. One key criterion is the ability to predict

molecular properties and behaviors. To assess the predictive capability of topological

indices, researchers commonly conduct quantitative structure-property relationship

(QSPR) analyses, which compare theoretical attributes with experimental data from

specific reference compounds. Randić and Trinajstić [39] proposed using octanes as

benchmark data for the initial evaluation of invariants. Our findings indicate that

the ξad index exhibits a strong correlation with entropy (S), acentric factor (AF ) and

standard enthalpy of vaporization (DHV AP ) of octanes. The performance of the ξad

index is examined using the following regression equation:

P = mT + c, (7.1)

where P represents the studied property, m denotes the slope, T stands for the topo-

logical index, and c is the intercept. The regression analysis also includes supplemen-

tary parameters such as the standard error (SE), F-test value (F ), and significance F

(SF ) to ensure a thorough evaluation. Additionally, the coefficient of determination

(r2) is utilized, with r indicating the correlation coefficient. For ξad, the relationship

in equation (7.1) can be expressed as follows:

S = −1.716 ξad + 120.968,

r2 = 0.877, SE = 1.632, F = 114.287, SF = 1.08× 10−8. (7.2)

AF = −0.014 ξad + 0.463,

r2 = 0.958, SE = 0.007, F = 369.339, SF = 1.77× 10−12. (7.3)

DHV AP = −0.129 ξad + 10.299,

r2 = 0.693, SE = 0.219, F = 36.176, SF = 1.8× 10−5. (7.4)

The linear fittings of ξad with S, AF and DHV AP for octanes are depicted in Figure

4.
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Figure 4. Linear fitting of ξad with S, AF and DHVAP for octanes.

8. Conclusion

The analysis of networks and graphs with their structural characteristics is a very

massive topics of research with developing noteworthiness. The greatest and well

known method in the development of structural properties is quantitative calculations,

that encode the structural information of any graphical structure by a number. We

have determined the formulas related to the eccentric adjacency index of composition,

Indu-Bala product, Cartesian product, disjunction and symmetric difference of graphs

and implement these outcomes for certain significant classes of chemical structures in

the form of co-factors of graph operations, in this research paper. We have observed

in relations (7.2), (7.3), (7.4), that the ξad index correlates well with the entropy,

acentric factor and standard enthalpy of vaporization for octanes.
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