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Abstract: The neighbourhood corona G ? H of two graphs G and H is obtained

by taking one copy of G and |V (G)| copies of H and making all the neighbours of
the ith vertex of G adjacent with all the vertices in the ith copy of H. In this paper

we describe the distance eigenvalues and corresponding eigenvectors of G ?H in terms

of the adjacency spectrum of G and H when G is a regular triangle-free graph with
diameter 2 and H is regular. Several constructions are proposed using line graphs,

iterated line graphs, double graphs, strong double graphs and complement graphs to

obtain infinitely many distance non-cospectral pairs of distance equienergetic graphs
and non-isomorphic pairs of distance cospectral graphs. Also we obtain the distance

Laplacian spectrum of G ? H in terms of the distance Laplacian spectrum of G and
Laplacian spectrum of H when G is a transmission regular triangle-free graph with

diameter 2. Further we find the distance signless Laplacian spectrum of G?H in terms

of the distance signless Laplacian spectrum of G and signless Laplacian spectrum of H
when G is a transmission regular triangle-free graph with diameter 2 and H is regular.

We also construct infinitely many non-isomorphic pairs of distance Laplacian cospectral

graphs and distance signless Laplacian cospectral graphs.
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1. Introduction

Distance spectra and distance energy have been a keen area of research in spectral

graph theory for many years. Studies on distance spectra gained increased fascination

starting in 1971, when Graham and Pollack discovered a connection between the

number of negative eigenvalues of the distance matrix and the addressing problem

in data communication systems. Additionally, they proved that the determinant

of the distance matrix of a tree is independent of its structure and solely relies on

the number of vertices[6]. A lot of studies can be seen in literature based on the

relationship between distance eigenvalues and graph structures and parameters. The

studies on distance energy started in 2008. A wide variety of results on distance

spectra and distance energy are available in the surveys [2, 14].

In this paper we only consider undirected graphs that are both simple and finite.

Since we deal with different matrices associated with a graph we use the follow-

ing notion for uniformity. Let M be a square matrix associated with G. The

eigenvalues of M are the M-eigenvalues and the collection of all M-eigenvalues

is the M-spectrum of G, denoted by SpecM(G). Two graphs G and G′ are M-

cospectral if SpecM(G) = SpecM(G′). If λ1(G), λ2(G), . . . , λt(G) are distinct M-

eigenvalues of G with multiplicities m1,m2, . . . ,mt, then we write SpecM(G) =

{(λ1(G))m1 , (λ2(G))m2 , . . . , (λt(G))mt}.
Let G be a graph on n vertices u1, . . . , un. Let d(ui) denote the degree of ui. We write

ui ∼ uj if ui is adjacent to uj , and ui � uj otherwise. The adjacency matrix A(G)

of G is an n× n matrix whose (i, j)-th element is 1, if ui and uj are adjacent; and 0,

otherwise. The A-eigenvalues are denoted by µ1(G) ≥ µ2(G) ≥ . . . ≥ µn(G). For all

connected graphs G, µ1(G) > µ2(G). For an r-regular graph G, µ1(G) = r. We say

that G is regular of degree r if G is r-regular. We denote the number of positive and

negative A-eigenvalues of G by n+(G) and n−(G) respectively.

The Laplacian matrix and signless Laplacian matrix of G are defined respectively

by L (G) = DG − A(G) and Q(G) = DG + A(G), where DG is an n × n diagonal

matrix defined by DG = Diag
(
d(ui)

)
. The L -eigenvalues and Q-eigenvalues of G

are denoted respectively by η1(G) ≥ η2(G) ≥ . . . ≥ ηn(G) = 0 and δ1(G) ≥ δ2(G) ≥
. . . ≥ δn(G). For basic results on A-spectrum, L -spectrum and Q-spectrum refer [4].

The distance between vertices ui and uj in a connected graph G, denoted by

dG(ui, uj), is the length of a shortest path from ui to uj . If G is disconnected

and ui and uj belong to different components of G, then dG(ui, uj) is defined to

be ∞. The diameter Diam(G), of G is the largest distance between any pair of

distinct vertices in G. The distance matrix of a graph G, denoted by D(G), is an

n × n matrix, whose (i, j)-th element is dG(ui, uj). D-eigenvalues of G are denoted

by ρ1(G) ≥ ρ2(G) ≥ . . . ≥ ρn(G).

The transmission Tr(ui) of a vertex ui in G is defined by Tr(ui) =
∑n
j=1 dG(ui, uj).

The transmission matrix is an n × n diagonal matrix defined by Tr(G) =

Diag
(
Tr(ui)

)
. G is s-transmission regular if Tr(ui) = s for all i = 1, . . . , n. The

distance Laplacian matrix and distance signless Laplacian matrix of G are defined

by DL (G) = Tr(G) − D(G) and DQ(G) = Tr(G) + D(G) respectively[1]. DL -
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eigenvalues and DQ-eigenvalues are denoted by ρL
1 (G) ≥ ρL

2 (G) ≥ . . . ≥ ρL
n (G) = 0

and ρQ
1 (G) ≥ ρQ

2 (G) ≥ . . . ≥ ρQ
n (G) respectively.

The energy [7] E(G) of a graph G is defined as

E(G) =

n∑
i=1

|µi(G)|. (1.1)

Two non-isomorphic graphs with the same energy are called equienergetic. More

results on graph energy can be seen in [8, 13].

The distance energy [12] is defined analogous to the graph energy (1.1) as

DE(G) =

n∑
i=1

|ρi(G)|. (1.2)

Two non-isomorphic graphs G and G′ are distance equienergetic (D-equienergetic) if

DE(G) = DE(G′). Clearly D-cospectral graphs are D-equienergetic. So it is interest-

ing to find D-equienergetic graphs that are D-non-cospectral.

The line graph of G, denoted by L(G), is the graph whose vertices are the edges

of G and two vertices of L(G) are adjacent if the corresponding edges in G have a

common vertex. If G is an r-regular graph on n vertices then L(G) is a (2r − 2)-

regular graph on nr/2 vertices. The mth iterated line graph Lm(G),m ≥ 0, is defined

by Lm(G) = L(Lm−1(G)), where L1(G) = L(G) and L0(G) = G [3, 9]. If G is regular

then Lm(G) is regular for all m ≥ 0. Let Lm(G),m ≥ 1, be rm-regular and of order

nm. Then nm =
nm−1 · rm−1

2
and rm = 2rm−1 − 2, where n0 = n and r0 = r. It can

be deduced that

nm =
n

2m

m−1∏
i=0

(2ir − 2i+1 + 2) (1.3)

and

rm = 2mr − 2m+1 + 2. (1.4)

Graph operations have a pivotal role in graph theory since they are useful to produce

graphs with specific structures. Corona[5] is a well-known operation which produces

graphs with a specific pattern. Neighbourhood corona, a variant of corona, of two

graphs G and H is denoted by G ? H and is obtained by taking one copy of G and

n copies of H and making all the neighbours of the ith vertex of G adjacent with all

the vertices in the ith copy of H[11]. Various spectra of neighbourhood corona have

been studied in [11, 15, 16].

There exists infinite number of regular graphs with diameter 2. Complete bipartite

graphs Kn,n, n ≥ 2, are well-known class of graphs with these properties. A graph

is called triangle-free if it contains no induced subgraph isomorphic to C3. In this

paper we describe the D- eigenvalues and corresponding eigenvectors of G ? H in

terms of the A-spectrum of G and H when G is a regular triangle-free graph with
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diameter 2 and H is regular. We construct infinitely many D-non-cospectral pairs of

D-equienergetic graphs and non-isomorphic pairs of D-cospectral graphs. We obtain

the DL -spectrum of G ? H in terms of the DL -spectrum of G and L -spectrum of

H when G is a transmission regular triangle-free graph with diameter 2 and H is

arbitrary. We also find the DQ-spectrum of G ? H in terms of the DQ-spectrum of

G and Q-spectrum of H when G is a transmission regular triangle-free graph with

diameter 2 and H is regular. Finally we construct infinitely many non-isomorphic

pairs of cospectral graphs with respect to DL and DQ matrices.

We denote the n×1 vector with all the entries as 1(respectively, 0) by 1n(respectively,

0n) and the n× 1 vector in which the i-th entry is 1 and all other entries are 0 by ei.

A square matrix of appropriate order in which all the entries are 1 is denoted by J .

2. Preliminaries

The following definitions and results will be used in the subsequent sections.

Theorem 1. [4] Let G be an r-regular graph of order n with SpecA(G) =
{r, µ2(G), . . . , µn(G)}. Then the complement G has the A-eigenvalues n− r − 1,−(µi(G) +
1), i = 2, . . . , n.

Theorem 2. [4] Let G be an r-regular graph of order n with SpecA(G) =
{r, µ2(G), . . . , µn(G)}. Then the A-eigenvalues of L(G) are 2r−2, µi(G)+r−2, i = 2, . . . , n

and −2 with multiplicity
n(r − 2)

2
.

Theorem 3. [19] Let G be a regular graph of degree r ≥ 3. Then for m ≥ 2, all the
negative eigenvalues of Lm(G) are equal to −2.

Theorem 4. [19] Let G be an r-regular graph of order n and degree r ≥ 3. Then for
m ≥ 2, E

(
Lm(G)

)
= 4nm

rm−2
rm+2

, where nm and rm are as defined in equations (1.3) and
(1.4).

Definition 1. [17] The double graph D2(G) of a graph G is the graph obtained by taking
two copies of G say G1 and G2 and joining each vertex u1 in G1 to the neighbours of the
corresponding vertex u2 in G2.

Definition 2. [18] The strong double graph D∗2(G) of a graph G is the graph obtained
from D2(G) by joining each vertex u1 in G1 to the corresponding vertex u2 in G2.

If G is an r-regular graph then D2(G) and D∗2(G) are regular of degrees 2r and 2r+1

respectively.

Theorem 5. [17] Let G be a graph with SpecA(G) = {µ1(G), . . . , µn(G)}. Then the
A-eigenvalues of D2(G) are 2µ1(G), . . . , 2µn(G) and 0 with multiplicity n.
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Theorem 6. [18] Let G be a graph with SpecA(G) = {µ1(G), . . . , µn(G)}. Then the
A-eigenvalues of D∗2(G) are 2µ1(G) + 1, . . . , 2µn(G) + 1 and −1 with multiplicity n.

3. Distance spectrum of G ? H

Definition 3. [11] The neighbourhood corona G?H of two graphs G and H is defined as
a graph obtained by taking one copy of G and |V (G)| copies of H and then joining all the
neighbours of the ith vertex of G to all the vertices in the ith copy of H.

Let G be a connected (n,m) graph, n ≥ 2, and H be a (p, q) graph. Then G ? H

is a graph of order n(p + 1) and size m(2p + 1) + nq. Let V (G) = {u1, . . . , un} and

V (H) = {v1, . . . , vp} be the vertex sets of G and H respectively. For i = 1, . . . , n, let

v
(i)
1 , . . . , v

(i)
p denote the vertices of the ith copy of H in G ? H, such that v

(i)
j is the

copy of vj in H for each j = 1, . . . , p. Denote Vj =
{
v
(1)
j , . . . , v

(n)
j

}
for j = 1, . . . , p.

Then V (G) ∪ V1 ∪ . . . ∪ Vp is a partition of V (G ? H).

Let P = (pij) and Q = (qij) be matrices of order a × b and c × d respectively. The

Kronecker product[10] P ⊗ Q is of order ac × bd defined by P ⊗ Q = (pijQ). If k

is any scalar, (kP ) ⊗ Q = P ⊗ (kQ) = k(P ⊗ Q). For matrices P1, P2, Q1 and Q2,

(P1⊗Q1)(P2⊗Q2) = (P1P2)⊗ (Q1Q2), provided the products P1P2 and Q1Q2 exist.

With respect to the above mentioned partition of V (G ? H), the distance between

vertices in G ? H are described in four cases as follows.

Case (1): For ui, uj ∈ V (G), dG?H(ui, uj) = dG(ui, uj).

Case (2): For ui ∈ V (G) and va ∈ V (H),

dG?H

(
ui, v

(i)
a

)
= 2, for a = 1, . . . , p and i = 1, . . . , n

dG?H

(
ui, v

(k)
a

)
= dG(ui, uk), for i 6= k, and a = 1, . . . , p.

Case (3): For va, vb ∈ V (H), where a, b ∈ {1, . . . , p} and for i = 1, . . . , n,

dG?H

(
v
(i)
a , v

(i)
b

)
=

{
1, if va ∼ vb in H

2, if va � vb in H.

Case (4): For va, vb ∈ V (H), where a, b ∈ {1, . . . , p} and for i, k ∈
{1, . . . , n}, where i 6= k,

dG?H

(
v
(i)
a , v

(k)
b

)
=


dG(ui, uk) + 1, if ui ∼ uk and have a common

neighbour in G

dG(ui, uk) + 2, if ui ∼ uk and have no common

neighbour in G

dG(ui, uk), if ui � uk in G.

From the distance relations described above, we can see that if Diam(G) is d then

Diam(G ? H) can be d, d + 1 or d + 2. From the first case, it follows that the(
V (G), V (G)

)
block matrix in D(G?H) is D(G). Case (2) implies that the

(
V (G), Vj

)
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block matrices, for j = 1, . . . , p, in D(G?H) is D(G) + 2I. If G does not contain any

triangle, then cases (3) and (4) imply that all the (Vi, Vj) block matrices in D(G?H),

where i, j = 1, . . . , p, are in the form D(G) + 2A(G) + tIn, where

t =


0, if i = j

1, if vi is adjacent to vj in H

2, if vi is not adjacent to vj in H.
Therefore, if G is a connected triangle-free graph then the distance matrix of G ? H

can be written as

D(G ? H) =

[
D(G) 1Tp ⊗ (D(G) + 2I)

1p ⊗ (D(G) + 2I) D′

]
, (3.1)

where

D′ = Jp ⊗(D(G) + 2A(G))+(2(J − I)−A(H))⊗ In
and 1Tp denotes the transpose of 1p.

Now, let G be a graph of diameter at most 2 such that any two adjacent vertices have

a common neighbour. Then the distance matrix of G ? H is as follows.

D(G ? H) =

[
D(G) 1Tp ⊗ (D(G) + 2I)

1p ⊗ (D(G) + 2I) Jp ⊗ 2(J − I) +(2(J − I)−A(H))⊗ In

]
. (3.2)

Remark 1. If G is any connected graph with at least two vertices then G∨Kn1 ∨Kn2 ∨
· · · ∨Knp , p ≥ 1 and ni ≥ 1 for i = 1, . . . , p, where ∨ denotes the join operation and is taken
from left to right, is a family of graphs with diameter at most 2 such that any two adjacent
vertices have a common neighbour. It can be seen that complete graph Kn, n ≥ 3, complete
split graphs except K2, wheel graphs and fan graphs are subclasses of this family.

Figure 1. Neighbourhood corona
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Remark 2. There exist graphs of diameter two with triangles that do not satisfy the
condition required for equation (3.2). For example, K3�P2, where � denotes the Carte-
sian product operator, is a graph of diameter 2 containing triangles, but lacking the above
property.

We illustrate the formation of the matrix D(G ? H) in the following examples.

Example 1. Consider the graph G = C6 with V (G) = {1, 2, 3, 4, 5, 6} and H = P2 with
V (H) = {u, v}, shown in Figure 1. u(j) and v(j) represents the vertices of P2 in the jth copy
for j = 1, 2, 3, 4, 5, 6. Then the distance matrix of C6 ? P2 is

D(C6 ? P2) =

1 2 3 4 5 6 u(1) u(2) u(3) u(4) u(5) u(6) v(1) v(2) v(3) v(4) v(5) v(6)



1 0 1 2 3 2 1 2 1 2 3 2 1 2 1 2 3 2 1
2 1 0 1 2 3 2 1 2 1 2 3 2 1 2 1 2 3 2
3 2 1 0 1 2 3 2 1 2 1 2 3 2 1 2 1 2 3
4 3 2 1 0 1 2 3 2 1 2 1 2 3 2 1 2 1 2
5 2 3 2 1 0 1 2 3 2 1 2 1 2 3 2 1 2 1
6 1 2 3 2 1 0 1 2 3 2 1 2 1 2 3 2 1 2

u(1) 2 1 2 3 2 1 0 3 2 3 2 3 1 3 2 3 2 3

u(2) 1 2 1 2 3 2 3 0 3 2 3 2 3 1 3 2 3 2

u(3) 2 1 2 1 2 3 2 3 0 3 2 3 2 3 1 3 2 3

u(4) 3 2 1 2 1 2 3 2 3 0 3 2 3 2 3 1 3 2

u(5) 2 3 2 1 2 1 2 3 2 3 0 3 2 3 2 3 1 3

u(6) 1 2 3 2 1 2 3 2 3 2 3 0 3 2 3 2 3 1

v(1) 2 1 2 3 2 1 1 3 2 3 2 3 0 3 2 3 2 3

v(2) 1 2 1 2 3 2 3 1 3 2 3 2 3 0 3 2 3 2

v(3) 2 1 2 1 2 3 2 3 1 3 2 3 2 3 0 3 2 3

v(4) 3 2 1 2 1 2 3 2 3 1 3 2 3 2 3 0 3 2

v(5) 2 3 2 1 2 1 2 3 2 3 1 3 2 3 2 3 0 3

v(6) 1 2 3 2 1 2 3 2 3 2 3 1 3 2 3 2 3 0

Figure 2. Illustration of G ? H when G is a graph with triangle
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Example 2. Figure 2 shows graphs G, H and G ?H, where G is a complete split graph.
The distance matrix of G ? H is

D(G ? H) =

1 2 3 4 u(1) u(2) u(3) u(4) v(1) v(2) v(3) v(4) w(1) w(2) w(3) w(4)



1 0 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1
2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2
3 1 1 0 1 1 1 2 1 1 1 2 1 1 1 2 1
4 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2

u(1) 2 1 1 1 0 2 2 2 1 2 2 2 2 2 2 2

u(2) 1 2 1 2 2 0 2 2 2 1 2 2 2 2 2 2

u(3) 1 1 2 1 2 2 0 2 2 2 1 2 2 2 2 2

u(4) 1 2 1 2 2 2 2 0 2 2 2 1 2 2 2 2

v(1) 2 1 1 1 1 2 2 2 0 2 2 2 1 2 2 2

v(2) 1 2 1 2 2 1 2 2 2 0 2 2 2 1 2 2

v(3) 1 1 2 1 2 2 1 2 2 2 0 2 2 2 1 2

v(4) 1 2 1 2 2 2 2 1 2 2 2 0 2 2 2 1

w(1) 2 1 1 1 2 2 2 2 1 2 2 2 0 2 2 2

w(2) 1 2 1 2 2 2 2 2 2 1 2 2 2 0 2 2

w(3) 1 1 2 1 2 2 2 2 2 2 1 2 2 2 0 2

w(4) 1 2 1 2 2 2 2 2 2 2 2 1 2 2 2 0

The following result gives n(p−1) D-eigenvalues of G?H, which depends only on H.

Theorem 7. Let G be a connected graph of order n, which is either triangle-free or of
diameter at most 2 such that any two adjacent vertices have a common neighbour in G. Let
H be a k-regular graph of order p with A-eigenvalues k ≥ µ2(H) ≥ . . . ≥ µp(H). Then
−
(
µj(H) + 2

)
is a D-eigenvalue of G ? H for j = 2, . . . , p, each with multiplicity n.

Proof. Let wj be an eigenvector corresponding to µj(H), j = 2, . . . , p, that are

orthogonal to 1p. For i = 1, . . . , n,

D(G ? H)

[
0n

wj ⊗ ei

]
= −

(
µj(H) + 2

) [ 0n
wj ⊗ ei

]
.

This implies that for each j = 2, . . . , p,

{[
0n

wj ⊗ ei

]
, i = 1, . . . , n

}
form a collection of

n linearly independent eigenvectors of D(G ? H) corresponding to the D-eigenvalue

−
(
µj(H) + 2

)
.

The next theorem describes completely the D-spectrum of G ? H in terms of A-

spectrum of G and H when both G and H are regular.

Theorem 8. Let G be an r-regular triangle-free graph of order n with diameter 2 and H
be a k-regular graph of order p. Let r ≥ µ2(G) ≥ . . . ≥ µn(G) and k ≥ µ2(H) ≥ . . . ≥ µp(H)
be the A-eigenvalues of G and H respectively. Then the D-spectrum of G?H consists of the
following.
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(a) 1
2

(
p(2n+ r) + 2n− (r + k + 4)±

√(
p(2n+ r)− 2n+ r − k

)2
+ 4p

(
2n− r

)2)

(b) 1
2

(
(p − 1)µi(G) − k − 4 ±

√(
(p+ 1)µi(G)− k

)2
+ 4pµi(G)2

)
, i = 2, . . . , n, provided

µi(G) 6= 0 for each i.

(c) −2 and −(k + 2) if 0 ∈ SpecA(G).

(d) −
(
2 + µj(H)

)
, j = 2, . . . , p, each with multiplicity n.

Proof. Since Diam(G) is 2, we have D(G) = 2(J − I)−A(G). Then equation (3.1)

implies that

D(G ? H) =

[
2(J − I)−A(G) 1Tp ⊗ (2J −A(G))

1p ⊗ (2J −A(G)) D′

]
, (3.3)

where

D′ = Jp ⊗(2(J − I) +A(G))+(2(J − I)−A(H))⊗ In.
Let t1 and α1 be scalars such that

D(G ? H)

[
t11n

1p ⊗ 1n

]
= α1

[
t11n

1p ⊗ 1n

]
. (3.4)

Note that 1n is an eigenvector of G corresponding to r and 1p is an eigenvector of H

corresponding to k. Then from equation (3.4) we have

t1(2n− 2− r) + p(2n− r) = α1t1 (3.5)

and

t1(2n− r) + p(2n+ r)− 2− k = α1. (3.6)

Solving equations (3.5) and (3.6) we get

t1 =
p(2n− r)

α1 − (2n− 2− r)
, provided α1 6= 2n− 2− r.

And in this case we obtain (a).

The case α1 = 2n− 2− r is never possible since this leads to p(2n− r) = 0.

Now, let zi be an eigenvector of G corresponding to µi(G), i = 2, . . . , n, that are

orthogonal to 1n. Also, let t2 and α2 be scalars such that

D(G ? H)

[
t2zi

1p ⊗ zi

]
= α2

[
t2zi

1p ⊗ zi

]
. (3.7)
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This implies

t2
(
2 + µi(G)

)
+ pµi(G) = −α2t2 (3.8)

and

(p− t2)µi(G)− k − 2 = α2. (3.9)

Equation (3.8) gives

t2 =
−pµi(G)

α2 + 2 + µi(G)
, provided α2 6= −(2 + µi(G)).

Then from equation (3.9) we get

α2 =
1

2

(
(p− 1)µi(G)− k − 4±

√(
(p+ 1)µi(G)− k

)2
+ 4pµi(G)2

)
.

Now, α2 = −(2 + µi(G))⇒ µi(G) = 0. Hence we have (b).

If 0 is an A-eigenvalue of G with multiplicity m then there exists m linearly inde-

pendent eigenvectors zi1, . . . , zim corresponding to 0. For each j = 1, . . . ,m consider

Xj =

[
zij
0pn

]
and Yj =

[
0n

1p ⊗ zij

]
. It can be seen that D(G ? H)Xj = −2Xj and

D(G?H)Yj = −(k+ 2)Yj . Thus (c) follows. Finally, (d) follows from theorem 7.

Remark 3. If the graph G in theorem 8 is s-transmission regular then the D-eigenvalues
(a) and (b) of G?H can be expressed in terms of D-eigenvalues of G since µ1(G) = 2n−s−2
and µi(G) = −(2 + ρn−i+2), i = 2, . . . , n.

3.1. Distance equienergetic graphs

In this section we construct infinitely many pairs of D-non-cospectral and D-

equienergetic graphs.

Theorem 9. Let G be an r-regular triangle-free graph on n vertices with diameter 2 and
let H and H ′ be two A-non-cospectral k-regular graphs on p vertices. Then for all m ≥ 1,
G ? Lm(H) and G ? Lm(H ′) form a pair of D-non-cospectral and D-equienergetic graphs.

Proof. The iterated line graph Lm(H), m ≥ 1, is of order

pm =
p

2m

m−1∏
i=0

(2ik − 2i+1 + 2).

Case 1: m = 1

By theorems 2 and 8, the D-eigenvalues of G ? L(H) are the following.

(a) 1
2

(
pk
2 (2n+r)+2n−r−2k−2±

√(
pk
2 (2n+ r)− 2n+ r − 2k + 2

)2

+ 2pk(2n− r)2
)
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(b) 1
2

((
pk
2 − 1

)
µi(G)− 2k − 2±

√√√√((pk
2 + 1

)
µi(G)− 2k + 2

)2

+ 2pkµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −2k if 0 ∈ SpecA(G)

(d) − (µj(H) + k), j = 2, . . . , p, each with multiplicity n

(e) 0 with multiplicity np(k−2)
2 .

Similarly we obtain the D-eigenvalues of G ? L(H ′). Note that the D-spectra differ

only in the D-eigenvalues given by (d).

Consider

n

p∑
j=2

|−(µj(H) + k)| = n

p∑
j=2

(µj(H) + k) since µj(H) ≥ −k for j = 2, . . . , p

= nk(p− 2).

The same argument can be applied for the D-eigenvalues −(µj(H
′) + k), j = 2, . . . , p

of G?L(H ′). Then by equation (1.2), it follows that DE(G?L(H)) = DE(G?L(H ′)).

Case 2: m ≥ 2

The m-fold application of theorem 2 gives the A-eigenvalues of Lm(H), m ≥ 2, as

listed below.

µj(H) + (2m − 1)(k − 2), j = 1, . . . , p,

(2m − 2)k − 2(2m − 1),
p(k − 2)

2
times ,

(2m − 2i)k − 2(2m − 2i + 1), Ri times , i = 2, . . . ,m,

where Ri =
p(k − 2)

2

i−2∏
j=0

(2jk − 2j+1 + 2).


(3.10)

By theorem 8 and using equations (1.3) and (1.4), SpecD(G? Lm(H)) consists of the

following.

(a) 1
2

(
(2n+ r)pm + 2n− r − 6− 2m(k − 2)±√(
(2n+ r)pm − 2n+ r − 2− 2m(k − 2)

)2
+ 4pm

(
2n− 2

)2)

(b) 1
2

(
(pm − 1)µi(G)− 2m(k − 2)− 6±√(
(pm + 1)µi(G)− (2mk − 2m+1 + 2)

)2
+ 4pmµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i
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(c) −2 and −
(
2m(k − 2) + 4

)
, if 0 ∈ SpecA(G)

(d) −
(
µj(H) + k + (2m − 2)(k − 2)

)
, j = 2, . . . , p, each repeated n times

(e) −(2m − 2)(k − 2), np(k−2)
2 times

(f) −(2m − 2i)(k − 2), nRi times, i = 2, . . . ,m.

In the same way we obtain SpecD(G?Lm(H ′)). The two D-spectra differ only in the

set of D-eigenvalues given in (d). Since there exists no graphs H and H ′ as in the

assertion of the theorem for k = 0 and 1 we let k ≥ 2. Therefore,

n

p∑
j=2

∣∣−(µj(H) + k + (2m − 2)(k − 2)
)∣∣ =n

p∑
j=2

(
µj(H) + k + (2m − 2)(k − 2)

)
=n
(
(p− 1)(2mk − 2m+1 + 4)− pk

)
.

We can apply the same arguments to the D-eigenvalues −
(
µj(H

′) + k+ (2m− 2)(k−
2)
)
, j = 2, . . . , p of G ? Lm(H ′). Then the result follows by equation (1.2).

Theorem 10. Let G be an r-regular triangle-free graph of order n with diameter 2 and H
and H ′ be two A-non-cospectral k-regular graphs of order p. Then G?Lm(H) and G?Lm(H ′),
m ≥ 1, form a pair of D-non-cospectral and D-equienergetic graphs if µp(H), µp(H ′) ≥
2m+1 − 1− (2m − 1)k.

Proof. Case 1: m = 1

From theorems 1, 2 and 8, we obtain the D-eigenvalues of G ? L(H) as follows.

(a) 1
2

(
pk
2 (2n+ r − 1) + 2n− r + 2k − 5±√(
pk
2 (2n+ r − 1)− 2n+ r + 2k − 1

)2
+ 2pk(2n− r)2

)

(b) 1
2

((
pk
2 −1

)
µi(G)−pk2 +2k−5±

√((
pk
2 + 1

)
µi(G)− pk

2 + 2k − 1

)2

+ 2pkµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −pk2 + 2k − 3 if 0 ∈ SpecA(G)

(d) µj(H) + k − 3, j = 2, . . . , p, each with multiplicity n

(e) −3 with multiplicity np(k−2)
2 .

Similarly we get the D-eigenvalues of G ? L(H ′). Note that the two D-spectra differ

only in the set of D-eigenvalues given by (d).
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If µp(H) ≥ 3− k, then µj(H) + k − 3 ≥ 0 for j = 2, . . . , p.

∴ n
p∑
j=2

∣∣µj(H) + k − 3
∣∣ = n

(
k(p− 2)− 3p+ 3

)
= n

p∑
j=2

∣∣µj(H ′) + k − 3
∣∣.

Then, by equation (1.2), it follows that DE
(
G ? L(H)

)
= DE

(
G ? L(H ′)

)
.

Case 2: m ≥ 2

From the A-eigenvalues of Lm(H), m ≥ 2, given by (3.10) and using theorems 1 and

8, the D-eigenvalues of G ? Lm(H) are as follows.

(a) 1
2

(
(2n+ r)pm + 2n− r − pm + 2m(k − 2)− 1±√(
(2n+ r)pm − 2n+ r − pm + 2m(k − 2) + 3

)2
+ 4pm

(
2n− r

)2)

(b) 1
2

(
(pm − 1)µi(G)− pm + 2m(k − 2)− 1±√(
(pm + 1)µi(G)− pm + 2m(k − 2) + 3

)2
+ 4pmµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −
(
pm − 2m(k − 2)− 1

)
, if 0 ∈ SpecA(G)

(d) µj(H) + (2m − 1)k − 2m+1 + 1, j = 2, . . . , p, each repeated n times

(e) (2m − 2)k − 2m+1 + 1, np(k−2)
2 times

(f) (2m − 2i)(k − 2)− 3, nRi times, i = 2, . . . ,m.

Similarly we obtain the SpecD(G?Lm(H ′)). Note that the two D-spectra differ only

in the set of D-eigenvalues given by (d). Now, if µp(H) ≥ 2m+1 − 1− (2m − 1)k then

µj(H) + (2m − 1)k − 2m+1 + 1 ≥ 0 for j = 2, . . . , p. Therefore,

n

p∑
j=2

∣∣µj(H) + (2m − 1)k − 2m+1 + 1
∣∣ =n

p∑
j=2

(
µj(H) + (2m − 1)k − 2m+1 + 1

)
=n

(
p
(
(2m − 1)k − 2m+1 + 1

)
− 2m(k − 2)− 1

)
=n

p∑
j=2

∣∣µj(H ′) + (2m − 1)k − 2m+1 + 1
∣∣.

Then, by equation (1.2), it follows that DE
(
G ? Lm(H)

)
= DE

(
G ? Lm(H ′)

)
.
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Theorem 11. Let G be an r-regular triangle-free graph on n vertices with diameter 2
and H and H ′ be k-regular graphs on p vertices that are A-non-cospectral and equienergetic.
Then G?D∗2(H) and G?D∗2(H ′) form a pair of D-non-cospectral and D-equienergetic graphs.

Proof. By theorems 1, 6 and 8, the D-eigenvalues of G ? D∗2(H) are as follows.

(a) 1
2

(
2p(2n+ r) + 2n− r − 2p+ 2k − 2±√(
2p(2n+ r)− 2n+ r − 2p+ 2k + 2

)2
+ 8p(2n− r)2

)

(b) 1
2

((
2p−1

)
µi(G)−2p+2k−2±

√((
2p+ 1

)
µi(G)− 2p+ 2k + 2

)2

+ 8pµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −2(p− k) if 0 ∈ SpecA(G)

(d) 2µj(H), j = 2, . . . , p, each with multiplicity n

(e) −2 with multiplicity np.

The above D-spectrum differs from SpecD
(
G ? D∗2(H ′)

)
only in the set of D-

eigenvalues given by (d). Now,

n

p∑
j=2

|2µj(H)| = 2n

p∑
j=2

|µj(H)| = 2n
(
E(H)− k

)
.

Then the result follows since E(H) = E(H ′).

Theorem 12. Let G be an r-regular triangle-free graph on n vertices with diameter 2.
Let H and H ′ be k-regular graphs on p vertices that are A-non-cospectral and equienergetic
such that n+(H)− n−(H) = d = n+(H ′)− n−(H ′). Then G ?H and G ?H ′ form a pair of
D-non-cospectral and D-equienergetic graphs provided |µj(H)|, |µj(H

′)| ≥ 1 for j = 2, . . . , p.

Proof. By theorems 1 and 8 the SpecD(G ? H) consists of the following.

(a) 1
2

(
p(2n+ r) + 2n− r − p+ k − 3±√(
p(2n+ r)− 2n+ r − p+ k + 1

)2
+ 4p(2n− r)2

)

(b) 1
2

((
p− 1

)
µi(G)− p+ k − 3±

√((
p+ 1

)
µi(G)− p+ k + 1

)2
+ 4pµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −(p− k + 1) if 0 ∈ SpecA(G)

(d) µj(H)− 1, j = 2, . . . , p, each with multiplicity n.
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For j = 2, . . . , p,

|µj(H)− 1| =
{
|µj(H)| − 1, if µj(H) > 0

|µj(H)|+ 1, if µj(H) < 0

∴ n
p∑
j=2

|µj(H)− 1| = n
( p∑
j=1

|µj(H)− 1| − (k − 1)
)

= n

( ∑
µj(H)>0

(
|µj(H)| − 1

)
+

∑
µj(H)<0

(
|µj(H)|+ 1

)
− k + 1

)
= n

(
E(H)− d− k + 1

)
.

The same arguments can be applied for the D-eigenvalues of G?H ′. Then the result

follows from equation (1.2).

Figure 3. Two non-isomorphic 3-regular graphs of order 8

Example 3. Let G = K3,3 and H1 and H2 be the graphs as shown in figure 3.
Then SpecA(G) =

{
3, 04,−3

}
, SpecA(H1) =

{
3,
√

5, 1, (−1)4,−
√

5
}

and SpecA(H2) ={
3, 12, (

√
2 − 1)2,−1, (−1 −

√
2)2
}

. Let H = L3(H1) and H ′ = L3(H2). Then

SpecA(H) =
{

10, 7 +
√

5, 8, 64, 7 −
√

5, 44, 212, (−2)48
}

and SpecA(H ′) =
{

10, 82, (6 +√
2)2, 6, (6 −

√
2)2, 44, 212, (−2)48

}
. It can be seen that E(H) = 192 = E(H ′) and

n+(H) − n−(H) = −24 = n+(H ′) − n−(H ′). Also |µj(H)|, |µj(H
′)| > 1 for j = 2, . . . , 72.

We have SpecD(G ? H) =
{

512 +
√

260857, 512 −
√

260857,−139 + 2
√

5062,−139 −
2
√

5062, (−2)4, (−63)4, (6−
√

5)6, 524, 76, (6 +
√

5)6, 324, 172, (−3)288
}

and SpecD(G ?H ′) ={
512 +

√
260857, 512 −

√
260857,−139 + 2

√
5062,−139 − 2

√
5062, (−2)4, (−63)4, (5 −√

2)12, 56, (5+
√

2)12, 712, 324, 172, (−3)288
}

. It is obtained thatDE(G?H) = 2526+4
√

5062 =

DE(G ? H ′).

Theorem 13. Let G be an r-regular triangle-free graph on n vertices with diameter 2.
Let H and H ′ be k-regular graphs on p vertices that are A-non-cospectral and equienergetic
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such that n+(H)− n−(H) = d = n+(H ′)− n−(H ′). Then G ?D∗2(H) and G ?D∗2(H ′) form
a pair of D-non-cospectral and D-equienergetic graphs provided |µj(H)| , |µj(H

′)| ≥ 3
2

for
j = 2, . . . , p.

Proof. By theorems 6 and 8 SpecD(G ? D∗2(H)) consists of the following.

(a) 1
2

(
2p(2n+r)+2n−r−2k−5±

√(
2p(2n+ r)− 2n+ r − 2k − 1

)2
+ 8p(2n− r)2

)

(b) 1
2

((
2p− 1

)
µi(G)− 2k − 5±

√((
2p+ 1

)
µi(G)− 2k − 1

)2

+ 8pµi(G)2
)

,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −(2k + 3) if 0 ∈ SpecA(G)

(d) −(2µj(H) + 3), j = 2, . . . , p, each with multiplicity n

(e) −1 with multiplicity np.

Similarly we obtain SpecD(G ? D∗2(H ′)).

For j = 2, . . ., p,

∣∣− (2µj(H) + 3)
∣∣ = 2

∣∣∣∣µj(H) +
3

2

∣∣∣∣
=

{
2
(
|µj(H)|+ 3

2

)
, if µj(H) > 0

2
(
|µj(H)| − 3

2

)
, if µj(H) < 0

∴ n
p∑
j=2

∣∣− (2µj(H) + 3)
∣∣ = n

(
2E(H) + 3d− (2k + 3)

)
.

Then the result follows from equation (1.2).

Figure 4. Two non-isomorphic 4-regular graphs of order 8

Example 4. Let G = K3,3 and H1 and H2 be the graphs as shown in fig-
ure 4. Then SpecA(H1) =

{
4, 2, 03, (−2)3

}
and SpecA(H2) =

{
4, 06,−4

}
. Let

H = L2(H1) and H ′ = L2(H2). Then SpecA(H) =
{

10, 8, 63, 43, 28, (−2)32
}

and



K.D. Arathy, K. Pravas 17

SpecA(H ′) =
{

10, 66, 29, (−2)32
}

. It can be seen that E(H) = 128 = E(H ′) and
n+(H) − n−(H) = −16 = n+(H ′) − n−(H ′). Also |µj(H)|, |µj(H

′)| > 3
2

for

j = 2, . . . , 48. Then SpecD(G ? D∗2(H)) =
{

712 + 3
√

56089, 712 − 3
√

56089,−155 +

60
√

7,−155 − 60
√

7, (−2)4, (−23)4, (−19)6, (−15)18, (−11)18, (−7)48, 1192, (−1)288
}

and SpecD(G ? D∗2(H ′)) =
{

712 + 3
√

56089, 712 − 3
√

56089,−155 + 60
√

7,−155 −
60
√

7, (−2)4, (−23)4, (−15)36, (−7)54, 1192, (−1)288
}

. We get DE(G ? D∗2(H)) =

2922 + 120
√

7 = DE(G ? D∗2(H ′)).

Theorem 14. Let G be an r-regular triangle-free graph on n vertices with diameter 2
and H and H ′ be k-regular graphs on p vertices that are A-non-cospectral and equienergetic
such that n+(H)− n−(H) = d = n+(H ′)− n−(H ′). Then G ?D2(H) and G ?D2(H ′) form
a pair of D-non-cospectral and D-equienergetic graphs provided |µj(H)| , |µj(H

′)| ≥ 1 for
j = 2, . . . , p.

Proof. By theorems 5 and 8 the SpecD(G ? D2(H)) consists of the following.

(a) 1
2

(
2p(2n+ r) + 2n− r − 2k − 4±

√(
2p(2n+ r)− 2n+ r − 2k

)2
+ 8p(2n− r)2

)

(b) 1
2

((
2p− 1

)
µi(G)− 2k − 4±

√((
2p+ 1

)
µi(G)− 2k

)2
+ 8pµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −2(k + 1) if 0 ∈ SpecA(G)

(d) −2(µj(H) + 1), j = 2, . . . , p, each with multiplicity n

(e) −2 with multiplicity np.

Similarly we obtain the SpecD(G ? D2(H ′)). For j = 2, . . ., p,

∣∣µj(H) + 1
∣∣ =

{
|µj(H)|+ 1, if µj(H) > 0

|µj(H)| − 1, if µj(H) < 0

∴ n
p∑
j=2

∣∣− 2
(
µj(H) + 1

)∣∣ = 2n
(
E(H) + d− (k + 1)

)
.

Then the result follows from equation (1.2).

Example 5. Let G = K3,3 and H1 and H2 be the graphs as shown
in Figure 5. Then SpecA(H1) =

{
4, 14, (−1)4,−4

}
and SpecA(H2) ={

4,−1, 02,
√
5−1
2

, −
√
5−1
2

,

√
19+2

√
17−1

2
,
−
√

19+2
√

17−1

2
,

√
19−2

√
17−1

2
,
−
√

19−2
√
17−1

2

}
.

Let H = L2(H1) and H ′ = L2(H2). Then SpecA(H) =
{

10, 74, 54, 211, (−2)40
}

and SpecA(H ′)=

{
10, 62,

√
19+2

√
17+11

2
,

√
19−2

√
17+11

2
, 5, 11+

√
5

2
, 11−

√
5

2
,
−
√

19+2
√
17+11

2
,

−
√

19−2
√
17+11

2
, 210, (−2)40

}
. It can be seen that E(H) = 160 = E(H ′) and
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Figure 5. Two non-isomorphic 4-regular graphs of order 10

n+(H) − n−(H) = −20 = n+(H ′) − n−(H ′). Also |µj(H)|, |µj(H
′)| > 1 for

j = 2, . . . , 60. Then SpecD(G ? D2(H)) =

{
1785
2

+ 1
2

√
3175321, 1785

2
− 1

2

√
3175321, −381

2
+

1
2

√
151009, −381

2
− 1

2

√
151009, (−22)4, (−2)364, (−16)24, (−12)24, (−6)66, 2240

}
and SpecD(G ? D2(H ′)) =

{
1785
2

+ 1
2

√
3175321, 1785

2
− 1

2

√
3175321, −381

2
+

1
2

√
151009, −381

2
− 1

2

√
151009, (−22)4, (−2)364,

(
− 13 −

√
19 + 2

√
17
)6
,
(
− 13 −√

19− 2
√

17
)6
, (−14)12, (−12)6, (−13 +

√
5)6, (−13−

√
5)6,

(
− 13 +

√
19 + 2

√
17
)6
,
(
− 13 +√

19− 2
√

17
)6
, (−6)60, 2240

}
. We get DE(G?D2(H)) = 4149+

√
151009 = DE(G?D2(H ′)).

Theorem 15. Let G be an r-regular triangle-free graph on n vertices with diameter 2.
Let H and H ′ be k-regular graphs on p vertices that are A-non-cospectral and equienergetic
such that n+(H)− n−(H) = d = n+(H ′)− n−(H ′). Then G ?D2(H) and G ?D2(H ′) form
a pair of D-non-cospectral and D-equienergetic graphs provided |µj(H)| , |µj(H

′)| ≥ 1
2

for
j = 2, . . . , p.

Proof. By theorems 1, 5 and 8 SpecD(G ? D2(H)) consists of the following.

(a) 1
2

(
2p(2n+ r) + 2n− r − 2p+ 2k − 3±√(
2p(2n+ r)− 2n+ r − 2p+ 2k + 1

)2
+ 8p(2n− r)2

)

(b) 1
2

((
2p− 1

)
µi(G)− 2p+ 2k− 3±

√((
2p+ 1

)
µi(G)− 2p+ 2k + 1

)2
+ 8pµi(G)2

)
,

i = 2, . . . , n, provided µi(G) 6= 0 for each i

(c) −2 and −(2p− 2k + 1) if 0 ∈ SpecA(G)

(d) 2µj(H)− 1, j = 2, . . . , p, each with multiplicity n

(e) −1 with multiplicity np.
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In the same way we obtain SpecD(G ? D2(H ′)). Now, for j = 2, . . . , p,

|2µj(H)− 1| =
{

2
(
|µj(H)| − 1

2

)
, if µj(H) > 0

2
(
|µj(H)|+ 1

2

)
, if µj(H) < 0

∴ n
p∑
j=2

∣∣2µj(H)− 1
∣∣ = n

(
2E(H)− d− 2k + 1

)
.

The result then follows from equation (1.2).

Figure 6. Two non-isomorphic 3-regular graphs of order 10

Example 6. Let G = K3,3 and H1 and H2 be the graphs as shown in figure 6.

Then SpecA(H1) =

{
3,

(√
3+
√

5
2

)2

,

(√
3−
√
5

2

)2

,

(
−
√

3−
√
5

2

)2

,

(
−
√

3+
√
5

2

)2

,−3

}

and SpecA(H2) =

{
3,
(

1+
√

5
2

)2
, 1,
(√

5−3
2

)2
,
(

1−
√
5

2

)2
,
(
−3−

√
5

2

)2}
.

Let H = L3(H1) and H ′ = L3(H2). Then SpecA(H) ={
10,

(
7 +

√
3+
√
5

2

)2

,

(
7 +

√
3−
√
5

2

)2

,

(
7−

√
3−
√
5

2

)2

,

(
7−

√
3+
√
5

2

)2

, 46, 215, (−2)60

}

and SpecA(H ′) =

{
10,
(

15+
√
5

2

)2
, 8,
(

11+
√

5
2

)2
,
(

15−
√
5

2

)2
,
(

11−
√
5

2

)2
, 45, 215, (−2)60

}
.

It can be seen that E(H) = 240 = E(H ′) and n+(H) − n−(H) = −30 =
n+(H ′) − n−(H ′). Also |µj(H)|, |µj(H

′)| > 1 for j = 2, . . . , 90. Then

SpecD
(
G ? D2(H)

)
=

{
1273 + 6

√
44926, 1273 − 6

√
44926,−350 + 9

√
1541,−350 −

9
√

1541, (−2)4, (−161)4,

(
13 + 2

√
3+
√
5

2

)12

,

(
13 + 2

√
3−
√
5

2

)12

,

(
13− 2

√
3−
√
5

2

)12

,(
13− 2

√
3+
√
5

2

)12

, 736, (3)90, (−5)360, (−1)540

}
and SpecD

(
G ? D2(H ′)

)
=

{
1273 +

6
√

44926, 1273 − 6
√

44926,−350 + 9
√

1541,−350 − 9
√

1541, (−2)4, (−161)4,
(
14 +

√
5
)12

,
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(15)6,
(
10 +

√
5
)12

,
(
14−

√
5
)12

,
(
10−

√
5
)12

, (7)30, (3)90, (−5)360, (−1)540
}

. We get

DE
(
G ? D2(H)

)
= 6684 + 18

√
1541 = DE

(
G ? D2(H ′)

)
.

Remark 4. There are well-known families of graphs satisfying the eigenvalue constraints
in theorems 12 to 15. For, if H1 and H2 are any two regular, non-cospectral graphs of order
p and degree k ≥ 3, then it follows from theorems 3 and 4 that the iterated line graphs
H = Lm(H1) and H ′ = Lm(H2), for m ≥ 3, form a pair of graphs satisfying the eigenvalue
constraints in theorems 12 to 15.

Remark 5. The eigenvalue constraints in theorems 12 to 15 can be relaxed. For example,
in theorem 12, K3,3 and C3�P2 do not satisfy the eigenvalue constraints. But for any
regular triangle-free graph G of diameter 2, G ? K3,3 and G ? C3�P2 are D-non-cospectral
and D-equienergetic graphs.

3.2. Distance cospectral graphs

In this section we construct infinitely many non-isomorphic pairs of D-cospectral

graphs using theorem 8.

Theorem 16. Let G be a regular triangle-free graph with diameter 2 and let H and H ′ be
two non-isomorphic k-regular A-cospectral graphs of order p. Then G ? H and G ? H ′ form
a pair of non-isomorphic D-cospectral graphs.

Corollary 1. Let G be a regular triangle-free graph with diameter 2 and let H and H ′

be two non-isomorphic k-regular A-cospectral graphs of order p. Then

(a) G?Lm(H) and G?Lm(H ′), m ≥ 1, form a pair of non-isomorphic D-cospectral graphs.

(b) G ? D2(H) and G ? D2(H ′) form a pair of non-isomorphic D-cospectral graphs.

(c) G ? D∗2(H) and G ? D∗2(H ′) form a pair of non-isomorphic D-cospectral graphs.

(d) G ? H and G ? H ′ form a pair of non-isomorphic D-cospectral graphs.

4. Distance Laplacian spectrum of G ? H

With respect to the labeling of the vertex set of G ? H, described in section 3, the

distance Laplacian matrix of G ? H, when G is a connected triangle-free graph, can

be written as

DL (G ? H) =

[
DL (G) + pTr(G) + 2pI 1Tp ⊗−(D(G) + 2I)

1p ⊗−(D(G) + 2I) DL′

]
, (4.1)

where

DL′
=Jp ⊗−(D(G) + 2A(G))+ Ip ⊗((p+ 1)Tr(G) + 2I + 2pDG)

+(2pI − 2J −L (H))⊗ In.
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The following result gives n(p − 1) DL -eigenvalues of G ? H when G is a connected

triangle-free graph and H is arbitrary.

Theorem 17. Let G be a connected triangle-free graph with V (G) = {u1, . . . , un} and
H be a graph of order p with L -eigenvalues η1(H) ≥ η2(H) ≥ . . . ≥ ηp(H) = 0. Then
(p+ 1)Tr(ui) + 2p(d(ui) + 1)+ 2− ηj(H) are DL -eigenvalues of G ?H, for i = 1, . . . , n and
j = 1, . . . , p− 1.

Proof. Clearly 1p is an eigenvector of L (H) corresponding to ηp(H) = 0. Let

f1, . . . , fp−1 be eigenvectors of L (H) corresponding to η1(H), . . . , ηp−1(H) respec-

tively, that are orthogonal to 1p. Then for i = 1, . . . , n and j = 1, . . . , p− 1,

DL (G ? H)

[
0n

fj ⊗ ei

]
=

(
(p+ 1)Tr(ui) + 2p(d(ui) + 1)+ 2− ηj(H)

)[
0n

fj ⊗ ei

]
.

In the next theorem we obtain the SpecDL (G ? H) in terms of DL -eigenvalues of G

and L -eigenvalues of H when G is a transmission regular triangle-free graph and H

is arbitrary.

Theorem 18. Let G be a s-transmission regular triangle-free graph of diameter 2 with
DL -eigenvalues ρL

1 (G) ≥ ρL
2 (G) ≥ . . . ≥ ρL

n (G) = 0. Let H be a graph of order p with
L -eigenvalues η1(H) ≥ η2(H) ≥ . . . ≥ ηp(H) = 0. Then the distance Laplacian eigenvalues
of G ? H are the following.

(a) 0, (p+ 1)(s+ 2)

(b) 1
2

(
p(4n+ s+ 2) + s+ 2 + (1− p)ρLi (G)±

√
(p(s+ 2− 4n)− s− 2 + (1 + p)ρLi (G))2 + 4p(s+ 2− ρLi (G))2

)
, i = 1, . . . , n− 1,

provided ρLi (G) 6= s+ 2 for any i

(c) (p+ 1)(s+ 2) and p(4n− s− 2) + s+ 2 if s+ 2 ∈ SpecDL (G)

(d) p(4n− s− 2) + s+ 2− ηj(H), j = 1, . . . , p− 1, each with multiplicity n.

Proof. Clearly G is 2n− s− 2 regular. Let t1 and β1 be scalars such that

DL (G ? H)

[
t11n

1p ⊗ 1n

]
= β1

[
t11n

1p ⊗ 1n

]
. (4.2)

Note that 1n is an eigenvector corresponding to the DL -eigenvalue 0 of G, the D-

eigenvalue s of G and the A-eigenvalue 2n − 2 − s of G. Therefore, equation (4.2)

implies
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(t1 − 1)p(s+ 2) = t1β1 (4.3)

and

(1− t1)(s+ 2) = β1. (4.4)

Solving equations (4.3) and (4.4) we get

t1 =
p(s+ 2)

p(s+ 2)− β1
, provided β1 6= p(s+ 2),

and, in this case we obtain β1 = 0 and (p+ 1)(s+ 2).

The case β1 = p(s + 2) can be omitted since it implies p = 0 or s = −2, both are

invalid. Hence we have (a).

Let xi be an eigenvector corresponding to ρL
i (G), i = 1, . . . , n−1, that are orthogonal

to 1n. Let t2 and β2 be scalars such that

DL (G ? H)

[
t2xi

1p ⊗ xi

]
= β2

[
t2xi

1p ⊗ xi

]
. (4.5)

Since D(G) = Tr(G)−DL (G) and A(G) = 2(J − I)−D(G), from equation (4.5) we

have

t2
(
ρL
i (G) + ps+ 2p

)
+ p

(
ρL
i (G)− s− 2

)
= t2β2 (4.6)

and

− t2
(
s+ 2− ρL

i (G)
)

+ p
(
4n− ρL

i (G)
)

+ s+ 2 = β2. (4.7)

Solving equations (4.6) and (4.7),

t2 =
p(s+ 2− ρL

i (G))

ρL
i (G) + ps+ 2p− β2

, provided β2 6= ρL
i (G) + ps+ 2p,

and, in this case we get

β2 =
1

2

(
p(4n+ s+ 2) + s+ 2 + (1− p)ρL

i (G)±

√
(p(s+ 2− 4n)− s− 2 + (1 + p)ρL

i (G))2 + 4p(s+ 2− ρL
i (G))2

)
.

Now, if β2 = ρL
i (G) + ps+ 2p then we get ρL

i (G) = s+ 2. Hence (b) follows.

If ρL
i (G) = s+ 2 for any i then

DL (G ? H)

[
xi
0pn

]
= (p+ 1)(s+ 2)

[
xi
0pn

]
(4.8)
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and

DL (G ? H)

[
0n

1p ⊗ xi

]
=(p(4n− s− 2) + s+ 2)

[
0n

1p ⊗ xi

]
. (4.9)

From equations (4.8) and (4.9), we obtain (c).

Finally, (d) follows from theorem 17 since Tr(ui) = s and d(ui) = 2n − 2 − s for

i = 1, . . . , n.

Remark 6. In the above theorem the DL -eigenvalues (b) of G ? H can be expressed by
the D-eigenvalues of G since ρL

i (G) = s− ρn−i+1(G), i = 1, . . . , n.

As applications of theorem 18 we construct distance Laplacian cospectral graphs in

the following two corollaries.

Corollary 2. Let G be a transmission regular triangle-free graph of diameter 2. Let
H and H ′ be two non-isomorphic L -cospectral graphs of the same order. Then G ? H and
G ? H ′ form a pair of non-isomorphic DL -cospectral graphs.

5. Distance signless Laplacian spectrum of G ? H

The distance signless Laplacian matrix of G?H, when G is a connected triangle-free

graph, can be written as

DQ(G ? H) =

[
DQ(G) + pTr(G) + 2pI 1Tp ⊗ (D(G) + 2I)

1p ⊗ (D(G) + 2I) DQ′

]
, (5.1)

where

DQ′
=Jp ⊗(D(G) + 2A(G))+ Ip ⊗((p+ 1)Tr(G) + 2I + 2pDG)+
((2p− 4)I + 2J −Q(H))⊗ In.

The following theorem gives n(p− 1) DQ-eigenvalues of G ? H when G is connected

triangle-free and H is regular.

Theorem 19. Let G be a connected triangle-free graph with V (G) = {u1, . . . , un} and H
be a k-regular graph of order p with Q-eigenvalues 2k = δ1(H) ≥ δ2(H) ≥ . . . ≥ δp(H). Then
(p+1)Tr(ui)+2p

(
d(ui)+1

)
−2−δj(H), for i = 1, . . . , n and j = 2, . . . , p are DQ-eigenvalues

of G ? H.

Proof. Let g2, . . . , gp be eigenvectors of Q(H) corresponding to δ2(H), . . . , δp(H)

respectively, that are orthogonal to 1p. Then, for i = 1, . . . , n and j = 2, . . . , p,

DQ(G ? H)

[
0n

gj ⊗ ei

]
=((p+ 1)Tr(ui) + 2p

(
d(ui) + 1

)
− 2− δj(H))

[
0n

gj ⊗ ei

]
.
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The next result gives all the DQ-eigenvalues of G?H in terms of DQ-eigenvalues of G

and Q-eigenvalues of H when G is connected, triangle-free and transmission regular

and H is regular.

Theorem 20. Let G be a s-transmission regular triangle-free graph of diameter 2 with
DQ-eigenvalues 2s = ρQ

1 (G) ≥ ρQ
2 (G) ≥ . . . ≥ ρQ

n (G). Let H be a k-regular graph of
order p with Q-eigenvalues 2k = δ1(H) ≥ δ2(H) ≥ . . . ≥ δp(H). Then the distance signless
Laplacian eigenvalues of G ? H are the following.

(a)
1

2

(
2(4pn− k)− p(s+ 2) + 3s− 2±

√
(3p(s+ 2)− 2(4pn− k) + s+ 2)2 + 4p(s+ 2)2

)

(b)
1

2

(
(1− p)ρQ

i (G) + p(4n+ s− 2) + s+ 2− 2(k + 2)±

√
((1 + p)ρQ

i (G) + p(s+ 6− 4n)− s+ 2(k + 1))2 + 4p(ρQ
i (G)− s+ 2)2

)
,

i = 2, . . . , n, provided ρQ
i (G) 6= s− 2 for any i

(c) p(s+ 2) + s− 2 and 4pn− p(s+ 2) + s− 2− 2k if s− 2 ∈ SpecDQ(G)

(d) 4pn− p(s+ 2) + s− 2− δj(H), j = 2, . . . , p, each with multiplicity n.

Proof. Let t1 and γ1 be scalars such that

DQ(G ? H)

[
t11n

1p ⊗ 1n

]
= γ1

[
t11n

1p ⊗ 1n

]
. (5.2)

Note that 1n is an eigenvector corresponding to ρQ
1 (G) as well as s, the largest D-

eigenvalue of G. Then equation (5.2) implies

t1
(
2s+ p(s+ 2)

)
+ p(s+ 2) = t1γ1 (5.3)

and

t1(s+ 2) + 2p(4n− s− 2)− 2k + s− 2 = γ1. (5.4)

Solving equations (5.3) and (5.4) for t1 and γ1 we obtain

t1 =
−p(s+ 2)

2s+ p(s+ 2)− γ1
, provided γ1 6= 2s+ p(s+ 2),

and in this case we obtain (a).

As in the proof of theorem 18, the case γ1 = 2s+ p(s+ 2) can be rejected.

Let yi be an eigenvector corresponding to ρQ
i (G), i = 2, . . . , n, and is orthogonal to

1n. Let t2 and γ2 be scalars such that

DQ(G ? H)

[
t2yi

1p ⊗ yi

]
= γ2

[
t2yi

1p ⊗ yi

]
. (5.5)
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Since D(G) = DQ(G)− Tr(G), from equation (5.5) we have

t2(ρQ
i (G) + p(s+ 2))+ p(ρQ

i (G)− s+ 2)= t2γ2 (5.6)

and

t2(ρQ
i (G)− s+ 2)+ p(4n− 4− ρQ

i (G))− 2(k + 2) + s+ 2 = γ2. (5.7)

Solving for t2 and γ2 from equations (5.6) and (5.7) we get

t2 =
−p(ρQ

i (G)− s+ 2)
ρQ
i (G) + p(s+ 2)− γ2

, provided γ2 6= ρQ
i (G) + p(s+ 2).

In this case,

γ2 =
1

2

(
(1− p)ρQ

i (G) + p(4n+ s− 2) + s+ 2− 2(k + 2)±

√
((1 + p)ρQ

i (G) + p(s+ 6− 4n)− s+ 2(k + 1))2 + 4p(ρQ
i (G)− s+ 2)2

)
.

γ2 = ρQ
i (G) + p(s+ 2)⇒ ρQ

i (G) = s− 2. Hence (b) follows.

Now, if ρQ
i (G) = s− 2 for any i then

DQ(G ? H)

[
yi

0pn

]
=(p(s+ 2) + s− 2)

[
yi

0pn

]

and

DQ(G ? H)

[
0n

1p ⊗ yi

]
=(4pn− p(s+ 2) + s− 2− 2k)

[
0n

1p ⊗ yi

]
.

Hence (c) follows. Since Tr(ui) = s and d(ui) = 2n− s− 2 for i = 1, . . . , n, we obtain

(d) from Theorem 19.

Remark 7. The DQ-eigenvalues of G ? H given in (b) in the above theorem can be
expressed in terms of the D-eigenvalues of G since ρQ

i (G) = s+ ρi(G), i = 1, . . . , n.

Corollary 3. Let G be a transmission regular triangle-free graph of diameter 2. Let H
and H ′ be two non-isomorphic k-regular Q-cospectral graphs of the same order. Then G?H
and G ? H ′ form a pair of non-isomorphic DQ-cospectral graphs.
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6. Conclusion

The neighbourhood corona of graphs is a variation of the classical corona graph oper-

ation and has been widely studied in areas such as spectral graph theory, domination,

metric dimension, coloring, and more. However, its distance-based spectra have re-

mained largely unexplored. In this work, we have obtained the distance (respectively,

distance Laplacian, distance signless Laplacian) spectra of G?H, when G is a regular,

triangle-free graph of diameter 2 and H is regular (respectively, arbitrary, regular).

Additionally, we have constructed several distance equienergetic graphs and graphs

that are cospectral with respect to distance, distance Laplacian, and distance signless

Laplacian matrices.

In future work, we intend to investigate the distance-based spectra and related prop-

erties of G ?H, when G belongs to the class of graphs associated with equation (3.2)

and remark 1. Determining the distance spectra of G ? H when G is any connected

triangle-free graph also remains as an open area of research.
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