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Abstract: Hypergraphs generalize traditional graphs by allowing edges to connect

more than two vertices, enabling a richer representation of relationships in complex
systems. Forgotten topological index, or simply F -index of a hypergraph, is defined as

the sum of cubes of the degrees of all the vertices of the hypergraph. Initially, some

sharp bounds for the F -index of hypergraphs in terms of other degree-based topolog-
ical indices have been obtained. A minimally connected hypergraph is a connected

hypergraph such that the removal of any hyperedge disconnects the hypergraph. We
have characterized the extremal minimally connected hypergraphs corresponding to

the F -index among minimally connected hypergraphs on n vertices. The hyperstar

and hyperpath with minimum and maximum F -indices have been studied. The upper
and lower bounds for the F -index of the hypergraphs and bipartite hypergraphs are

also given. We conclude this article by computing the F -index of join, corona product,

and Cartesian product of two hypergraphs.
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1. Introduction

Hypergraphs can model complex social interactions more accurately than usual

graphs. In a social network, a hyperedge can represent a group of people involved

in an event, discussion, or collaboration, rather than just pairwise connections. This

enables a richer representation of the real-world relationships [2]. Hypergraphs are
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2 The forgotten index of hypergraphs

used to represent complex biological data. For example, in protein-protein interaction

networks, a hyperedge can represent interactions between multiple proteins simulta-

neously, providing a more realistic view of cellular processes [13]. A hypergraph model

in chemistry is a powerful tool used to analyze polycentric bonds, which involve mul-

tiple atoms sharing electrons in complex molecular structures. It extends traditional

chemical bonding models by representing these bonds as hyperedges, allowing a more

comprehensive understanding of electron distribution and bonding patterns in intri-

cate molecular systems [11].

Topological indices of graphs in chemistry are vital for quantitatively correlating

molecular structures with physical and chemical properties, enabling drug design,

environmental assessment, and material science advancements. Despite having so

many real-world applications [7, 11, 12], degree-based topological indices have been

considered only for simple graphs and very recently for graphs with self-loops [16] and

for hypergraphs [15, 17]. However, the Wiener index [14, 18], degree-distance index,

and Gutman index [3] of hypergraphs have been studied.

A hypergraph H is an ordered pair (V, E), where V contains a non-empty finite set of

elements called vertices and the edge set E contains the non-empty subset of the vertex

set V, whose elements are called the hyperedges. A walk w = v0e1v1e2 . . . et−1vt−1etvt
between two vertices v0 and vt in a hypergraph is an alternating sequence of vertices

and hyperedges (which starts and ends with a vertex) such that vi−1, vi are contained

in ei, 1 ≤ i ≤ t. A path from u to v (u 6= v) in a hypergraph is a walk, where there

are no repeated vertices or hyperedges. If the initial and terminal vertices in a path

are same, then it is called a cycle. The length of a cycle is the number of hyperedges

in it, and is called a k-cycle if the length is equal to k. A hypergraph is said to be

connected if there exists a path between every two vertices in the hypergraph. A

connected hypergraph is said to be a minimally connected hypergraph if removal of

any hyperedge disconnects the hypergraph. Two vertices in a hypergraph are said to

be adjacent if there is at least one hyperedge containing both vertices. The degree of a

vertex u denoted by du in a hypergraph is the total number of hyperedges containing

u. A vertex of degree one is called a pendant vertex. If the degree of every vertex in

a hypergraph is equal to k, then the hypergraph is said to be a regular hypergraph

with regularity k.

The cardinality (number of vertices) of a hyperedge e of H is called the degree of the

hyperedge e in H. In a hypergraph H, if the degree of each hyperedge is equal to r,

then H is an r-uniform hypergraph. A hyperedge e of degree r in a hypergraph having

at least two hyperedges is called a pendant hyperedge at a vertex u ∈ e if du ≥ 2 and

all the remaining vertices of e are pendant vertices. If every hyperedge in a minimally

connected hypergraph (containing at least two hyperedges) is a pendant hyperedge,

then the hypergraph is called a hyperstar. A linear hypergraph is a hypergraph in

which any two hyperedges can have at most one vertex in common. Hyperstar is

a class of linear minimally connected hypergraphs where it has only one vertex of

degree m and all other vertices are of degree 1. Two hyperedges in a hypergraph

are said to be adjacent if they have at least one vertex in common. A hyperpath is

a minimally connected hypergraph in which each hyperedge is adjacent to at most
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two other hyperedges, and k-cycles (k ≥ 3) are not allowed. A sunflower hypergraph

S(m,h, r) is an r-uniform hypergraph with m hyperedges, each of which contains h

vertices of degree m and r−h pendant vertices. A complete hypergraph on n vertices

is denoted by HKn , whose edge set is given by all non-empty subsets of the vertex set.

An r-uniform complete hypergraph is denoted by H(r)
Kn

and is obtained from HKn
by

removing all those hyperedges of size t, where t 6= r. A hypergraph is said to be a

bipartite hypergraph if there exists a bi-partition (both are non-empty) of the vertex

set such that every hyperedge of the hypergraph has a non-empty intersection with

both the partite sets. A hypergraph is said to be a complete bipartite with respect to

a given bi-partition if the hypergraph contains all possible hyperedges that have non-

empty intersection with both the partite sets, and we denote it by HKs,t , where s, t

are the number of vertices in each partite set. From a complete bipartite hypergraph,

HKs,t
, if we remove all those hyperedges of size t, where t 6= r, then we call it an

r-uniform complete bipartite hypergraph, and we denote it by H(r)
Ks,t

. For all other

undefined terminology in graphs and hypergraphs, the readers can refer to [20] and

[4], respectively.

The Sombor index of a hypergraph H is defined [15] as,

SO(H) =
∑
e∈E

√∑
u∈e

d2u.

The first Zagreb index of a Hypergraph H = (V, E) is defined [19] as

M1(H) =
∑
u∈V

d2u =
∑
e∈E

∑
u∈e

du.

The hyper-Zagreb index of a hypergraph H is defined [19] as

HM1(H) =
∑
e∈E

(∑
u∈e

du

)2

.

The forgotten index of graphs has been introduced in [10] and the theoretical study

has been started in [6]. Subsequently, an immense amount of research has been done

on theoretical aspects [1, 5] and its applications [8, 9]. The forgotten index (or simply

F -index) of a hypergraph H, denoted by F (H) is defined as

F (H) =
∑
u∈V

d3u =
∑
e∈E

∑
u∈e

d2u.

The rest of the paper is organized as follows: Section 2 deals with some preliminary

results related to the F -index of a hypergraph with other indices. Bounds for the

F -index of a minimally connected hypergraph, hyperpath, bipartite hypergraph, and

a hypergraph are discussed in Section 3, and in Section 4 we obtain the F -index of

few hypergraph operations.
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2. Preliminary Results

This section contains a few results that give the relation between the F -index of a

hypergraph and other indices.

Proposition 1. Let H be a hypergraph with m hyperedges. If SO(H) denotes the Sombor
index of the hypergraph H, then

F (H) ≥ (SO(H))2

m
,

where the equality holds for a uniform regular hypergraph.

Proof. By using the Cauchy-Schwarz inequality, the above result follows. That is,

(SO(H))2 =

∑
e∈E

√∑
u∈e

d2u

2

≤ m
∑
e∈E

∑
u∈e

d2u = m F (H),

as desired.

Proposition 2. Let H be a hypergraph having m hyperedges, with δ and r being the
minimum vertex degree and edge degree, respectively. If HM1(H) denotes the hyper-Zagreb
index of the hypergraph H, then

F (H) ≤ HM1(H)− 2mδ2
(
r

2

)
,

where the equality holds for an r-uniform δ-regular hypergraph.

Proof. We have,

F (H) =
∑
e∈E

∑
u∈e

d2u

=
∑
e∈E

(
∑
u∈e

d2u + 2
∑
u,v∈e

dudv)− 2
∑
e∈E

∑
u,v∈e

dudv

=
∑
e∈E

(
∑
u∈e

du)2 − 2
∑
e∈E

∑
u,v∈e

dudv

≤ HM1(H)− 2
∑
e∈E

(
|e|
2

)
δ2

≤ HM1(H)− 2m

(
r

2

)
δ2,

as desired.
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Lemma 1 (Chebyshev’s inequality). Let a1, a2, . . . , an and b1, b2, . . . , bn be real
numbers. Then

1

n

n∑
i=1

aibi ≥

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
,

with equality if and only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn.

Proposition 3. Let H be a hypergraph of order n having m hyperedges with δ and r
being the minimum degree of a vertex (among all the vertices) and a hyperedge (among all
the hyperedges), respectively. If M1(H) denotes the first Zagreb index of the hypergraph H,
then

F (H) ≤ 1

n
M1(H)rm, (2.1)

with equality if and only if H is an r-uniform δ-regular. Or,

F (H) ≤M1(H)δ, (2.2)

where the equality holds if and only if H is δ-regular.

Proof. By using Lemma 1,

1

n

∑
u∈V

d3u ≥

(
1

n

∑
u∈V

d2u

)(
1

n

∑
u∈V

du

)

=

(
1

n
M1(H)

)(
1

n

∑
u∈V

du

)

By substituting
∑
u∈V

du ≥ rm in the above inequality, we get Equation (2.1), where r

is the minimum degree of hyperedge among all hyperedges and m is the total number

of hyperedges in the hypergraph, and the equality holds for an r-uniform regular

hypergraph. Similarly, by substituting
∑
u∈V

du ≥ nδ in the above inequality, we get

Equation (2.2), where δ is the least degree of a vertex among all vertices and n is the

total number of vertices in the hypergraph.

Lemma 2 (Pólya–Szego inequality). Let 0 < a1 ≤ xi ≤ A1 and 0 < a2 ≤ yi ≤ A2,
for 1 ≤ i ≤ n. Then

n∑
i=1

x2i

n∑
i=1

y2i ≤
1

4

(√
a1a2
A1A2

+

√
A1A2

a1a2

)(
n∑

i=1

xiyi

)2

.

Proposition 4. Let H be a hypergraph (with no isolated vertices) of order n. Also, let δ
and ∆, respectively, be the minimum and maximum degree of a vertex among all the vertices
of the hypergraph. If M1(H) denotes the first Zagreb index of the hypergraph H, then

F (H) ≥ 2δ2
√
nM1(H)

D′
, where D′ =

√
δ3

∆3
+

√
∆3

δ3

and the equality holds for a regular hypergraph (with δ ≥ 1).
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Proof. It is simple to observe that 0 < δ ≤ du ≤ ∆ and 0 < δ2 ≤ d2u ≤ ∆2, and

hence, by using Lemma 2,

∑
u∈V

(du)2
∑
u∈V

(d2u)2 ≤ 1

4

(√
δ · δ2

∆ ·∆2
+

√
∆ ·∆2

δ · δ2

)(∑
u∈V

du · d2u

)2

=⇒ M1(H)
∑
u∈V

d4u ≤
1

4

(√
δ3

∆3
+

√
∆3

δ3

)
(F (H))

2

=⇒ M1(H)nδ4 ≤ 1

4

(√
δ3

∆3
+

√
∆3

δ3

)
(F (H))

2
.

By rearrangement of terms in the above inequality, the result follows.

3. Extremal Bounds

Bounds for the F -index of hypergraphs, minimally connected hypergraphs, and some

families of minimally connected hypergraphs are discussed in this section.

Lemma 3. Let Sn be a hyperstar on n vertices with m hyperedges. Then,

F (Sn) = m3 + n− 1.

Proof. A hyperstar on n vertices with m hyperedges contains a vertex of degree m,

and all the remaining vertices are pendant. F (Sn) = m3+(n−1).13 = m3+n−1.

Proposition 5. Let Sn be a hyperstar on n vertices (with at least two hyperedges). Then,

n− 7 ≤ F (Sn) ≤ (n− 1)(n2 − 2n+ 2).

Equality in the lower bound is attained by any hyperstar with two hyperedges, and the upper
bound is attained by the star graph on n vertices.

Proof. The proof directly follows from Lemma 3.

Lemma 4. Let Pn be a hyperpath on n vertices and m hyperedges. Then,

n+ 7(m− 1) ≤ F (Pn) ≤ 2(4n− 7),

with equality, the lower bound holds when the hyperpath is linear, and the upper bound is
attained by any hyperpath (on n vertices and m hyperedges) that has exactly two pendant
vertices.
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Lemma 5. Let S(m,h, r), r > h be an r-uniform sunflower hypergraph with m hyperedges
and h seeds. Then, F (S(m,h, r)) = m(hm2 + r − h).

Proof. Each hyperedge in an r-uniform sunflower hypergraph, which contains h

seeds, contributes hm2+r−h to F (S(m,h, r)), and hence it is equal to m(hm2+r−h).

Hence, F (S(m,h, r)) =
∑
u∈V

d3u = h ·m3 +m(r − h) · 13 = m(hm2 + r − h).

Theorem 1. Let Tn be a minimally connected hypergraph on n vertices with m hyperedges.
Then,

n+ 7(m− 1) ≤ F (Tn) ≤ nm3 −m4 +m,

where the equality in the lower bound is attained by the linear hyperpath on n vertices with m
hyperedges (or Tn is a linear minimally connected hypergraph with ∆(H) = 2) and the upper
bound is attained by the sunflower hypergraph S(m,n−m,n−m+ 1).

Proof. If the total number of vertices and hyperedges is fixed in Tn, then the varia-

tion of the F -index of Tn is due to the variation in including these n vertices among

these m hyperedges. For m = 1, the lower bound is clear as the minimally connected

hypergraph is always connected. For m ≥ 2, it is trivial that the lower bound is

attained by a linear minimally connected hypergraph. Let Tn be a linear minimally

connected hypergraph (m hyperedges) that contains t ≥ 1 vertices of degree greater

than or equal to 3 and S = {vi ∈ V(Tn) : d(vi) = ∆i ≥ 3}. Now,, it is important to

note that Tn contains n−m+ 1 +
t∑

i=1

(∆i− 2) pendant vertices and m−
t∑

i=1

∆i + t− 1

vertices of degree two. Therefore,

F (Tn) =

t∑
i=1

∆3
i +

(
m−

t∑
i=1

∆i + t− 1

)
· 23 +

(
n−m+ 1 +

t∑
i=1

(∆i − 2)

)
· 13

=

t∑
i=1

∆3
i + 8m− 8

t∑
i=1

∆i + 8t− 8 + n−m+ 1 +

t∑
i=1

∆i − 2t

=

t∑
i=1

∆3
i − 7

t∑
i=1

∆i + 6t+ 7m+ n− 7

> 7m+ n− 7 = F (Pn),

where Pn be a linear hyperpath on n vertices with m hyperedges. Also, it is direct

that any linear minimally connected hypergraph on n vertices with m hyperedges and

∆ = 2 has the same value of F -index (minimum).

It is well known that the maximum degree of a vertex in a hypergraph having m

hyperedges is m. In order to maximize F (Tn), the number of vertices of degree m

should be maximum. That is, the number of vertices that are contained in all the m

hyperedges should be maximum. Hence, the sunflower hypergraph S(m,n −m,n −
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m + 1) will have the maximum value of F -index among all minimally connected

hypergraphs of order n with m hyperedges and is given by

F (S(m,n−m,n−m+1)) = m((n−m)m2 +(n−m+1)− (n−m)) = nm3−m4 +m,

as desired.

Lemma 6. Let n = k + l be a partition of a positive integer n into two non-negative
integers k and l such that k(lk2 + 1) is the maximum. Then

k = s or k = s+ 1,

where s =

⌊
1

4

(
n+

n2

D
+D

)⌋
and D =

3

√
8 + n3 + 4

√
4 + n3.

Proof. Let n = x + y be the partition of a positive integer n ≥ 3 into two non-

negative real numbers x and y. Now the maximization of x(yx2 + 1) is the same as

that of maximizing x((n−x)x2+1) = nx3−x4+x, and on differentiating with respect

to x and equating it to zero, we get the extremum point. That is,

d

dx
(nx3 − x4 + x) = 3nx2 − 4x3 + 1 = 0.

=⇒ x =
1

4

(
n+

n2

3
√

8 + n3 + 4
√

4 + n3
+

3

√
8 + n3 + 4

√
4 + n3

)
is the extremum

point, as the other two roots of the above polynomial equation are complex.

Since our aim is to partition n into two integers, the floor or ceil of the above real

number x will be the (integer) extremum point.

Theorem 2. Let Tn be a minimally connected hypergraph with n vertices. Then,

n ≤ F (Tn) ≤ max
m=s,s+1

{nm3 −m4 +m},

where s =
⌊

1
4

(
n+ n2

D
+D

)⌋
, where D = 3

√
8 + n3 + 4

√
4 + n3. Equality in the upper bound

is attained by the sunflower hypergraph S(m,n−m,n−m+ 1).

Proof. From Theorem 1, it is known that a minimally connected hypergraph on n

vertices with m hyperedges has the maximum value of F (Tn) and is attained by the

sunflower hypergraph S(m,n−m,n−m+1). The value of m for which nm3−m4 +m

is maximum can be obtained from Lemma 6.

LetH be a hypergraph with vertex set V and edge set E . If e is an arbitrary hyperedge

in E , then we denote the hypergraph obtained from H on deleting the edge e by H−e.
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Lemma 7. Let H = (V, E) be a hypergraph on n vertices and e /∈ E. Then,

F (H+ e) > F (H).

Proof. Let e ∈ E be a hyperedge that contains k ≥ 1 vertices and V ′ = V \ e. Then,

by the definition of the F -index of a hypergraph,

F (H) =
∑
u∈V

d3u =
∑
x∈e

d3x +
∑
y∈V′

d3y <
∑
x∈e

(dx + 1)3 +
∑
y∈V′

d3y = F (H+ e),

as desired.

Theorem 3. Let H = (V = U1 ∪U2, E) be a connected bipartite hypergraph on n vertices
with |U1| = s and |U2| = t. Then,

n ≤ F (H) ≤ s 23(s−1)(2t − 1)3 + t 23(t−1)(2s − 1)3.

Equality in the lower bound is attained by the hypergraph, which has a single hyperedge
containing all the vertices of the hypergraph, and the upper bound is attained by the complete
bipartite hypergraph, HKs,t .

Proof. From Lemma 7 it is direct to note that, among all bipartite hypergraphs,

H = (U1 ∪ U2, E), the complete bipartite hypergraph, HKs,t
where |U1| = s, |U2| = t

attains the maximum value of F -index. The degree of any vertex u ∈ U1 in a complete

bipartite hypergraph HKs,t
is given by,

du = (2t − 1)

((
s− 1

0

)
+

(
s− 1

1

)
+ · · ·+

(
s− 1

s− 1

))
= (2t − 1)2s−1.

Similarly, for any vertex v ∈ U2, we have dv = (2s − 1)2t−1, from which the result

follows.

Theorem 4. Let H(r) = (V = U1∪U2, E) be an r-uniform connected bipartite hypergraph
on n vertices with |U1| = s and |U2| = t. Then

F (H(r)) ≤ s d3u + t d3v,

where du =
r−2∑
i=0

(
s−1
i

)(
t

r−1−i

)
and dv =

r−2∑
i=0

(
t−1
i

)(
s

r−1−i

)
. Equality in the upper bound is

attained by the r-uniform complete bipartite hypergraph, H(r)
Ks,t

.
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Proof. The maximum value of F -index among all r-uniform bipartite hypergraphs

is attained by the r-uniform complete bipartite hypergraph H(r)
Ks,t

. For u ∈ U1, the

number of ways of choosing an r element subset e from U1 ∪ U2 such that u ∈ e and

e∩U2 6= ∅ is given by
r−2∑
i=0

(
s−1
i

)(
t

r−1−i
)
. Hence, the degree of a vertex u ∈ U1 in H(r)

Ks,t

is given by
r−2∑
i=0

(
s
i

)(
t

r−1−i
)
. Similarly, for some v ∈ U2, the number of ways of choosing

an r− 1 element subset e′ from U1 ∪U2 such that e′ ∩U1 6= ∅ is
r−2∑
i=0

(
t−1
i

)(
s

r−1−i
)

and

hence the proof.

Theorem 5. Let H(r) = (V, E) be a connected r-uniform hypergraph on n vertices. Then

F (H) ≤ n

(
n− 1

r − 1

)3

.

Equality in the upper bound is attained by the r-uniform complete hypergraph, H(r)
Kn

.

Proof. The expression for the F -index of the r-uniform complete hypergraph H(r)
Kn

can be computed by observing that the degree of every vertex in H(r)
Kn

is equal to(
n−1
r−1
)
. Also, the r-uniform complete hypergraph has the maximum value of F -index

among the class of r-uniform hypergraphs, which follows from Lemma 7.

Theorem 6. Let H = (V, E) be a connected hypergraph on n vertices. Then,

n ≤ F (H) ≤ n 23(n−1).

Equality in the upper bound is attained by the complete hypergraph, HKn .

Proof. The proof follows by noting that the degree of every vertex in HKn
is equal

to 2n−1.

4. F -Index of Hypergraph Operations

In this section, we discuss the forgotten index of a few hypergraph operations.

4.1. Join

LetH1 = (V1, E1) andH2 = (V2, E2) be two r-uniform hypergraphs. Then (r-uniform)

join of H1 and H2 denoted by H1+rH2 has the vertex set V = V1 ∪ V2 and the edge

set is given by E = E1 ∪ E2 ∪ E∗, where

E∗ = {e ⊆ V : |e| = r, e ∩ Vi 6= ∅ for i = 1, 2}.
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Since we have considered not only uniform hypergraphs in our study, we generalize

the join operation to non-uniform hypergraphs as follows:

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Then the join of H1 and

H2 denoted by H1+H2 has the vertex set V = V1 ∪ V2 and the edge set is given by

E = E1 ∪ E2 ∪ E†, where

E† = {e ⊆ V : e ∩ Vi 6= ∅ for i = 1, 2}.

Theorem 7. Let H1 = (V1, E1) and H2 = (V2, E2) be two r-uniform hypergraphs with
|V1| = n1, |V2| = n2, |E1| = m1 and |E2| = m2. If M1(H) denotes the first Zagreb index of
the hypergraph H, then

F (H1 +r H2) = F (H1) + F (H2) + n1D
3
1 + n2D

3
2 + 3D1(M1(H1) +D1rm1)

+ 3D2(M1(H2) +D2rm2),

where D1 =
r−2∑
i=0

(
n1−1

i

)(
n2

r−1−i

)
and D2 =

r−2∑
i=0

(
n2−1

i

)(
n1

r−1−i

)
.

Proof. For u ∈ V1 and v ∈ V2, let du and dv be the degrees of the vertices u in H1
and v in H2, respectively. Also, let d′u and d′v be the degrees of the vertices u and v
in H1 +r H2. If x is an arbitrary vertex in V, by the definition of F -index, we have
F (H1 +r H2)

=
∑

x∈V1∪V2

(d′x)3 =
∑
u∈V1

(d′u)3 +
∑
v∈V2

(d′v)3

=
∑
u∈V1

(du + D1)3 +
∑
v∈V2

(dv + D2)3

where D1 =

r−2∑
i=0

(n1 − 1

i

)( n2

r − 1− i

)
and D2 =

r−2∑
i=0

(n2 − 1

i

)( n1

r − 1− i

)
=
∑
u∈V1

(d3u + D3
1 + 3d2uD1 + 3duD

2
1) +

∑
v∈V2

(d3v + D3
2 + 3d2vD2 + 3dvD

2
2)

= F (H1) + n1D
3
1 + 3D1M1(H1) + 3D2

1

∑
u∈V1

du + F (H2) + n2D
3
2 + 3D2M1(H2) + 3D2

2

∑
v∈V2

dv

= F (H1) + n1D
3
1 + 3D1M1(H1) + 3D2

1rm1 + F (H2) + n2D
3
2 + 3D2M1(H2) + 3D2

2rm2,

as desired.

Corollary 1. Let H1 = (V1, E1) and H2 = (V2, E2) be two r-uniform hypergraphs with
|V1| = n1, |V2| = n2, |E1| = m1 and |E2| = m2. Then,

F (H1 +H2) = F (H1) + F (H2) + n1D
3
1 + n2D

3
2 + 3D1(M1(H1) +D1rm1)

+ 3D2(M1(H2) +D2rm2),

where D1 = 2n1−1(2n2 − 1) and D2 = 2n2−1(2n1 − 1).
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Theorem 8. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with |V1| =
n1, |V2| = n2, |E1| = m1 and |E2| = m2. If ∆1 and ∆2 are the maximum degrees in H1 and
H2, respectively, then

F (H1 +H2) ≤ F (H1) + F (H2) + n1D
3
1 + n2D

3
2 + 3D1(M1(H1) +D1n1∆1)

+3D2(M1(H2) +D2n2∆2),

where D1 = 2n1−1(2n2 − 1) and D2 = 2n2−1(2n1 − 1). The equality in the above holds if and
only if both H1 and H2 are regular.

Note 1. By replacing ∆1,∆2 by δ1 and δ2, respectively, in the inequality of Theorem 8,
we get the lower bound for F (H1 +H2), and the equality in the lower bound holds if and
only if both H1 and H2 are regular.

4.2. Cartesian Product

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. The Cartesian product of

H1 and H2 denoted by H1�H2 has the vertex set V = V1 × V2 and the edge set is

given by E = E∗1 ∪ E∗2 , where

E∗1 = {e1 × {v} : e1 ∈ E1 and v ∈ V2}

and

E∗2 = {{u} × e2 : e2 ∈ E2 and u ∈ V1}.

If |V1| = n1, |V2| = n2, |E1| = m1 and |E2| = m2, then the total number of hyperedges

in the Cartesian product of H1 and H2 is given by,

|E| = |E∗1 |+ |E∗2 | = m1n2 +m2n1.

Example 1. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with Vi, i = 1, 2
and Ei, i = 1, 2 defined as follows: V1 = {1, 2, 3, 4}, V2 = {a, b, c}, E1 = {{1, 2, 3}, {3, 4}}
and E2 = {{a, b, c}}. For the sake of simplicity, here we write the ordered pair (x, y) as xy.
V(H1�H2) = {1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c}

E∗1 = {{1a, 2a, 3a}, {1b, 2b, 3b}, {1c, 2c, 3c}, {3a, 4a}, {3b, 4b}, {3c, 4c}}

and

E∗2 = {{1a, 1b, 1c}, {2a, 2b, 2c}, {3a, 3b, 3c}, {4a, 4b, 4c}}.

Theorem 9. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with |V1| = n1 and
|V2| = n2. If ∆1(resp. δ1) and ∆2(resp. δ2) are the maximum (resp. minimum) degree in
H1 and H2, respectively, then

F (H1�H2) ≤ n2F (H1) + n1F (H2) + 3n1n2∆1∆2(∆1 + ∆2),

and

F (H1�H2) ≥ n2F (H1) + n1F (H2) + 3n1n2δ1δ2(δ1 + δ2).

Equality in the above holds if and only if both H1 and H2 are regular.
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Proof. Let du and dv, respectively, be the degrees of the vertices u in H1 and v in

H2. We denote the degree of a vertex (u, v) inH1�H2 by duv, and it is very important

to observe that duv = du + dv. Hence,

F (H1�H2) =
∑

(u,v)∈V1×V2

d3uv

=
∑

(u,v)∈V1×V2

(du + dv)3

=
∑

(u,v)∈V1×V2

(d3u + d3v + 3d2udv + 3d2vdu)

= n2
∑
u∈V1

d3u + n1
∑
v∈V2

d3v + 3
∑

(u,v)∈V1×V2

dudv(du + dv)

≤ n2F (H1) + n1F (H2) + 3n1n2∆1∆2(∆1 + ∆2).

The lower bound can also be obtained similarly, and it is clear that the equality in

the lower bound as well as the upper bound holds if and only if both H1 and H2 are

regular.

4.3. Corona Product

Let G = (U = {u1, . . . , un1
}, E ′) and H = (V = {v1, . . . , vn2

}, E) be two hypergraphs

of order n1 and n2 respectively, also {Hi = (Vi = {v(i)1 , . . . , v
(i)
n2 }, Ei) : 1 ≤ i ≤ n1} be

the collection of n1 copies of H andWi = Vi∪{ui}. Now, corona product (r-uniform,

r ≥ 2) G ◦rH of two hypergraphs G and H has the vertex set
n1⋃
i=1

Wi and the edge set

n1⋃
i=1

(
Ei ∪ E†i

)
∪ E ′, where

E†i = {e ⊆ Wi : ui ∈ e and |e| = r ≥ 2} .

Example 2. Let G = (U , E ′) and H = (V, E) be two hypergraphs, where U =
{1, 2, 3}, E ′ = {{1, 2}, {1, 2, 3}}, V = {a, b, c, d} and E = {{a, b}, {a, b, d}, {b, c, d}}. Let
Vi = {a(i), b(i), c(i), d(i)}, 1 ≤ i ≤ 3 and Ei = {{a(i), b(i)}, {a(i), b(i), d(i)}, {b(i), c(i), d(i)}}.

The (3-uniform) corona product G ◦3 H of G and H has the vertex set
3⋃

i=1

Wi where

Wi = Vi ∪ {i}, 1 ≤ i ≤ 3 and the edge set
3⋃

i=1

(Ei ∪ E†i ) ∪ E ′, where E†i =

{{1, a(i), b(i)}, {1, a(i), c(i)}, {1, a(i), d(i)}, {1, b(i), c(i)}, {1, b(i), d(i)}, {1, c(i), d(i)}}.

Theorem 10. Let G = (U , E ′) and H = (V, E) be two r-uniform (r ≥ 2) hypergraphs
with |U| = n1, |V| = n2, |E ′| = m1 and |E| = m2. If M1(H) denotes the first Zagreb index
of the hypergraph H and ∆1 (resp. ∆2) denotes the maximum degree of a vertex among all
vertices of G (resp. H), then

F (G ◦r H) = F (G) + n1F (H) + n1(P 3
1 + n2P

3
2 ) + 3(P1M1(G) + n1P2M1(H))

+ 3r(P 2
1m1 + n1P

2
2m2),
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where P1 =
(

n2
r−1

)
and P2 =

(
n2−1
r−2

)
.

Proof. Let Hi = (Vi, Ei), 1 ≤ i ≤ n1 be the n1 copies of the hypergraph, H and du,dv
be the degrees of the vertices u of G and v of H respectively, and d′u, d′v respectively

be the degrees of the vertices u and v in G ◦r H. For an arbitrary vertex x of G ◦r H,

d′x denote the degree of the vertex x. Hence

∑
x∈

n1⋃
i=1
Wi

d′3x =
∑
u∈U

d′3u +

n1∑
i=1

∑
v∈Vi

d′3v

=
∑
u∈U

(du + P1)3 +

n1∑
i=1

∑
v∈Vi

(dv + P2)3

=
∑
u∈U

(d3u + P 3
1 + 3duP1(du + P1)) +

n1∑
i=1

∑
v∈Vi

(d3v + P 3
2 + 3P2dv(P2 + dv))

=
∑
u∈U

(d3u + P 3
1 + 3duP1(du + P1)) + n1

∑
v∈Vi

(d3v + P 3
2 + 3P2dv(P2 + dv))

= F (G) + n1P
3
1 + 3P1M1(G) + 3P 2

1

∑
u∈U

du + n1F (H)

+ n1n2P
3
2 + 3n1P2M1(H) + 3n1P

2
2

∑
v∈V

dv

= F (G) + n1P
3
1 + 3P1M1(G) + 3P 2

1 rm1 + n1F (H)

+ n1n2P
3
2 + 3n1P2M1(H) + 3n1P

2
2 rm2,

as desired.

Corollary 2. Let G = (U , E ′) and H = (V, E) be two hypergraphs with |U| = n1, |V| =
n2, |E ′| = m1 and |E| = m2. If M1(H) denotes the first Zagreb index of the hypergraph H,
then

F (G ◦r H) ≤ F (G) + n1F (H) + n1(P 3
1 + n2P

3
2 ) + 3(P1M1(G) + n1P2M1(H))

+ 3(P 2
1 n1∆1 + n1P

2
2 n2∆2),

where P1 =
(

n2
r−1

)
and P2 =

(
n2−1
r−2

)
. The equality in the above holds if both G and H are

regular.

The generalized (not uniform) corona product of two hypergraphs G and H denoted

by G ◦H has the same vertex set as that of G ◦rH and the edge set
n1⋃
i=1

(
Ei ∪ E†

′

i

)
∪E ′,

where

E†
′

i = {e ⊆ Wi : ui ∈ e and e ∩ Vi 6= ∅} .
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Corollary 3. Let G = (U , E ′) and H = (V, E) be two hypergraphs with |U| = n1, |V| =
n2, |E ′| = m1 and |E| = m2. If M1(H) denotes the first Zagreb index of the hypergraph H,
then

F (G ◦ H) ≤ F (G) + n1F (H) + n1(P 3
1 + n2P

3
2 ) + 3(P1M1(G) + n1P2M1(H))

+ 3(P 2
1 n1∆1 + n1P

2
2 n2∆2),

where P1 = 2n2 − 1 and P2 = 2n2−1. The equality holds in the above if and only if both G
and H are regular.

5. Conclusion

In this article, the relation between the forgotten topological index of the hypergraph

and some other vertex-degree-based topological index has been obtained. We have

given the bounds for the forgotten topological index of uniform hypergraphs, mini-

mally connected hypergraphs, and some families of minimally connected hypergraphs.

In addition, the expression for the F -index of some binary operations on hypergraphs

has been obtained.
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