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Abstract: LetG be an arbitrary simple connected graph. In this paper, we introduce
Harary-Sombor index of G and denote it by HSO(G). Then we calculate its values

for several familiar classes of graphs. Also, we state an upper bound for the Harary-

Sombor index of bipartite graphs. Moreover, we determine the extremum values of the
Harary-Sombor index of trees.
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1. Introduction

Let G = (V (G), E(G)) be a simple connected graph where V (G) is the set of vertices

and E(G) is the set of edges of G. The order (size) of G refers to the number

of vertices (edges) in the graph. Throughout this paper, dv denotes the degree of

vertex v in G and d(u, v) represents the distance between vertices u and v in G. The

maximum degree of G is denoted by ∆.

In mathematical chemistry, the topological index of a structural graph of a molecule

(i.e. molecular structure descriptor) is a real number related to a structural graph

of a molecule. Topological indices are used to investigate the correlation between

chemical structure and various physical properties, biological activities or chemical

reactivity. Also, topological indices do not depend on the labeling of the vertices

and hence isomorphic graphs have the same topological indices. Until now, many

different distance-based and degree-based topological indices have been investigated
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2 On Harary-Sombor index of graphs

and employed in quantitative structure activity (property) relationship studies, with

various rate of success.

The most well-known of these indices is the distance-based Wiener index, which is

introduced in 1947 by Harry Wiener [15, 16] in an effort to analyze the boiling points

of a group of alkanes called paraffin. The Wiener index of a graph G is defined as

follows and is denoted by W (G),

W (G) =
1

2

∑
u,v∈V (G)

d(u, v).

Another well-known distance-based index is the Harary index, which is defined as

follows:

H(G) =
1

2

∑
u,v∈V (G)

u 6=v

1

d(u, v)
,

for more details, you can refer to [3, 10, 12, 17].

Among degree-based topological indices, the first and the second Zagreb indices are

well-known. They are introduced in 1972 by Gutman and Trinajstić [9] to approximate

the π-electron energy, as shown in the following formulas:

M1(G) =
∑

v∈V (G)

d2v =
∑

uv∈E(G)

dv + du , M2(G) =
∑

uv∈E(G)

dudv.

Next, in 2021 Gutman [7] defined the Sombor index of a graph G as follows:

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

Nowadays, studying on Sombor index of graphs attracted the attention of many re-

searchers (see [4–6, 8, 13, 14]).

In [1] Alizadeh et al. introduced another new index that is called the additively

weighted Harary index, by using the first Zagreb index and the Harary index as follows:

HA(G) =
1

2

∑
u 6=v

du + dv
d(u, v)

.

They also calculated the values of this index for famous graphs and subsequently

derived bounds for it. Additionally, they computed the exact value of this index for

some graph composition operations.

In [2], An and Xiong introduced another index called the multiplicatively weighted

Harary index by replacing the additive weighting of vertices with multiplicative
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weighting. They also calculated its values for some graphs, including their com-

positions.

HM (G) =
1

2

∑
u6=v

du.dv
d(u, v)

.

Lin in [11] introduced the Harary-Albertson index and analyzed its application in

quantitative structure property relationship. He also, derived relationships between

this index and other topological indices and calculated its value for trees of a given

order.

In this paper, we introduce Harary-Sombor index and calculate its values for some

well-known graphs. Also, we state an upper bound for the Harary-Sombor index of

bipartite graphs. Furthermore, we determine the extremum values of the Harary-

Sombor index of trees.

2. Basic properties of the Harary-Sombor index

In this paper we introduce the new topological index of connected graphs that defined

as

HSO(G) =
1

2

∑
u,v∈V (G)

u 6=v

√
d2u + d2v
d(u, v)

and called Harary-Sombor index. Clearly, HSO(G) ≥ SO(G) and equality holds if

and only if G = Kn. Also, for a graph G of order n and size m, we have HSO(G) ≤
SO(G) +

√
2
2 ∆

((
n
2

)
−m

)
and equality holds if and only if G ∼= Kn. So, we have the

following lemma.

Lemma 1. For a graph G of order n and size m,

SO(G) ≤ HSO(G) ≤ SO(G) +
∆(n2 − n− 2m)

2
√

2

and each equality holds if and only if G ∼= Kn. In this case,

HSO(Kn) = SO(Kn) =
n(n− 1)2√

2
.

In the following, we calculate the values of the Harary-Sombor index of some familiar

classes of graphs.

Lemma 2. Let Sn, Cn and Pn be the star, the cycle and the path graph of order n,
respectively. We have the following statements:

(i) HSO(Sn) = (n− 1)
√
n2 − 2n + 2 +

√
2

4
(n− 1)(n− 2);
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(ii) HSO(Cn) =

{
2
√

2nHn−1
2

n is odd

2
√

2(nHn
2
− 1) n is even

;

(iii) HSO(Pn) = 2
√

5Hn−2 +
√

8(n− 2)Hn−3 −
√

8(n− 3) +

√
2

n− 1
;

where the n-th harmonic number Hn is defined as the n-th partial sum of the harmonic series,
n∑

k=1

1

k
.

Proof. (i) Let V (Sn) = {u, v1, . . . , vn−1} and du = n − 1. Since d(u, vi) = 1 and

d(vi, vj) = 2 we have:

HSO(Sn) = (n− 1)
√

1 + (n− 1)2 +

√
2

2

(
n− 1

2

)
= (n− 1)

√
n2 − 2n+ 2 +

√
2

4
(n− 1)(n− 2).

(ii) For the cycle Cn, distance of any two arbitrary vertices are from 1 to bn2 c. Also,

dv = 2 for every vertex v ∈ V (Cn). If n is odd, then each number from 1 to
n− 1

2
appears in the denominator of n summands in HSO(Cn). So,

HSO(Cn) = n
√

8

(
1 +

1

2
+ · · ·+ 1

n−1
2

)
= 2
√

2nHn−1
2
.

Else, each number from 1 to
n

2
− 1 appears in the denominator of n summands and

n

2
appears in the denominator of

n

2
summands in HSO(Cn). Thus,

HSO(Cn) =
√

8

n
1 +

1

2
+ · · ·+ 1

n

2
− 1

+
n

2
× 1
n

2


=
√

8

n
1 +

1

2
+ · · ·+ 1

n

2

− 1


= 2
√

2(nHn
2
− 1).

(iii) Let Pn = v1 · · · vn. We have:

HSO(Pn) =

n−1∑
k=2

√
1 + 4

d(v1, vk)
+

n−1∑
k=2

√
1 + 4

d(vn, vk)
+

n−2∑
i=2

n−1∑
j=i+1

√
4 + 4

d(vi, vj)
+

√
2

n− 1

= 2
√

5Hn−2 +
√

8

n−3∑
k=1

Hk +

√
2

n− 1
.
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On the other hand,
n−3∑
k=1

Hk = (n− 2)Hn−3 − (n− 3). So,

HSO(Pn) = 2
√

5Hn−2 +
√

8(n− 2)Hn−3 −
√

8(n− 3) +

√
2

n− 1

and the proof is complete.

Let p ≥ q ≥ 2 be positive integer numbers. The double star DSp,q is a tree obtained

from Sp and Sq by connecting the center of Sp with that of Sq. One can calculate

that

HSO(DSp,q) =
√
p2 + q2 +

2p+ q − 3

2

√
1 + p2 +

2q + p− 3

2

√
1 + q2

+
3p2 + 3q2 + 4pq − 13p− 13q + 16

6
√

2
.

Lemma 3. Let Kp,q be the complete bipartite graph. Then

HSO(Kp,q) =
1

2
√

2
pq
(√

8p2 + 8q2 + p + q − 2
)
.

In particular if p = q, then HSO(Kp,p) = 1√
2
p2(3p− 1).

Proof. Let V (Kp,q) = X ∪ Y with |X| = p and |Y | = q. Therefore d(u, v) = 1 for

any u ∈ X and v ∈ Y and vice versa; and d(u, v) = 2 otherwise. Hence

HSO(Kp,q) = pq
√
p2 + q2 +

(
p

2

)√
q2 + q2

2
+

(
q

2

)√
p2 + p2

2

= pq
√
p2 + q2 +

pq(p− 1)

2
√

2
+
pq(q − 1)

2
√

2

=
pq

2
√

2
(
√

8p2 + 8q2 + p+ q − 2)

and we are done.

Now, we state the following upper bound for the Harary-Sombor index of bipartite

graphs.

Theorem 1. If G is a bipartite graph of order n, then

HSO(G) ≤


n2(3n− 2)

8
√

2
n is even

n2 − 1

8
√

2

(
n− 2 + 2

√
n2 + 1

)
n is odd

with equality if and only if G ∼= Kdn
2
e,bn

2
c.



6 On Harary-Sombor index of graphs

Proof. Let G = G(X,Y ) be a bipartite graph with X = p, |Y | = q, p + q = n and

p ≥ q. It is clear that HSO(G) ≤ HSO(Kp,q). So, by Lemma 3 we have:

HSO(G) =
p(n− p)

2
√

2

(√
8p2 + 8(n− p)2 + n− 2

)
.

We define the function f(x) on [dn2 e, n− 1], as follows:

f(x) = x(n− x)
(
n− 2 +

√
16x2 − 16nx+ 8n2

)
.

Thus

f ′(x)
√

16x2 − 16nx+ 8n2 = g1(x) + g2(x), (†)

where

g1(x) = (n− 2)(n− 2x)
√

16x2 − 16nx+ 8n2

and

g2(x) = −48x3 + 72nx2 − 40n2x+ 8n3.

Clearly,

g′1(x)
√

16x2 − 16nx+ 8n2 = −2(n− 2)(32x2 − 32nx+ 12n2).

Thus g′1(x)
√

16x2 − 16nx+ 8n2 and consequently g′1(x) are negative functions and

hence g1(x) is decreasing. Also, g′2(x) is negative and consequently g2(x) is decreas-

ing. These imply that f ′(x)
√

16x2 − 16nx+ 8n2 is decreasing. On the other hand,√
16x2 − 16nx+ 8n2 is increasing on [

n

2
,∞]. So, f ′(x) is decreasing on [dn2 e, n − 1].

Moreover, f ′(
n

2
) = 0, by Eq. (†). Thus f ′(x) < 0 on [dn2 e, n − 1] and hence f(x) is

decreasing on this interval. Therefore maximum of f(x) occurs at dn2 e and the result

follows.

3. On the Harary-Sombor index of trees

In this section, we show that Pn and Sn have the minimum and maximum value of

the Harary-Sombor index among all trees of order n, respectively.

Theorem 2. Let G be a graph of order n and T ba an arbitrary spanning tree of G. Then

HSO(Pn) ≤ HSO(T ) ≤ HSO(G) ≤ HSO(Kn).
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u1 u2 ur vsx v2 v1

T1

T

u1u2 ur vsx v2 v1

T1

T ′

Figure 1. The graphs T and T ′.

Proof. It is enough to show that HSO(Pn) ≤ HSO(T ). If T = Pn, then the proof

is straightforward. Else, there exists a vertex x in T with degree at least 3 such that

at least two components of T − x are paths. Suppose these paths have lengths r − 1

and s− 1, where r ≤ s. Thus T −x = Pr ∪Ps ∪T1, where T1 is the subgraph induced

by the vertices not included in these two paths. Now, we remove the end vertex of

the path with the smaller size and add it to the end vertex of the path with the larger

size and denote the resulting graph by T ′ (see Fig. 1).

If r ≥ 2, then due to the differences of the summands related to u1 and V (T1), u2
and V (T1); and v1 and V (T1) in the calculation of HSO(T ) and HSO(T ′) we have:

HSO(T ′) = HSO(T )−
∑

y∈V (T1)

√
1 + d2y

r + d(x, y)
+

∑
y∈V (T1)

√
1 + d2y

s+ 1 + d(x, y)

−
∑

y∈V (T1)

√
4 + d2y

r − 1 + d(x, y)
+

∑
y∈V (T1)

√
1 + d2y

r − 1 + d(x, y)

−
∑

y∈V (T1)

√
1 + d2y

s+ d(x, y)
+

∑
y∈V (T1)

√
4 + d2y

s+ d(x, y)
.

Now, by considering r ≤ s we get:

HSO(T ′) < HSO(T )− (
1

r − 1 + d(x, y)
− 1

s+ d(x, y)
)
∑

y∈V (T1)

(
√

4 + d2y −
√

1 + d2y) < HSO(T ).

Next, suppose r = 1. In order to the differences of the summands related to u1 and

V (T1)− {x}, v1 and V (T1)− {x}, x and other vertices of T1, x and vi (i = 2, . . . , s),

x and u1; and x and v1 in the calculation of HSO(T ) and HSO(T ′) we obtain:

HSO(T ′) = HSO(T )−
∑

y∈V (T1)
y 6=x

√
1 + d2y

1 + d(x, y)
+

∑
y∈V (T1)

y 6=x

√
1 + d2y

s+ 1 + d(x, y)
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−
∑

y∈V (T1)
y 6=x

√
1 + d2y

s+ d(x, y)
+

∑
y∈V (T1)

y 6=x

√
4 + d2y

s+ d(x, y)

−
∑

y∈V (T1)
y 6=x

√
d2x + d2y

d(x, y)
+

∑
y∈V (T1)

y 6=x

√
(dx − 1)2 + d2y

d(x, y)

−
s∑

i=2

√
d2x + 4

d(x, vi)
+

s∑
i=2

√
(dx − 1)2 + 4

d(x, vi)

−
√
d2x + 1 +

√
(dx − 1)2 + 1

s+ 1

−
√
d2x + 1

s
+

√
(dx − 1)2 + 4

s
.

Therefore,

HSO(T ′) < HSO(T )−
∑

y∈V (T1)
y 6=x

√
1 + d2y

s+ d(x, y)
+

∑
y∈V (T1)

y 6=x

√
4 + d2y

s+ d(x, y)

−
∑

y∈V (T1)
y 6=x

√
d2x + d2y

d(x, y)
+

∑
y∈V (T1)

y 6=x

√
(dx − 1)2 + d2y

d(x, y)

−
√
d2x + 1 +

√
(dx − 1)2 + 1

s+ 1

−
√
d2x + 1

s
+

√
(dx − 1)2 + 4

s
.

Also, √
d2x + d2y −

√
(dx − 1)2 + d2y >

√
4 + d2y −

√
1 + d2y,

since dx ≥ 3. Moreover,

d2x + 1 > (dx − 1)2 + 4.

Thus HSO(T ′) < HSO(T ).

If T ′ = Pn, the proof is complete; otherwise, by repeating the above process as many

times as necessary, Pn is finally reached and the proof is complete.

Theorem 3. For a tree T of order n, HSO(T ) ≤ HSO(Sn).

Proof. Let T 6= Sn be an arbitrary tree. So, G has a diagonal path of length at least

3. Let v and w be the second and the third vertices of such a path, respectively and
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u1, . . . , ur be leaves of T adjacent to v. We remove edge vw and matching the vertices

v and w together; and add a new leaf adjacent to u = w and denote the resulting tree

by T ′ (see Fig. 2).

w v u2

u1

ur

T2(T ):

x1xs

T1

v

w u2

u1

ur

T2(T ′):

x1xs

T1

Figure 2. The graphs T and T ′.

Due to the differences of the summands related to ui’s and v, ui’s and w, v and w, v

and V (T1), w and V (T1), ui’s and V (T2), v and V (T2), w and V (T2); and V (T1) and

V (T2) in the calculation of HSO(T ) and HSO(T ′) we have:

HSO(T ′) = HSO(T )− r
√

1 + (r + s+ 1)2 +

√
2

2
r

− r
√

1 + d2w
2

+ r
√

1 + (dw + r + s)2

−
√
d2w + (r + s+ 1)2 +

√
(dw + r + s)2 + 1

−
∑

x∈V (T1)

√
(r + s+ 1)2 + d2x

d(v, x)
+

∑
x∈V (T1)

√
1 + d2x

d(v, x) + 1

−
∑

x∈V (T1)

√
d2w + d2x

d(v, x) + 1
+

∑
x∈V (T1)

√
(dw + r + s)2 + d2x

d(v, x)

− r
∑

y∈V (T2)

√
1 + d2y

d(w, y) + 2
+ r

∑
y∈V (T2)

√
1 + d2y

d(w, y) + 1

−
∑

y∈V (T2)

√
(r + s+ 1)2 + d2y

d(w, y) + 1
+

∑
y∈V (T2)

√
1 + d2y

d(w, y) + 1

−
∑

y∈V (T2)

√
d2w + d2y

d(w, y)
+

∑
y∈V (T2)

√
(dw + r + s)2 + d2y

d(w, y)

−
∑

x∈V (T1),y∈V (T2)

√
d2x + d2y

d(x, v) + d(w, y) + 1
+

∑
x∈V (T1),y∈V (T2)

√
d2x + d2y

d(x, v) + d(w, y)
.

Note that f(X) =
√

1 + (X + r + s)2−1

2

√
1 +X2 is an increasing function for X > 0.
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So, √
1 + (dw + r + s)2 −

√
1 + d2w

2
≥
√

1 + (1 + r + s)2 −
√

2

2
,

since dw ≥ 2. Also, for arbitrary positive real numbers a and b, g(X) =
1

b

√
(X + r + s)2 + a2 − 1

b+ 1

√
X2 + a2 is an increasing function for X > 0. So,

for any x ∈ V (T1) we have

1

d(v, x)

√
(dw + r + s)2 + d2x−

1

d(v, x) + 1

√
d2w + d2x ≥

1

d(v, x)

√
(1 + r + s)2 + d2x−

1

d(v, x) + 1

√
1 + d2x.

Moreover, h(X) =
√

(X + r + s)2 + a2−
√
X2 + a2 is an increasing function for X >

0. So, for any y ∈ V (T2) we have

√
(dw + r + s)2 + d2y −

√
d2w + d2y ≥

√
(1 + r + s)2 + d2y −

√
1 + d2y.

Furthermore,
1

d(w, y) + 1
≤ 1

d(w, y)
. Therefore, HSO(T ′) > HSO(T ). If T ′ = Sn,

the proof is complete. Else, by repeating the above process as many times as necessary,

Sn is finally reached and we are done.
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