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Abstract: It is conjectured that the crossing number of the complete bipartite graph
Km,n without one edge e is equal to
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. In this

paper, we establish the validity of this conjecture for m = 5 using combinatorial prop-

erties of cyclic permutations with proofs that can be generalized to all graphs Km,n \ e
if m is at least six. Further, we give a conjecture concerning crossing numbers of Km,n

without several edges incident with a common vertex.
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plete bipartite graph.
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1. Introduction

Graph theory serves as a foundational framework for modeling and analyzing complex

systems across various disciplines, ranging from computer science to social networks

to biology. One fundamental aspect of graph theory is the concept of crossing num-

bers, which quantifies the minimum number of crossings required in a drawing of a

graph [6]. The understanding and minimization of the crossing number of a graph

have significant implications in numerous areas, encompassing both theoretical and

practical domains. In computer science, minimizing the crossing number of a graph

is essential for optimizing layout algorithms in circuit design, VLSI layout, and graph

drawing applications. Moreover, in network design, reducing the crossing number

∗ Corresponding author.



2 The crossing number of K5,n without one edge

enhances the efficiency and reliability of communication networks by minimizing sig-

nal interference and congestion. Furthermore, the crossing number has implications

in spatial visualization and cartography, where minimizing crossings leads to clearer

and more interpretable representations of geographic networks and transportation

systems. In social network analysis, understanding the crossing number sheds light

on the underlying structure and dynamics of social interactions, facilitating the iden-

tification of cohesive communities and influential nodes. Overall, reducing the number

of crossings on graph edges can help in visualizing and understanding complex data,

improving system performance, and optimizing graph algorithms [1, 19].

Let G be a simple graph (without loops or multiple edges). We use V (G) and E(G) to

denote the vertex set and the edge set of G, respectively. The used graph terminology

is taken from the book [25]. The crossing number of graph G, denoted cr(G), is

defined as the minimum possible number of edge crossings over all drawings of G in

the plane (for the definition of a drawing see Klešč [16]). A drawing with a minimum

number of crossings (an optimal drawing) is always a good drawing, meaning that no

edge crosses itself, no two edges cross more than once, no two edges incident with the

same vertex cross, and no more than two edges cross at the same point. Let D be a

good drawing of the graph G. We denote the number of crossings in D by crD(G).

Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number of crossings

between edges of Gi and edges of Gj by crD(Gi, Gj), and the number of crossings

among edges of Gi in D by crD(Gi).

For any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G by [16], the

following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) , (1.1)

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) . (1.2)

Determining the crossing number of the complete bipartite graph Km,n is one of

the oldest crossing number open problems. Zarankiewicz [28] conjectured about the

number of crossings of Km,n saying that the upper bound cr(Km,n) ≤ Z(m)Z(n)

holds with equality, where Z(α) =
⌊
α
2

⌋⌊
α−1

2

⌋
denotes Zarankiewicz’s number. This

conjecture

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
(1.3)

was proved for all positive integers m,n with respect to the restriction min{m,n} ≤ 6

and 7 ≤ m ≤ 8 with n ≤ 10 by Kleitman [14] and Woodal [26], respectively. Some

useful statements and dependencies about Zarankiewicz’s conjecture have already

been stated [3, 5, 7, 23, 26, 27]. Much attention began to focus on the crossing

number of G \ e obtained by removing one edge e from some simple graph G. Zheng

et al. [29] presented a new conjecture about cr(Kn \ e), which was independently

confirmed by Chia and Lee [4] and Ouyang et al. [17] for any positive integer n at

most twelve. He et al. [8] considered the complete bipartite graph Km,n minus one

edge, denoted as Km,n \ e, and predicted cr(Km,n \ e) when m = 3 or m = 4 for
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the first time. According to symmetry, it doesn’t matter which edge is removed.

Moreover, due to isomorphism, it is clear that cr(Km,n \ e) = cr(Kn,m \ e) and so in

what follows, we will assume that m ≤ n. The recursive inequality for the crossing

numbers of Km,n \ e and Km,n−1 \ e was established by Ouyang et al. [18] using a

basic counting method. The crossing numbers of K3,n \ e and K4,n \ e obtained in

this way confirm the following conjecture for any m ≤ 4 and n ≥ 1.

Conjecture 1 ([4],[18]). For m,n ≥ 1,

cr(Km,n \ e) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
−
⌊m− 1

2

⌋⌊n− 1

2

⌋
.

Conjecture 1 can be formulated as to whether cr(K5,n \ e) ≤ 4
⌊
n−1

2

⌋⌊
n−2

2

⌋
+ 2
⌊
n−1

2

⌋
holds with equality when m = 5. It is worth noting that (n − 1)(n − 2) is equal to

4
⌊
n−1

2

⌋⌊
n−2

2

⌋
+2
⌊
n−1

2

⌋
and we will refer to this in some parts of the paper. Chia and

Lee [4] only considered the special case of n = 5, e.g., cr(K5,5 \ e) = 12. The crossing

number of K5,n+1 \ e has recently been found by Huang and Wang [12] thanks to the

definition of a complete graph on n vertices with edge-labeling associated with some

good drawing φ such as that crφ(K5,n+1 \ e) < n(n − 1). The proof of their main

theorem is based on the idea of assuming odd partitions of a complete bipartite graph

with the help of Lemma 1.

Lemma 1 ([15]). Let φ and φ′ be two good drawings of the complete bipartite graph
Km,n. If both m and n are odd, then crφ(Km,n) ≡ crφ′(Km,n) (mod 2).

Due to the very strong assumption of an odd number of vertices on both partitions,

it will not be possible to use such an idea for the graphs K6,n \ e. Although the main

goal of the paper is to give a conjecture concerning crossing numbers of Km,n without

several edges incident with one vertex, we also offer a simple proving alternative for

cr(K5,n \ e) described in Corollary 2 because a similar idea of the proof should be

used for all graphs Km,n \ e if m is at least six. For this purpose, we introduce

for the first time the concept of a ,,near” join product between two graphs, which

can also be linked to combinatorial properties of cyclic permutations. Section 4 is

devoted to a new conjecture (4.1) concerning crossing numbers of Km,n \
⋃k
i=1 ei for

k different edges e1, e2, . . . , ek incident with just one vertex. Of course, its correctness

is confirmed by using several isomorphisms for a lot of possible cases. In the proofs

of the paper, we will often use the term “region” also in nonplanar subdrawings. In

this case, crossings are considered to be vertices of the “map”.

2. Cyclic Permutations and Configurations

Let G∗ = (V (G∗), E(G∗)) be the graph on six vertices isomorphic to the complete bi-

partite graph K1,4 and one isolated vertex, and let also V (G∗) = {v0, v1, v2, v3, v4, v5}.
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In the rest of the paper, let v0 and v5 be the vertex notation of the vertex of degree

four and the isolated vertex, respectively. We consider ,,near” join product of G∗ with

the discrete graph Dn on n vertices denoted by Gn. The graph Gn consists of one copy

of the graph G∗ and n vertices t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is

adjacent to every vertex of G∗ except for the vertex v0. In the case of i = 0, we define

G0 = G∗. It is easy to see that the graph Gn is isomorphic to the graph K5,n+1 \ e
obtained by removing one edge e from the complete bipartite graph K5,n+1. For

n ≥ 1, the first and second partition of K5,n+1 consists of the vertices v1, v2, v3, v4, v5

and v0, t1, t2, . . . , tn, respectively. A removed edge e is the edge between the vertices

v0 and v5.

Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the five edges incident with the

vertex ti. Thus, T 1 ∪ · · · ∪Tn is isomorphic to the complete bipartite graph K5,n and

Gn = G∗ ∪

(
n⋃
i=1

T i

)
∼= G∗ ∪K5,n. (2.1)

We consider a good drawing D of the graph Gn. The rotation rotD(ti) of a vertex ti
in the drawing D as the cyclic permutation that records the (cyclic) counter-clockwise

order in which the edges leave ti have been defined by Hernández-Vélez et al. [9]. We

use the notation (12345) if the counter-clockwise order the edges incident with the

vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We have to emphasize that a rotation is a

cyclic permutation. We will separate all subgraphs T i, i = 1, . . . , n, of the graph Gn
into three mutually-disjoint subsets depending on how many times the considered T i

crosses the edges of G∗ in D. For i = 1, . . . , n, let RD = {T i : crD(G∗, T i) = 0} and

SD = {T i : crD(G∗, T i) = 1}. Every other subgraph T i crosses the edges of G∗ at

least twice in D. Moreover, let F i denote the subgraph G∗ ∪ T i for T i ∈ RD, where

i ∈ {1, . . . , n}. Thus, for a given subdrawing of G∗ in D, any subgraph F i is exactly

represented by rotD(ti).

Figure 1. One possible drawing of the graph G∗.

Since there is only one possible drawing of the graph G∗, without loss of generality,

we can choose the vertex notation of G∗ in such a way as shown in Figure 1. Our

aim shall be to list all possible rotations rotD(ti) for i ∈ {1, . . . , n} which can appear

in D if T i ∈ RD. Since there is only one subdrawing of F i \ v5 represented by

the rotation (1234), there are four possibilities how to obtain the subdrawing of F i



M. Staš, M. Timková 5

depending on which region the edge tiv5 is placed in. Let M = {A1,A2,A3,A4} be

the set of these four configurations. In the rest of the paper, we represent a cyclic

permutation by the permutation with 1 in the first position. Thus, the configurations

A1, A2, A3, and A4 are represented by the cyclic permutations (12534), (12345),

(12354), and (15234), respectively. For p ∈ {1, 2, 3, 4}, we say that a subdrawing of

F i has the configuration Ap denoted by conf(F i) = Ap. For our purposes, it does not

matter which of the regions is unbounded, and so we can assume that the drawings

are as shown in Figure 2. Of course, in a fixed drawing D of the graph Gn, some

configurations from M = {A1,A2,A3,A4} need not appear. We denote by MD the

set of all configurations for the drawing D belonging to M.

Figure 2. Four possible subdrawings of F i for T i ∈ RD.

Let X , Y be two configurations fromMD. We shortly denote by crD(X ,Y) the num-

ber of crossings in D between T i and T j for such that F i, F j have configurations X , Y,

respectively. Finally, let cr(X ,Y) = min{crD(X ,Y)} over all good drawings D of the

graph Gn with X ,Y ∈MD. Our aim is to establish cr(X ,Y) for all pairs X ,Y ∈M.

Now, the configurations A1 and A2 are represented by the cyclic permutations (12534)

and (12345), respectively. Since the minimum number of interchanges of adjacent el-
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ements of (12534) required to produce the cyclic permutation (12345) is two, any

subgraph T j with the configuration A2 of F j crosses the edges of T i with the configu-

ration A1 of F i at least twice, that is, cr(A1,A2) ≥ Z(5)−2 =
⌊

5
2

⌋⌊
4
2

⌋
−2 = 2, where

Z(α) =
⌊
α
2

⌋⌊
α−1

2

⌋
is Zarankiewicz’s number and both considered permutations are

of the length five. Details have been worked out by Woodall [26]. The same reason

gives cr(A1,A3) ≥ 3, cr(A1,A4) ≥ 3, cr(A2,A3) ≥ 3, cr(A2,A4) ≥ 3, cr(A3,A4) ≥ 2,

and cr(Ap,Ap) ≥ 4 for any p = 1, . . . , 4. The resulting lower bounds for the number

of crossings of two configurations fromM are summarized in the symmetric Table 1.

− A1 A2 A3 A4

A1 4 2 3 3

A2 2 4 3 3

A3 3 3 4 2

A4 3 3 2 4

Table 1. The minimum number of crossings between T i and T j with configurations from M of F i and
F j , respectively.

3. The crossing number of Gn

Two vertices ti and tj of Gn are antipodal in a drawing of Gn if the subgraphs T i

and T j do not cross each other. A drawing is antipode-free if it has no antipodal

vertices. In the proof of the main theorem, the following three statements related to

some restricted subdrawings of the graph Gn will be needful.

conf(F i) rotD(tj)

A1 (13452), (12435)

A2 (15342), (12543)

A3 (15324), (14523)

A4 (14235), (13254)

Table 2. The corresponding rotations for T i ∈ RD with conf(F i) = Ap and T j ∈ SD such that
crD(T i, T j) = 1.

Lemma 2. For n ≥ 2, let D be a good drawing of Gn with the vertex notation of the
graph G∗ in such a way as shown in Figure 1. Let for T i ∈ RD, the corresponding subgraph
F i has the configuration Ap ∈ MD for some p ∈ {1, . . . , 4}. If there is a subgraph T j ∈ SD
with crD(T

i, T j) = 1, then all possible rotD(tj) are given in Table 2.

Proof. Let us assume the configuration A1 of F i, i.e., rotD(ti) = (12534). The

unique subdrawing D(F i) of the subgraph F i contains four regions with the vertex

ti on their boundaries. If there is a subgraph T j ∈ SD with crD(T i, T j) = 1, then

the vertex tj must be placed in the same region as the vertex v5. That means that

the edge v0v2 or v0v3 of G∗ must be crossed by the edge tjv1 or tjv4, respectively.

This forces either rotD(tj) = (13452) or rotD(tj) = (12435). For the remainder
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configurations A2, A3, and A4 of F i, using the same arguments, one can easy to

verify mentioned rotations of tj in Table 2.

In the following, let us define two mutually-disjoint subsets SD(A1,A2) and

SD(A3,A4) of SD based on the corresponding cyclic permutations described in Ta-

ble 2. More precisely,

SD(A1,A2) = {T j ∈ SD : rotD(tj) ∈ {(13452), (12435), (15342), (12543)}}

and

SD(A3,A4) = {T j ∈ SD : rotD(tj) ∈ {(15324), (14523), (14235), (13254)}}.

For some p ∈ {1, 3}, the set SD(Ap,Ap+1) can be nonempty even if Ap,Ap+1 6∈ MD.

We remark that if T i does not cross the edges of G∗, then rotD(ti) must contain the

elements 1, 2, 3, and 4 in such a way that the omission of the element 5 induces

the cyclic sub-permutation (1234). Further, due to symmetries of four mentioned

configurations, let us define the function π : {1, 2, 3, 4} → {1, 2, 3, 4} with

π(1) = 4, π(2) = 1, π(3) = 2, π(4) = 3.

Let Π : M → M be the function obtained by applying π on corresponding cyclic

permutations of configurations in M, respectively. Thus, we have

Π(A1) = A4, Π(A4) = A2, Π(A2) = A3, Π(A3) = A1. (3.1)

The subsets SD(A1,A2) and SD(A3,A4) defined above are complementary to each

other according to

Π ◦Π(A1) = A2, Π ◦Π(A2) = A1, Π ◦Π(A3) = A4, Π ◦Π(A4) = A3.

Moreover, the configurations conf(F i) and the rotations rotD(tj) in rows of Table 2

can be obtain by successive applying of Π and π, respectively.

Lemma 3. For n ≥ 2, let D be a good and antipode-free drawing of Gn with the subdrawing
of G∗ induced by D given in Figure 1. Let there be some subgraph T i ∈ RD which is crossed
just once by other subgraph T j ∈ SD(A1+p,A2+p) for some p ∈ {0, 2}. Then

crD(T
i ∪ T j , T k) ≥ 5 if T k ∈ RD ∪ SD \ SD(A3−p,A4−p)

for every T k, k 6= i, j.
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Figure 3. One possible subdrawing of G∗ ∪T i ∪T j with rotD(ti) = (12345) and rotD(tj) = (15342), and
crD(T i, T j) = 1.

Proof. LetD be a good and antipode-free drawing ofGn with the subdrawingD(G∗)

shown in Figure 1, and let T i ∈ RD be a subgraph with the configuration A2 ∈ MD

of F i, i.e., rotD(ti) = (12345). Let also T j ∈ SD(A1,A2) be a subgraph satisfying

crD(T i, T j) = 1 with rotD(tj) = (15342) (the proof can proceed in a similar way as

for a T j with rotD(tj) = (12543)).

In Figure 3, there is only one possible subdrawing of G∗ ∪ T i ∪ T j containing ten

different regions. For a T k ∈ RD ∪ SD with k 6= i, j, let us first consider that tk is

located in the region of D(G∗ ∪ T i ∪ T j) with two vertices v1 and v2 of G∗ on its

boundary. It is easy to see that crD(T i ∪ T j , T k) < 5 only in the case when each of

the edges tkv3, tkv4 and tkv5 of T k forces just one crossing on edges of the subgraph

T i ∪ T j . The edge tkv4 must cross one edge of G∗, so T k cannot be from RD. As

D is antipode-free, tkv3, tkv4 and tkv5 crosses tiv2, tjv2 and tiv1, respectively. So,

rotD(tk) = (14235) and T k ∈ SD(A3,A4).

Now, let the vertex tk be placed in the region of D(G∗ ∪ T i ∪ T j) with three vertices

v0, v2 and v3 of G∗ on its boundary. The edges tkv1 and tkv5 enforce at least one

and two crossings on T i ∪ T j , respectively. Assuming crD(T i ∪ T j , T k) < 5, the edge

tkv4 must cross v0v3 of G∗, and the vertices tk and tj contradict an antipodality-free

of D. Finally, if tk is placed in one of the other region of D(G∗ ∪ T i ∪ T j) then it is

not difficult to verify that crD(T i ∪ T j , T k) ≥ 5 in all discussed cases.

As the same idea can be applied for the remainder configurations A1, A3, and A4 of

F i using the transformation Π, the proof of Lemma 3 is done.

Corollary 1. For n ≥ 2, let D be a good and antipode-free drawing of Gn satisfying
|RD| ≥ 1 and 2|RD| + |SD| ≥ 2dn

2
e + 1 with the vertex notation of the graph G∗ in such a

way as shown in Figure 1. If cr(Gn−2) = (n − 2)(n − 3) and some subgraph T i ∈ RD is
crossed just once by a T j ∈ SD, then there are at least n(n− 1) crossings in D.

Proof. For easier reading, let r = |RD| and s = |SD|. By the assumption of Corol-
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lary 1, r ≥ 1 and 2r + s ≥ 2dn2 e + 1. Consequently, let us denote s1 = |SD(A1,A2)|
and s2 = |SD(A3,A4)|. Since at least one of the sets SD(A1,A2) and SD(A3,A4)

must be nonempty in D, without lost of generality due to their symmetry by (3.1),

let us suppose that s1 ≥ s2. Let us also consider a subgraph T j ∈ SD(A1,A2) and

some T i ∈ RD with crD(T i, T j) = 1. By (1.3), we obtain crD(K5,3) ≥ 4. This implies

that any other subgraph T k, k 6= i, j, must cross T i ∪ T j at least three times in D.

Hence, by fixing the subgraph T i ∪ T j and using Lemma 3, we have

crD(Gn) = crD(Gn−2) + crD(K5,n−2, T
i ∪ T j) + crD(G∗, T i ∪ T j) + crD(T i ∪ T j) ≥

≥ (n− 2)(n− 3) + 5(r − 1) + 5(s− s2 − 1) + 3s2 + 3(n− r − s) + 1 + 1 =

= (n−2)(n−3)+3n+2r+s+s−2s2−8 ≥ (n−2)(n−3)+3n+n+2−8 ≥ n(n−1),

where the inequality 2r + s + s − 2s2 ≥ n + 2 can be used. For n odd and at least

three, we have 2r + s ≥ 2dn2 e + 1 ≥ n + 2. In the case when n is even, the equality

2r+s = n+1 forces an odd value of s but s ≥ 2s2 +1 must hold due to s−s1−s2 ≥ 0

and s1 ≥ s2.

Figure 4. The good drawing of Gn with n(n− 1) crossings.

Theorem 2. cr(Gn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
= n(n− 1) for n ≥ 0.

Proof. In Figure 4, the edges of K5,n cross each other 4
⌊
n
2

⌋⌊
n−1

2

⌋
times, each sub-

graph T i for i ∈ {1, . . . ,
⌈
n
2

⌉
} on the right side does not cross the edges of the graph
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G∗ and each subgraph T i for i ∈ {
⌈
n
2

⌉
+ 1, . . . , n} on the left side crosses edges of

G∗ exactly twice. Thus cr(Gn) ≤ 4
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊
n
2

⌋
= n(n − 1). We prove the

reverse inequality by induction on n. Both graphs G0 and G1 are planar, hence

cr(G0) = cr(G1) = 0. The graph G2 contains K3,4 as a subgraph, and therefore

cr(G2) ≥ 2 by (1.3). So, cr(G2) = 2. Suppose now that, for some n ≥ 3, there is an

optimal drawing D of Gn with

crD(Gn) < 4
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
= n(n− 1) (3.2)

and

cr(Gm) = m(m− 1) for any non-negative integer m < n. (3.3)

Without loss of generality, we can choose the vertex notation of D(G∗) in such a way

as shown in Figure 1. Next we claim that the considered drawing D must be antipode-

free. For a contradiction suppose that crD(T i, T j) = 0 for two different subgraphs T i

and T j . Both subgraphs T i and T j cannot be from the set RD at the same time due

to positive values in Table 1. We can assume that crD(G∗, T i ∪ T j) ≥ 2, otherwise if

exactly one, say T i, is from RD then one can easily verify that crD(G∗, T j) ≥ 2 using

possible subdrawings in Figure 2. Next by (1.3), cr(K3,5) = 4. This implies that any

other T k, k 6= i, j, crosses T i ∪T j at least four times. So, for the number of crossings

in D we have

crD(Gn) = crD(Gn−2) + crD(T i ∪ T j) + crD(K5,n−2, T
i ∪ T j)+

+crD(G∗, T i ∪ T j) ≥ (n− 2)(n− 3) + 4(n− 2) + 2 = n(n− 1).

This contradiction with the assumption (3.2) confirms that the considered drawing

D must be antipode-free. Moreover, if r = |RD| and s = |SD|, the assumption (3.2)

together with cr(K5,n) = 4
⌊
n
2

⌋⌊
n−1

2

⌋
again by (1.3) imply that in D there is at least

one subgraph T i which does not cross the edges of G∗. More precisely:

crD(G∗) + 0r + 1s+ 2(n− r − s) ≤ crD(G∗) + crD(G∗,K5,n) < 2
⌊n

2

⌋
,

i.e.,

s+ 2(n− r − s) < 2
⌊n

2

⌋
. (3.4)

This enforces that r ≥ 1, and 2r + s ≥ 2
⌈
n
2

⌉
+ 1. Until the end of the proof let

us assume that i, j, k, l are mutually different. If there exist T i ∈ RD and T l ∈ SD
such that crD(T i, T l) = 1, then Corollary 1 contradicts the assumption (3.2). In the

following, we can consider that crD(T i, T l) ≥ 2 holds for every T i ∈ RD and T l ∈ SD.

Case 1: Let {Ap,Ap+1} ⊆ MD for some p ∈ {1, 3}. Without lost of generality,

let us suppose that {A1,A2} ⊆ MD. We discuss two possibilities over congruence n

modulo 2.
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1. Let n be odd, and let us also consider two different subgraphs T i, T j ∈ RD such

that F i and F j have configurations A1 and A2, respectively. Then, crD(T i ∪
T j , T k) ≥ 6 holds for any T k ∈ RD by summing the values in the corresponding

two rows of Table 1. Moreover, it is obvious that the condition crD(G∗ ∪ T i ∪
T j , T k) ≥ 5 is fulfilling for any T k ∈ SD from the observation described above

before this case. If T k crosses the edges of G∗ at least twice, then crD(G∗ ∪
T i ∪ T j , T k) ≥ 4 because the drawing D is antipode-free. Thus, by fixing

the subgraph G∗ ∪ T i ∪ T j using (1.3), we have

crD(Gn) = crD(K5,n−2) + crD(K5,n−2, G
∗ ∪ T i ∪ T j) + crD(G∗ ∪ T i ∪ T j) ≥

≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6(r − 2) + 5s+ 4(n− r − s) + 2 = 4

n− 3

2

n− 3

2
+ 4n+

+(2r + s)− 10 ≥ (n− 3)(n− 3) + 4n+ (n+ 2)− 10 ≥ n(n− 1).

2. Let n be even. In the rest of the proof and thanks to Π, let the number of

subgraphs with the associated configuration A1 be at least as much as the

number of subgraphs with the configuration A2. If we consider a subgraph

T i ∈ RD with the configuration A1 of F i, then

∑
T j∈RD

crD(T i, T j) ≥ 3(r − 2) + 2 = 3(r − 1)− 1.

So, by fixing the subgraph G∗ ∪ T i thanks to (1.3), we obtain

crD(K5,n−1) + crD(K5,n−1, G
∗ ∪ T i) + crD(G∗ ∪ T i) ≥ 4

⌊n− 1

2

⌋⌊n− 2

2

⌋
+

+3(r − 1)− 1 + 3(n− r) + 0 = (n− 2)(n− 2) + 3n− 4 ≥ n(n− 1).

Case 2: {Ap,Ap+1} 6⊆ MD for any p = 1, 3. We can assume that T i ∈ RD. Then

crD(T i, T j) ≥ 3 trivially holds for any T j ∈ RD. Thus, by fixing the subgraph G∗∪T i,
we have

crD(Gn) ≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3(n− 1) + 0 ≥ n(n− 1).

Thus, it was shown in all mentioned cases that there is no optimal drawing D of the

graph Gn with less than 4
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊
n
2

⌋
crossings. This completes the proof of

the main Theorem 2.

The previous Theorem 2 together with an isomorphism between the graphs Gn and

K5,n+1 \ e give us the next corollary.

Corollary 2. cr(K5,n \ e) = 4
⌊
n−1
2

⌋⌊
n−2
2

⌋
+ 2
⌊
n−1
2

⌋
= (n− 1)(n− 2) for n ≥ 1.
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4. The crossing numbers of Km,n without several edges

As mentioned in the Introduction, all edges of the complete bipartite graph Km,n are

equivalent to each other, and therefore, it doesn’t matter which edge e is removed in

the case of cr(Km,n \ e). The situation rapidly changes if we want to remove several

different edges of Km,n because the removed edges may be in different adjacency

relationships. This section is devoted to some natural generalization of removing a

single edge to the case of removing several edges incident with a common vertex.

Let Km,n be the complete bipartite graph on m+n vertices with partitions V1∪V2 =

V (Km,n) containing an edge between every pair of vertices from V1 and V2 of sizes

m and n, respectively. In the rest of the paper, let I = {0, 1, . . . ,m} and m ≤ n. For

arbitrary k ∈ I, let e1, e2, . . . , ek be different edges incident with just one vertex of

the vertex set V2. Now, we can postulate that

cr

(
Km,n \

k⋃
i=1

ei

)
=
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
−
⌊n− 1

2

⌋ k∑
i=1

⌊m− i
2

⌋
(4.1)

for all integers m,n ≥ 1.

Figure 5. The good drawing of Km,n with
⌊

m
2

⌋⌊
m−1

2

⌋⌊
n
2

⌋⌊
n−1
2

⌋
crossings.

For k = 0, we obtain the Zarankiewicz’s conjecture mentioned in the Introduction. If

k ≥ 1, then the upper bound for the conjecture (4.1) can be reached by removing the

edges e1, . . . , ek from the drawing in Figure 5 because each edge ei = uivn is crossed
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exactly
⌊
n−1

2

⌋⌊
m−i

2

⌋
times. Our conjecture (4.1) was established as Conjecture 1 in

the case of k = 1, and Corollary 2 confirms the validity of this conjecture for m = 5.

For k = m, we have
∑m
i=1

⌊
m−i

2

⌋
=
⌊
m
2

⌋⌊
m−1

2

⌋
, and so

⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
−
⌊n− 1

2

⌋ m∑
i=1

⌊m− i
2

⌋
=
⌊m

2

⌋⌊m− 1

2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋
.

It is important to note that an isolated vertex does not affect a crossing number of

the graph in which it is contained, and therefore, cr(Km,n \
⋃m
i=1 ei) = cr(Km,n−1).

Both cases k = m− 1 and k = m− 2 imply the same value on the right side of (4.1)

due to
m∑
i=1

⌊m− i
2

⌋
=

m−1∑
i=1

⌊m− i
2

⌋
=

m−2∑
i=1

⌊m− i
2

⌋
=
⌊m

2

⌋⌊m− 1

2

⌋
.

On the other hand, Km,n \
⋃m
i=1 ei is a subgraph of Km,n \

⋃m−1
i=1 ei that is a subgraph

of Km,n \
⋃m−2
i=1 ei, and therefore,

cr(Km,n \
m−2⋃
i=1

ei) ≥ cr(Km,n \
m−1⋃
i=1

ei) ≥ cr(Km,n \
m⋃
i=1

ei).

Both reverse inequalities can be verified thanks to the considered subdrawings ob-

tained from Figure 5. By Ouyang et al. [18], the conjecture (4.1) was already solved

in the case of m = 4 with k = 1. All remaining cases for m at most four also confirm

the validity of (4.1) based on the arguments above if k = 0,m− 2,m− 1,m. At the

moment we do not even know the crossing number of Km,n \
⋃k
i=1 ei for m = 5 and

k = 2, i.e., whether cr(K5,n \ {e1, e2}) ≤ 4
⌊
n−1

2

⌋⌊
n−2

2

⌋
+
⌊
n−1

2

⌋
holds with equality.

5. Conclusions

We expect that the mentioned idea of the near join product between two graphs

with similar forms of discussions can be used to estimate unknown values of the

crossing numbers of other families of graphs without one edge. Above all, conjectures

about the crossing numbers of Kn \ e and Km,n \ e are established, but not yet for

multipartite graphs without one edge. In the case of multipartite graphs, not all

edges are equivalent and it is all the more difficult to determine suitable estimates

for all alternatives. The crossing numbers of K1,4,n \ e and K2,3,n \ e are well-known

by Su [24], and he also stated a question considering the exact values of the crossing

numbers of K1,5,n \ e, K2,4,n \ e, and K3,3,n \ e. Recently, a partial answer to his

question has been offered for the last mentioned graph K3,3,n \ e by Staš [21]. Partial

results for K1,2,2,n \ e, K1,1,3,n \ e, K1,1,4,n \ e, K1,1,1,2,n \ e, and K1,1,1,1,1,n \ e were

already provided by Asano [2], Huang and Zhao [13], Ho [10, 11], Staš [20], and Staš

and Timková [22], respectively.
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