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Abstract: Many numerical procedures for finding efficient solutions of multiobjec-

tive optimization problems are variants of Newton method, that utilize the Hessian
matrix of second derivatives. Quasi-Newton methods are used for situations in which

the calculation of the Hessian matrix or its inverse is difficult or expensive. In the

quasi-Newton methods, only first derivatives are utilized to build an approximation
of the actual Hessian matrix over a number of iterations. One of the weaknesses of

Newton and quasi-Newton methods is choosing the proper starting points. In fact,
the starting points should be close enough to the nondominated solutions to have at

least quadratic convergence. Therefore, in this study, by applying the convex hull of

the individual minimums (CHIMs), we present a procedure for selecting an appropri-
ate starting point for the quasi-Newton method with the BFGS (Broyden, Fletcher,

Goldfarb and Shanno) approximation. Moreover, a new algorithm for constructing a
uniform approximation of the Pareto front is presented, which can produce more than
one efficient point located on the Pareto front in each iteration. To comprehensively

compare the proposed algorithm with existing algorithms, three indices are consid-
ered: purity metric, measures of coverage, and spacing metric. Extensive numerical
experiments show the significant advantage of the proposed algorithm. Moreover, the

obtained boundary approximation follows an almost uniform distribution.
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1. Introduction

One of the crucial areas in optimization is the discussion of multiobjective optimiza-

tion problems (MOPs), where there may not be a solution that optimizes all objec-

tives. For this reason, the Pareto optimal concept was presented. The applications

of multiobjective programs can be found in various fields, including engineering, eco-

nomics, management, medicine, machine learning, and others [6, 14, 21, 28, 52, 53, 55].

Therefore, different solution approaches such as stochastic methods [48], evolution-

ary algorithms [10, 12], or interactive methods [10, 12, 37] are of particular impor-

tance to solve these type of problems. Another category of solution methods for

MOPs is the scalarization approach. In this approach, the MOP is replaced by a

suitable scalarization problem that contains multiple parameters and/or additional

constraints. Recently, this theory has been widely developed [1, 2, 11, 17, 24, 25, 43].

Note that solving the single-objective problem (SOP) is much easier than solving the

corresponding MOP. However, the main obstacle that arises in this type of solution

approach for the decision-maker is to determine the appropriate parameters before

solving the SOPs. Because choosing the proper parameters is a complicated or some-

times impossible process for some problems, see the example provided in [18], an

efficient strategy to solve these problems is to use non-parametric methods based on

gradients, which do not require the selection of parameters by the decision-maker.

Non-parametric methods or non-scalarization methods, are generalizations of direc-

tional single-objective optimization methods such as steepest descent, Barzilai and

Borwein, Newton, and quasi-Newton methods. For example, Mukai [41] for the first

time, generalized the descent method for MOPs. Then, Fliege and Svaiter [19] pre-

sented a steepest descent method for unconstrained multicriteria optimization and a

feasible descent direction method for the constrained case. In recent years, this work

has spurred motivation for research in this field. Nevertheless, empirical evidence

indicates that the Armijo line search frequently yields a very small step size along the

steepest direction, resulting in a significant deceleration of convergence. The problem

arises from the imbalance among the objective functions. To overcome this drawback,

Barzilai-Borwein descent method for multiobjective optimization (BBDMO) was pro-

posed by Chen et al [8]. BBDMO, as a first-order method, effectively manages im-

balances among objective functions, making it a potential candidate for multitask

learning within the realm of multiobjective optimization. Drummond and Iusem [16]

provided a projected gradient method for vector optimization problems. In MOPs, the

possibility of obtaining a good approximation has become a stimulus for developing

these types of methods (see e.g. [3, 7–9, 18, 20, 22, 31–33, 35, 39, 40, 44, 46, 50]).

One of the well-known methods in single-objective optimization is Newton method,

in which a Hessian matrix with a positive definite condition is used for the decreasing

direction. In 2009, this method was extended to MOPs [18]. In practice, Newton

method is rarely used for large-scale problems because it requires calculation, stor-

age, and calculation of the inverse of the Hessian matrix, which imposes an enormous

computational cost. To solve these problems, Qu et al., [44] and Povalej [46] extended

quasi-Newton method for MOPs using the BFGS approximation. On the other hand,
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Newton method starts from a point close enough to the solution that has a convergence

rate of at least quadratic. However, for points far from the solution, the direction

produced by this method is not necessarily decreasing because the Hessian matrix is

not necessarily positive definite. Quasi-Newton method is one of the most common

approaches for solving unconstrained single-objective optimization problems, which

has been extended to multiobjective optimization problems. In the quasi-Newton

method, the search direction is computed based on a second-order convex model of

the objective function, where the actual Hessian is replaced by approximations at

each iteration. Well-known multiobjective versions of quasi-Newton methods, includ-

ing BFGS, self-scaling BFGS (SS-BFGS), and Huang BFGS (H-BFGS), have been

considered [30]. A weakness of some algorithms presented for Newton and quasi-

Newton methods is the selection of a set of starting points randomly or uniformly

at the beginning of the algorithm. Moreover, the approximation obtained from these

methods does not completely cover the Pareto frontier.

Warm-start is a widely used strategy in optimization that involves initializing the

algorithm with a solution derived from a related or previously solved problem. This

technique was initially introduced in the context of the simplex method for linear

programming. In modern optimization, warm-start plays a crucial role in accelerating

convergence, especially in iterative methods such as alternating direction method

of multipliers (ADMM), gradient-based approaches, and interior-point algorithms.

By starting from an informed initial guess rather than a random point, warm-start

reduces computational effort and enhances stability, particularly in scenarios involving

sequential or large-scale problem instances [15, 42, 54].

The use of warm-start in nonlinear optimization, particularly in Newton and quasi-

Newton methods, is an important technique for improving efficiency and convergence

speed [5, 42, 54]. The advantages of using warm-start in Newton and quasi-Newton

methods are faster convergence and reduced matrix computations.

Here, we present a new quasi-Newton optimization algorithm based on the BFGS

method with a warm-start for estimating the Pareto frontier of unconstrained MOPs,

which covers the weaknesses mentioned earlier. The new algorithm has some advan-

tages, including:

(i) There is no need to determine the starting points before beginning the algorithm.

This is because, during the algorithm’s execution, a suitable starting point is

generated at each iteration.

(ii) In each iteration of the proposed algorithm, the feasible region of MOP for

selecting the starting point is restricted. This reduces the influence of the con-

vexity condition of MOP.

(iii) In each iteration of the algorithm, we can produce more than one efficient point

located on the Pareto frontier. In the proposed algorithm for approximating the

Pareto frontier, we first consider an unrealistic approximation of the frontier,

to generate starting points, which is updated at each iteration. In fact, in

subsequent iterations, the unrealistic frontier consists of several unrealistic sub-
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regions, each of which is called a CHIM, and with each of CHIMs, an efficient

point is generated.

(iv) In the proposed algorithm, initiating optimization from a warm-start near the

optimal solution decreases the number of iterations needed for convergence.

(v) Quasi-Newton methods involve computing or approximating the Hessian or gra-

dient. In the proposed algorithm, choosing a suitable warm-start point lessens

the computational load and speeds up the calculations.

The proposed algorithm was tested on several benchmark problems, and its perfor-

mance was compared with that of the BBDMO algorithm with max-type nonmono-

tone line search in [8], Newton algorithm in [18], and quasi-Newton algorithm using

BFGS method in [44]. In the numerical comparison section, we have used three indica-

tors, namely, purity metric, measures of coverage, and spacing metric, for comparison

to show the better performance of the proposed algorithm. Also, the relationship of

the stationary point with (weakly) Pareto optimal solutions of the MOPs is presented.

The next sections of the paper are organized as follows: In Sect. 2, some preliminar-

ies and basic definitions are provided. In Sect. 3, the principal results, including the

proposed algorithm, are presented. In Sect. 4, the performance of the suggested algo-

rithm is shown by some test problems. Finally, the obtained results are summarized

in Sect. 5.

2. Preliminaries

In this section, we present several definitions that will be used throughout the remain-

der of the paper. Multiobjective optimization problems involve multiple conflicting

objective functions and typically do not yield a single optimal solution, but rather

a set of possible solutions. An unconstrained multiobjective optimization problem is

formulated as follows:

MOP : min
x∈U

F (x) = (F1(x), F2(x), ..., Fp(x)), (2.1)

where U ⊆ Rn is a nonempty and open feasible set and F : U −→ Rp, (p ≥ 2) includes

the objective functions that are continuously differentiable (F ∈ C1(U,Rp)). We

denote the Jacobian matrix of F at x ∈ U by JF (x) ∈ Rp×n. For all j ∈ {1, 2, . . . , p},
the jth row of the Jacobian matrix is ∇Fj(x)T . The image of U under F is denoted

by Y . We define the natural ordering cone as Rp
= = {x ∈ Rp : xi > 0, i = 1, 2, . . . , p}.

For y, ŷ ∈ Rp,

ŷ − y ∈ int(Rp
=)⇔ yk < ŷk,∀k = 1, 2, . . . , p,

ŷ − y ∈ Rp
= ⇔ yk ≤ ŷk,∀k = 1, 2, . . . , p,

ŷ − y ∈ Rp
=\{0} ⇔ yk ≤ ŷk but y 6= ŷ.
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Definition 1. Let U ⊂ Rn be a convex set. Then,

(i) F : U → Rp is Rp-convex, if F is componentwise convex [26].

(ii) F : U → Rp is Rp-strictly convex, if F is componentwise strictly convex.

Now, we present the concept of optimality in multiobjective optimization problems

under the title of efficient and weakly efficient solutions.

Definition 2. A feasible solution x̂ ∈ U is called

(i) an efficient (a Pareto optimal) solution for MOP (2.1), if there is no other x ∈ U such
that F (x) ≤ F (x̂),

(ii) a weakly efficient (a weakly Pareto optimal) solution for MOP (2.1), if there is no
other x ∈ U such that F (x) < F (x̂).

(iii) a local (weakly) efficient solution for MOP (2.1), if there exists a neighborhood
N [x̂, r] ⊂ U of x̂ with radius r, so that x̂ is an (a weakly) efficient solution on N [x̂, r].

The set of all (local) efficient and (local) weakly efficient solutions are denoted, respec-

tively, by U(L)E and U(L)WE . Their images in the space Rp are called, respectively,

(local) nondominated and (local) weakly nondominated solutions and are denoted by

YN and YWN , respectively.

Suppose that x∗j = arg min
x∈U

Fj(x), ∀j = 1, 2, ..., p. Similar to [2, 11], let Φ =

(F (x∗1), . . . , F (x∗p))p×p be a pay-off matrix, where F (x∗j ) is the jth column. Then

{Φβ|β ∈ Rp,
p∑

j=1

βj = 1, βj ≥ 0} is the set of all points in Rp that are convex combina-

tions of F (x∗j ) for each j = 1, 2, . . . , p, and is called the convex hull of the individual

minima.

Assume that f : U −→ R. A single-objective optimization problem is demonstrated

as follows:

SOP : min
x∈U.

f(x) (2.2)

Definition 3. A feasible solution x̂ ∈ U is said to be

(i) an optimal solution for SOP (2.2), if f(x̂) 6 f(x), ∀x ∈ U ,

(ii) a strictly optimal solution for SOP (2.2), if f(x̂) < f(x),∀x ∈ U \ {x̂}.

Definition 4. (i) [46] A point x̂ ∈ U is said to be a stationary (critical) point of the
vector function F , if R(JF (x̂)) ⊂ Rp

= or R(JF (x̂)) ∩ −int(Rp

=) = ∅, where R(JF (x̂))

defines the range (image) space of the Jacobian of the continuously differentiable
function F at x̂.

(ii) [44] If x̂ is a nonstationary point, then, there exists s ∈ Rn such that ∇Fj(x̂)T s <
0, ∀j ∈ {1, 2, . . . , p}.
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(iii) Suppose that F is a continuously differentiable function. Then, the directional deriva-
tive of F at x̂ in the direction s is defined as

lim
t→0

Fj(x̂+ ts)− Fj(x̂)

t
= ∇Fj(x̂)T s, ∀j ∈ {1, 2, . . . , p}.

Therefore, if s is a descent direction of F at x̂, then there exists t0 > 0 with

F (x̂+ ts) < F (x̂), ∀0 < t ≤ t0.

3. Main results

3.1. The quasi-Newton methods

In quasi-Newton methods, instead of calculating the Hessian matrix or its inverse, a

positive definite approximation is calculated from them. The Broyden class and the

self-scaling Broyden class, are two efficient classes that just use gradient information

to approximate the Hessian matrices, and the obtained matrices from these classes

are symmetric. These approximations from one iteration to the next one must be

updated in such a way that they satisfy the following condition called the secant or

quasi-Newton equation:

Bkvk = yk,

where vk = xk+1−xk, gk = ∇f(xk), with f : U −→ R as twice continuously differen-

tiable function on an open set U , yk = gk+1 − gk and Bk is an approximation of the

Hessian matrix at xk, and {xk} is supposed to be a sequence created by the quasi-

Newton method. BFGS formula of the Broyden class can be mentioned among the

most efficient quasi-Newton update formulas for single-objective optimization prob-

lems [42], which is expressed as follows:

Bk+1 = Bk −
Bkvkv

T
k Bk

vTk Bkvk
+
yky

T
k

vTk yk
.

In the BFGS update formula, if Bk is a positive definite matrix, then the BFGS update

is also positive definite if the following inequality, called the curvature condition, holds:

vTk yk > 0.

This inequality holds under the Wolfe’s linear search conditions:

f(xk + tksk)− f(xk) ≤ δtkgTk sk,

∇f(xk + tksk)T sk ≥ σgTk sk,
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where 0 < δ < σ < 1 and tk is the step length in iteration k. Therefore, the

directions produced by the BFGS method are descent directions [42, 49]. For single-

objective optimization, according to Newton method, the direction of searching for

quasi-Newton methods in each iteration is calculated from the following relationship:

sk = −B−1k ∇f(xk).

Similar to the development of Newton method for multiobjective problems [18], the

quasi-Newton method has been extended by updating BFGS for single-objective op-

timization to multiobjective optimization problems, with the difference that instead

of using the exact Hessian matrix, its approximation was used [44, 46].

To find the quasi-Newton direction in x ∈ U , it is necessary to solve the following sub-

problem and consider its optimal solution as a search direction for the quasi-Newton

method at x ∈ U .

min
s∈Rn

max
j∈{1,2,...,p}

∇Fj(x)T s+
1

2
sTBj(x)s, (3.1)

where Bj(x) is an approximation of the Hessian matrix of Fj(x). The optimal ob-

jective function value for Subproblem (3.1) is denoted by θ(xk). We can rewrite

Subproblem (3.1) in the following form:

min t

s.t. ∇Fj(x)T s+
1

2
sTBj(x)s ≤ t,

(t, s) ∈ R× Rn.

(3.2)

The purpose of the following theorem is to express the relationship between (weakly)

efficient solutions and stationary points of MOPs. To study the proof of this theorem,

we refer to [18].

Theorem 1. Assume that F ∈ C1(U,Rp).

(i) If x̂ is a locally weak Pareto optimal solution, then it is a stationary point of F .

(ii) If U is convex, F is Rp-convex and x̂ ∈ U is critical for F , then x̂ is a weakly Pareto
optimal solution.

(iii) If U is convex, F ∈ C2(U,Rp), ∇2Fj(x) > 0 for all j ∈ {1, 2, . . . , p} and all x ∈ U ,
and if x̂ ∈ U is critical for F , then x̂ is Pareto optimal.

3.2. Determining the step length

In general, the step length tk in iterative methods for solving single-objective problems

is chosen so that the objective function f : U −→ R has an acceptable reduction along
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the descent direction s(xk) ∈ Rn, and in other words, f(xk)− f(xk + tks(xk)) > 0 is

a reasonable value. Such a process for determining step length is called approximate

line search [42]. Armijo’s condition is a suitable criterion for creating an acceptable

reduction in the line search process, which is expressed as follows:

f(xk + tks(xk))− f(xk) ≤ δtkOf(xk)T s(xk).

where 0 < δ < 1, is given. This condition clarifies that the decrease of the func-

tion f must be consistent with the step length tk and the directional derivative

Of(xk)T s(xk).

Likewise, the above inequality can be used for multiobjective optimization problems

as follows:

Fj(xk + tks(xk))− Fj(xk) ≤ δtkθ(xk), ∀j = 1, . . . , p,

where θ(xk) is the optimal objective function value of Subproblem (3.1). In papers

[46] and [44], the above condition is used in the line search process of the BFGS quasi-

Newton method. The above inequality will be a scale for accepting the step length

in the quasi-Newton direction for multiobjective problems, and the following theorem

guarantees the existence of such a step length. The proof of the following theorem is

similar to Corollary 3.3 in [18], by the difference that, instead of the Hessian matrix,

an approximation of it will be used here.

Theorem 2. Let x̂ be a nonstationary point of F . Then, for any 0 < c < 1, there is
0 < t0 6 1 and r > 0 such that ∀x ∈ N [x̂, r] ⊂ U ,

x+ ts(x) ∈ U and Fj(x+ ts(x)) ≤ Fj(x) + ctθ(x), (3.3)

for all j = 1, 2, . . . , p and ∀ 0 6 t 6 t0.

Proof. Utilizing item c of Lemma 2 in [44] (continuity of θ), there is r > 0 such that

θ(x) < θ(x̂)/2 ≤ 0, ∀x ∈ N [x̂, r] ⊂ U.

Then, each x ∈ N [x̂, r] ⊂ U is a nonstationary point and since U is an open set, there

exists 0 < t0 6 1 such that

x+ ts(x) ∈ U, ∀0 6 t 6 t0.

According to the Taylor series of function Fj , ∀j ∈ {1, 2, . . . , p}, we can write

Fj(x+ ts(x)) = Fj(x) + tOFj(x)T s(x) + oj(‖ts(x)‖), ∀x ∈ N [x̂, r], (3.4)
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in which,
oj(‖ts(x)‖)
t‖s(x)‖ −→ 0

t→0
. Utilizing item 3 of Theorem 5 in [38], s(x) is bounded on

N [x̂, r]. Then, there is M > 0 such that ‖s(x)‖ < M . Therefor,
oj(‖ts(x)‖)

t −→ 0
t→0

.

Since, the approximation of the Hessian matrix is positive definite, we have

OFj(x)T s(x) ≤ OFj(x)T s(x) +
1

2
s(x)TBj(x)s(x) ≤ θ(x), ∀j = 1, 2, . . . , p. (3.5)

From relations (3.4) and (3.5), we have

Fj(x+ ts(x)) ≤ Fj(x) + ctθ(x) + t((1− c)θ(x) +
oj(‖ts(x)‖)

t
), ∀t ∈ [0, t0].

Since θ(x) ≤ 0, for t ∈ [0, t0] sufficiently small, we have

Fj(x+ ts(x)) ≤ Fj(x) + ctθ(x).

Therefore, the proof is completed.

In the following lemma, we present two inequalities in order to prove the convergence

of the BFGS quasi-Newton method concerning any nonstationary point of F .

Lemma 1. Let x̂ be a nonstationary point of F . Then,

(i) there is 0 < t0 6 1 such that

tOFj(x̂)T s(x̂) +
1

2
t2s(x̂)TBj(x̂)s(x̂) < 0, (3.6)

for all j = 1, 2, . . . , p and ∀0 6 t 6 t0.

(ii) for any 0 < c < 1, there is 0 < t0 6 1 and r > 0 such that ∀x ∈ N [x̂, r] ⊂ U

Fj(x)− Fj(x+ ts(x)) ≥ −c(tOFj(x)T s(x) +
1

2
t2s(x)TBj(x)s(x)), (3.7)

for all j = 1, 2, . . . , p and ∀0 6 t 6 t0.

Proof. (i) By contradiction, assume that relation (3.6) is not satisfied. Then,

there exist ki ∈ Rp
= and 0 < t0 6 1 such that

tOFj(x̂)T s(x̂) +
1

2
t2s(x̂)TBj(x̂)s(x̂) = kj , ∃0 < t 6 t0, ∃j ∈ {1, 2, . . . , p}.

Since x̂ is a nonstationary point of F , we have

θ(x̂) ≥ 1

t
(kj +

t− t2

2
s(x̂)TBj(x̂)s(x̂)) ≥ 0, ∀0 < t 6 t0, ∀j = 1, 2, . . . , p

a contradiction to nonstationarity of x̂ for F .
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(ii) According to the Taylor series of function Fj ,∀j ∈ {1, 2, . . . , p}, we have

Fj(x+ ts(x)) = Fj(x) + tOFj(x)T s(x) + oj(‖ts(x)‖, ∀x ∈ N [x̂, r] (3.8)

in which
oj(‖ts(x)‖)
t‖s(x)‖ −→ 0

t→0
. Once again, employing the boundedness of s(x) on

N [x̂, r], we deduce that
oj(‖ts(x)‖)

t −→ 0
t→0

uniformly for x ∈ N [x̂, r]. Since, the

approximation of the Hessian matrix is positive definite, we have

OFj(x)T s(x) ≤ OFj(x)T s(x) +
1

2
ts(x)TBj(x)s(x) = γj(x, t), ∀x ∈ N [x̂, r].(3.9)

From relations (3.8) and (3.9), for all t ∈ [0, t0], we have

Fj(x)− Fj(x+ ts(x)) ≥ −(ctγj(x, t) + t((1− c)γj(x, t) +
oj(‖ts(x)‖)

t
)).

Since tγj(x, t) < 0, for t ∈ [0, t0] sufficiently small and ∀x ∈ N [x̂, r], we obtain

Fj(x)− Fj(x+ ts(x)) ≥ −c(tOFj(x)T s(x) +
1

2
t2s(x)TBj(x)s(x)),

for all j = 1, 2, . . . , p and ∀0 6 t 6 t0.

From Part 1 of Definition 4, the following lemma can be presented [46].

Lemma 2. x̂ is stationary point of F if ψ(x̂) = sup
‖s‖≤1

max
j∈{1,2,...,p}

{−∇Fj(x)T s} = 0.

The following theorem has been proved in [46] (Theorem 5) by the following assump-

tions A1 and A2.

A1: Assume that the level set L0 = {x ∈ Rn : F (x) ≤ F (x0)} is bounded.

A2: Assume that for sufficient large k, the step length tk = 1 is accepted.

Now, we can replace the assumption A2 with the following assumption Â2 and provide

a sufficient condition for global convergence.

Â2: Assume that for sufficiently large k, the step length tk = 1
2k

with 0 < tk ≤ 1, is

accepted and satisfies conditions (3.3).

Theorem 3. Suppose that there exists β > 0 such that ‖Bj(x)‖ ≤ β, for all j ∈
{1, 2, . . . , p} and all x ∈ {z ∈ Rn : F (z) ≤ F (x0)}. Then the sequence {xk} converges to an
stationary point of F .
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Proof. It suffices to prove that the limit point of the sequence {xk} satisfies in the

necessary condition of Lemma 2. Let sk be an optimal solution of ψ(xk). Then, by

Lemma 1 and relation (3.9), for any 0 < c < 1 there exists 0 < t0 6 1 such that

equation (3.7) holds:

Fj(x
k)− Fj(x

k + tks(xk)) ≥ −ctkγ(xk, tk) =

−ctk(OFj(x
k)T s(xk) +

1

2
tks(xk)TBj(x

k)s(xk)), ∀0 6 tk 6 t0, ∀j.

Moreover, we can write

max
j∈{1,2,...,p}

{Fj(x
k)− Fj(x

k + tks(xk))} ≥ max
06tk6t0

max
j∈{1,2,...,p}

{−ctkγ(xt, tk)},

≥ max
06tk6t0

{c(tkψ(xk)− 1

2
(tk)2β)} ≥ cψ(xk)

2
min{t0,

ψ(xk)

β
}.

(3.10)

According to Assumption A1, we assume that {xk}k∈N is a subsequence that converges

to x̂. Then, from Assumption Â2, there exists a k0 ∈ N that for every k > k0 we have

an enough large step length tk = 1
2k

such that

∑
k>k0

cψ(xk)

2
min{t0,

ψ(xk)

β
} ≤

∑
k>k0

max
j∈{1,2,...,p}

{Fj(x
k)− Fj(x

k+1)},

≤ max
j∈{1,2,...,p}

{Fj(x
0)− Fj(x̂)} <∞,

(3.11)

where the last relation follows from Theorem 5 in [46]. Now, to complete the proof, it

suffices to prove ψ(x̂) = 0. Suppose that ψ(x̂) > 0, so ψ(xk) ≥ α > 0 holds for some

α > 0 and ε0 > 0 with
∥∥xk − x̂∥∥ ≤ ε, ∀ε ≥ ε0, k > k0. Therefore, we can write

∑
k>k0

ψ(xk) min{t0,
ψ(xk)

β
} ≥

∑
k∈{k: ‖xk−x̂‖≤ε,ε≥ε0,k>k0}

αmin{t0,
α

c
} =∞.

This contradicts the inequality (3.11).

3.3. Determining warm-starting point

In almost all of the presented nonlinear methods in the literature, the obtained optimal

solutions are dependent on the starting point and generally for different starting

points, distinct optimal solutions are generated. Therefore, in each nonlinear problem,

the starting points are chosen uniformly between the upper and the lower bounds

[8, 22, 23, 38]. By this selection, the initial point may be far away from the feasible

region, and eventually, it may not converge to the critical point. Moreover, the

generated efficient solution set may not cover all of the optimal feasible region. To



12 A quasi-Newton algorithm with warm-start for multiobjective optimization

overcome the mentioned weaknesses, we present the following method for generating

starting points.

The suggested method is based on changing the CHIM to generate warm-starting

points according to a particular procedure at each step. At first, the initial CHIM is

defined according to the NBI method [11], and in each iteration of the algorithm, the

current CHIM will be updated [2].

Consider the CHIM = {Φβ|β ∈ Rp, βk = 1
p}, where Φ = (F (x∗1), ..., F (x∗p))p×p

is the pay-off matrix and x∗k for each k = 1, . . . , p is the individual minimum of the

function Fk(x). Now, suppose that ak,i = Φk,iβ
T on the CIHMk

i in step k of iteration

i = 1, . . . , pk−1, then we select the starting point x0k,i as follows:

x0k,i := arg min
x∈U

‖F (x)− ak,i‖2or∞. (3.12)

In the next subsection, applying the presented warm initial point, we present a modi-

fied version of the quasi-Newton algorithm for multiobjective optimization problems.

3.4. Quasi-Newton algorithm for multi-criteria optimization

In this subsection, we extend the quasi-Newton algorithm by using a new algorithm.

Although by starting from a point close enough to the optimal solution (warm-start),

Newton method has convergence with order of least quadratic, but for starting

points far from the optimal solution, the direction produced by this method is

not necessarily decreasing, because the Hessian matrix far from the solution is

not necessarily positive definite. On the other hand, Newton method is rarely

used for large-scale problems, because it requires calculating, storing and inverting

the Hessian matrix, which imposes a high computational cost [49]. To overcome

these difficulties, we propose a new algorithm, called Algorithm 1, to produce an

approximation of the Pareto front. The new algorithm is based on CHIMs in the

objective space Y . At first, we choose a point on the current CHIM and obtain

its image in the feasible set U , using Subproblem (3.12). Then, we consider the

obtained point as the warm starting point for quasi-Newton process. After obtaining

a Pareto optimal point on the true Pareto frontier using the quasi-Newton method,

we update the current CHIM. We repeat this systematic process until Algorithm 1

reaches an approximation of the true Pareto frontier. In this method, approximation

of the Hessian matrix is considered by using the values and gradients of the objective

functions. In this method, we use the BFGS formula of the Broyden class to

approximate the Hessian matrix Bk and generate a sequence of {Bk} and a sequence

of decreasing directions {sk}.
Using the proposed algorithm for determining the starting point in quasi-Newton

methods, increases the convergence speed and reduces the number of iterations, as

it provides a point close to the Pareto frontier. Unlike scalarization methods based

on CHIMs [2, 24] that require the selection of appropriate weights, this approach

effectively guides the optimization process without the need for explicit scalarization.
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Algorithm 1 includes three steps. In the first step, the necessary inputs are appro-

priately selected and N2 is chosen such that the algorithm runs long enough for

the stopping condition to be satisfied. The second step in each iteration determines

the parameter a and the warm-starting point x0 from solving Subproblem (3.12)

utilizing the idea given in subsection 3.3, where ak,i = Φk,iβ
T on the CHIMk

i and

x0k,i := arg min
x∈U

‖F (x)− ak,i‖2or∞, in step k of iteration i. Then, to generate the

quasi-Newton descent direction sk,i(x) in step k of iteration i, Subproblem (3.2)

is solved. Next, according to Theorem 2, the step length is determined by the

modified Armijo condition. At the end of the third step, we update the point xm and

approximate the Hessian Bj,k(xm) by using the BFGS method. The general scheme

of the procedure is given in Algorithm 1. We note that in this algorithm, with k

iterations, the expected number of efficient points at the Pareto frontier is
pk − 1

p− 1
.

The key idea behind Algorithm 1 is generating starting points using CHIM and then

applying the proposed quasi-Newton algorithm to refine the solution. While the

quasi-Newton method is a popular choice due to its efficiency in many cases, other

optimization methods can also be used in the local optimization step. This flexibility

makes the algorithm versatile and applicable to a broader range of optimization

problems.

Finally, by choosing each starting point selected in CHIM, the quasi-Newton process

converges to a Pareto point according to Theorem 3 in a finite number of iterations.

Therefore, the method is well-defined.

Algorithm 1 Approximating the Pareto front by the BFGS quasi-Newton method.

1: (Initialization)

2: Let N1 and N2 be the number of runs.

3: Select a sufficient small positive scalar ε > 0 and σ ∈ (0, 1). For each index

j ∈ {1, 2, . . . , p}, we consider matrix Bj,0 equal to identity matrix I.

4: (Main loop)

5: Determine the parameter ak,i on the CHIMk
i to generate the initial decision

6: vector x0k,i chosen from U .

7: for k := 1, 2, · · · , N1 do

8: Suppose that we would like the mCHIM to be refined k times,

9: therefore mCHIMs := {CHIMk
1 , · · · , CHIMk

pk−1}.
10: for i := 1, 2, · · · , pk−1 do

11: Let ak,i := Φk,iβ
T .

12: Solve Subproblem (3.12) to obtain start point.

13: for m := 1, 2, · · · , N2 do

14: Find sk,i(xm) and θ(xm) as the optimal solution of Subproblem (3.2).

15: if then|θ(xm)| ≤ ε
16: Stop and set yk,i := F (xm).

17: else

18: Find the largest tm = 1
2n , n ∈ N which satisfies in the following
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19: conditions:

20:

xm + tms(xm) ∈ U,

21:

Fj(xm + tms(xm)) ≤ Fj(xm) + σtmθ(xm).

22: So, set xm+1 := xm + tms(xm) and update the positive definite

matrix

23: Bj(xm+1), ∀j ∈ {1, 2, . . . , p} with BFGS method.

24: Set m := m+ 1.

25: end if

26: end for

27: Let Yk := {yk,1, yk,2, . . . , yk,pk−1}. Therefore, update current mCHIM.

28: end for

29: end for

Output: Set Y :=
⋃

k=1,...,N1

Yk. Hence, Y is an approximation of the Pareto front.

3.5. Evaluation of the algorithms

In general, the Pareto front contains infinite nondominated points. Therefore,

the researchers try to construct a reasonable discrete approximation of the Pareto

front by producing a minimal number of Pareto points. It is fundamental that the

suggested algorithm be capable to construct an even approximation of the whole

Pareto front. There are many indicators in the literature that evaluate the efficiency

of the algorithms. Among them, we utilize indicators such as purity metric, measures

of coverage, and spacing metric [4, 34, 36], to compare the algorithm proposed in

this paper with some existing algorithms.

Measures based on the position of the nondominated front [4]:

The purity index is used to compare and evaluate the approximate Pareto

frontier obtained using different methods. Let P1, P2, . . . , PN be N approximation

sets of the Pareto optimal set for N different algorithms to the same problem.

Then, after removing the dominant points compared to other points from set

P- :=
⋃

i∈{1,2,...,N}
Pi, we consider the obtained set as an approximation of the Pareto

frontier and call it the reference set. So, the measure of purity is expressed as:

PMi =
|P- ∩ Pi|
|P-|

, ∀i ∈ {1, 2, . . . , N}.

The value of PMi is between zero and one, and according to the above relationship,

the higher the value of PMi, the more Pareto points are obtained by method

i ∈ {1, 2, . . . , N}.
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Measures of coverage of the Pareto front [34]:

Assume that P1, P2, . . . , PN are N approximation sets of the Pareto optimal

set for N different algorithms to the same problem. To evaluate the performance of

an algorithm for approximating the Pareto front, coverage measurement is used to

show that to what extent it covers different parts of the Pareto frontier. First, the

set of reference points as

P = {(U1, L2, · · · , Lp), · · · , (L1, · · · , Lp−1, Up)}

is considered, in which Uj = max
x∈

⋃
i=1,...,N

Pi

(fj(x)) and Lj = min
x∈

⋃
i=1,...,N

Pi

(fj(x)).

Now, dPi
r = min{d(sr, s)|s ∈ Pi} is defined as the distance in the objective space

between a reference solution sr ∈ P to the set Pi. So, the spread of Pi is defined as

follows:

EXi =

√ ∑
r=1,...,p

(dPi
r )

2
/p.

A smaller EXi means Pi has a better well extended Pareto frontier.

Spacing metric [36]:

One of the most desirable features of the optimal points obtained from an algorithm

is the uniform distribution, which indicates that no region of the optimal boundary

has the lowest or highest density of generated points. Here, we utilize a criterion to

measure the uniformity of the produced optimal points. For this purpose, for each

point di produced on the optimal boundary, the smallest and the largest spheres

(circles for two dimensions) with diameters dli and dui , respectively, are constructed

that can be formed between di and another point of the set of points produced on the

optimal boundary. So, the diameter of each sphere is equal to the distance between

the two points. Moreover, there is no other point in these two spheres. The measure

of uniformity is expressed as:

EV = σd/d̂,

in which d̂ and σd are the mean and standard deviation of d = {dl1, du1 , · · · , dln, dun}.
A set of points is precisely evenly distributed when EV = 0.

4. Numerical Results

In this section, the numerical performance of Algorithm 1 is compared with the BB-

DMO algorithm with max-type nonmonotone line search in [8], Newton algorithm in

[18], and Quasi-Newton algorithm using BFGS method in [44] based on the number

of known test problems, explained in Table 1. All test problems, described in Table 1,

are solved by Algorithm 1, Newton algorithm and quasi-Newton algorithm equipped

with Armijo’s condition. Similar to [18], as test problems have box constraints of the
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form xL ≤ x ≤ xU , we solve the subproblem (3.1) with an additional box constraint

in the form xL − x ≤ s ≤ xU − x. The inclusion of box constraints is considered

in the numerical experiments to reflect practical scenarios where such constraints are

often present [18, 38, 44, 46]. While the theoretical analysis remains general. For

the BBDMO algorithm, we select αmin = 10−3, αmax = 103, and M = 10 in max-

typ nonmonotone line search in [8]. We set the maximum number of iterations to

N2 = 500. The stopping criterion is |θ(xm)| ≤ ε, where ε = 10−4.

In the presented research, the algorithms have been implemented in MATLAB

(R2018a). CVX package solver has been used for solving the direction search Sub-

problem (3.2). The test problems have been performed on a core i7-9700H processor

CPU with 3 GHz and 32 GB RAM.

Algorithms considered for comparison with each other, are implemented on several

test problems listed in the first column of Table 1. The dimensions of the variables

and box constraints, which represent the lower bound xL and the upper bound xU
of the variables, are presented in the third to fifth columns of Table 1, respectively.

The proposed algorithm is primarily designed for convex multi-objective optimiza-

tion problems, but because of its special structure, this algorithm can also be used

for solving non-convex problems.

Table 1. Introducing all test problems to compare the iterative methods of Newton, quasi-Newton,
BBDMO and the new Algorithm. Note: e = (1, .., 1) is a 1× n vector.

Problems Sources n xL xU

JOS1a [27] 600 0e e

JOS1b [27] 600 −2e 2e

JOS1c [27] 600 −10e 10e

JOS1d [27] 600 −50e 50e

JOS1e [27] 600 −100e 100e

JOS2a [27] 2 0e e

JOS2b [27] 2 −2e 2e

JOS2c [27] 2 −10e 10e

JOS2d [27] 2 −50e 50e

JOS2e [27] 2 −100e 100e

KW2 [29] 2 −[3, 3] [3, 3]

PNR [45] 2 −[2, 2] [2, 2]

WIT1 [51] 2 −[2, 2] [2, 2]

WIT2 [51] 2 −[2, 2] [2, 2]

WIT3 [51] 2 −[2, 2] [2, 2]

WIT4 [51] 2 −[2, 2] [2, 2]

WIT5 [51] 2 −[2, 2] [2, 2]

WIT6 [51] 2 −[2, 2] [2, 2]

DTLZ2 [13, 47] 3 [0, 0, 0] [1, 1, 1]

COMET [13] 3 [1,−2, 0] [3.5, 2, 1]

Note that among the test problems listed in Table 1, Problems JOS1a-e, JOS2a-e and

WIT1-6 are convex.



F. Akbari, et al. 17

Example 1. This test problem has been studied in [27] and has a convex Pareto front
and is formulated as follows:

JOS : min
x∈Rn

(
1

n

n∑
i=1

x2i ,
1

n

n∑
i=1

(xi − 2)2). (4.1)

First, in the second step of Algorithm 1, we obtain the starting point for each CHIMk
i ,

and then we solve Subproblem (3.2) to obtain the search direction vector to determine the
starting point for the next iteration on the current CHIMk

i . The starting points for the
BBDMO algorithm in [8], Newton algorithm in [18], and quasi-Newton algorithm for solving
the BFGS method in [44] are chosen uniformly between the upper and lower bounds.
Figures 1-10 show numerical results in value space obtained by Algorithm 1 with k = 6, and
N = 26 − 1 starting points with uniform distribution for the Newton algorithm, the quasi-
Newton algorithm, and the BBDMO with max-type nonmonotone line search for problem
JOS. As can be seen in part (a) of these figures, an almost uniform approximation is obtained
against Parts b-d. By comparing Figures 1 and 2 for problems JOS1a and JOS2a with
0 ≤ xi ≤ 1, ∀i = 1, . . . , n, we find that as the value of n increases for BBDMO, Newton and
quasi-Newton algorithms, the coverage of the Pareto frontier decreases. Similarly, in Figures
3 to 10 for problems JOS1b to JOS1e and JOS2b to JOS2e, for some of the algorithms
mentioned above, the coverage of the Pareto frontier decreases by increasing the parameter
n.
It should be mentioned that the Pareto frontier of JOS2b to JOS2e is obtained by Algorithm
1 with a good approximation, and the CPU time of Algorithm 1 is close to the CPU time of
other algorithms.
Table 2 shows the results obtained from Algorithms 1, BBDMO, Newton, and quasi-Newton
methods, respectively. According to the obtained values of EV, EX and PM indices, we find
that Algorithm 1 performs better for JOS problem.

Table 2. Numerical results including average CPU time, EX, EV and PM of Algorithm 1, Newton algo-
rithm, quasi-Newton algorithm using BFGS method, and BBDMO with max-type nonmonotone
line search.

Problem Algorithm CPU time (s) EV EX PM

Algorithm 1 1.33 0.09 0.5 1

JOS1a Newton 1.1 1.1315 1.42 1

Quasi-Newton 0.41 0.63 1.42 0.008
BBDMO 0.1 1.83 1.4 1

Algorithm 1 0.68 0.56 6.0298e-12 1
JOS1b Newton 1.4 1.94 2.7 1

Quasi-Newton 0.88 1.9 2.302 0.008
BBDMO 0.1 1.85 2.4 0.5

Algorithm 1 0.55 0.5 7.9930e-10 1

JOS1c Newton 1.4 2.6 2.31 1

Quasi-Newton 0.87 0.7 2.311 0.008
BBDMO 0.1 2.11 2.3 1

Algorithm 1 0.84 0.5 1.5693e-08 1

JOS1d Newton 1.35 2.4 2.31 1
Quasi-Newton 0.87 1.1 2.31 0.008

BBDMO 0.1 2 2.3 0.7

Algorithm 1 1.6 0.5 9.7479e-17 1
JOS1e Newton 1.32 2.4 2.31 1

Quasi-Newton 0.88 0.8 2.31 0.008
BBDMO 0.1 2.4 2.3 0.5
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 1. Example 1: Comparison of the existing algorithms for the JOS1a test problem

(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 2. Example 1: Comparison of the existing algorithms for the JOS2a test problem

Example 2. Consider a bi-objective problem from [29] with a non-convex Pareto front,
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 3. Example 1: Comparison of the existing algorithms for the JOS1b test problem

(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 4. Example 1: Comparison of the existing algorithms for the JOS2b test problem
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 5. Example 1: Comparison of the existing algorithms for the JOS1c test problem

(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 6. Example 1: Comparison of the existing algorithms for the JOS2c test problem
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 7. Example 1: Comparison of the existing algorithms for the JOS1d test problem

(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 8. Example 1: Comparison of the existing algorithms for the JOS2d test problem
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 9. Example 1: Comparison of the existing algorithms for the JOS1e test problem

(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 10. Example 1: Comparison of the existing algorithms for the JOS2e test problem
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 11. Example 2: Comparison of the existing algorithms

which is expressed as follows:

KW2 : min

[
f1(x)
f2(x)

]
s.t. − 3 ≤ xi ≤ 3, i = 1, 2

f1(x) = 3(1− x1)2e−x2
1−(x2+1)2 − 10(

x1
5
− x31 − x52)e−x2

1−x2
2

−3e−(x1+2)2−x2
2 + 0.5(2x1 + x2),

f2(x) = 3(1− x2)2e−x2
2−(−x1+1)2 − 10(−x2

5
+ x32 − x51)e−x2

1−x2
2

−3e−(−x2+2)2−x2
1 .

(4.2)

In this example, we examine a bi-objective problem that has a non-convex Pareto front using
Algorithm 1, BBDMO in [8] with max-type nonmonotone line search, Newton algorithm in
[18], and quasi-Newton algorithm for solving BFGS method in [44].
In Figure 11, the Pareto front approximated by the algorithms mentioned above is shown.
By comparing Part (a) of Figure 11 with other parts of this figure, it can be seen that
Algorithm 1 has approximated the Pareto frontier very well, while other algorithms have not
obtained good results. Using criteria PM, EV, and EX, we compare these algorithms with
k = 5 for Algorithm 1, and N = 25 − 1 stating points with uniform distribution for other
algorithms and show the results in Table 3. According to the data of this table, it can be
concluded that Algorithm 1 performs better than the other ones.
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 12. Example 3: Comparison of the existing algorithms

Table 3. Numerical results of Example 2

Problem Algorithm CPU time (s) EX EV PM

Algorithm 1 0.34 0.4 0 1
KW2 Newton 0.1 0.9 0.2 0.563

Quasi-Newton 2.3 0.6 0.72 0.563

BBDMO 0.21 1.45 1.23 0.32

Example 3. In this example, we examine a problem with a disconnected Pareto front
that consists of two objective functions, in which f1 is a polynomial of degree four and f2 is
the equation of a circle with center (0, 1).

PNR : min
(
x41 + x42 − x21 + x22 − 10x1x2 + 0.25x1 + 20, x21 + (x2 − 1)2

)
s.t. − 2 6 x1, x2 6 2.

(4.3)

In this problem, we set the number of repetitions for Algorithm 1 equal to k = 7. Also,
we consider the number of starting points with uniform distribution for Newton algorithm,
quasi-Newton algorithm using BFGS method and BBDMO with max-type nonmonotone line
search to be equal to 27 − 1.
As seen in Figure 12, the Pareto frontier is discrete. According to Parts (a)-(d) of Figure 12,
the Pareto frontier is completely covered by Algorithm 1, but it is not so in other algorithms.
As demonstrated in Table 4, Algorithm 1 works well in this example, because EV and EX
indices have lower values than other methods.
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 13. Example 4: Comparison of the existing algorithms

Table 4. Numerical results of Example 3

Problem Algorithm CPU time (s) EX EV PM

Algorithm 1 2.1 0.17 1.9342e-04 1
PNR Newton 0.02 1.14 6.8078e-04 0.5

Quasi-Newton 0.01 1 0.243 0.46

BBDMO 0.01 1 0.0643 0.8

Example 4. [51] This test problem can be stated as follows:

WIT : min

[
λ((x1 − 2)2 + (x2 − 2)2) + (1− λ)((x1 − 2)4 + (x2 − 2)8)

(x1 + 2λ)2 + (x2 + 2λ)2

]
, (4.4)

where λ = 0, 0.5, 0.9, 0.99, 0.999, 1 represents WIT1-6, respectively.
In this problem, we put k = 7 for Algorithm 1, and N = 27 − 1 starting points with
uniform distribution for other algorithms. In Figure 13, we display the nondominated points
obtained from Algorithm 1, Newton method, quasi-Newton algorithm using BFGS method,
and BBDMO with max-type nonmonotone line search in the decision space. Furthermore,
we have presented the results of comparing the algorithms in Table 5. According to the
results given in Figure 13 and Table 5, it can be concluded that Algorithm 1 performs better
than other algorithms.
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Table 5. Numerical results of Example 4

Problem Algorithm CPU time (s) EX EV PM

Algorithm 1 0.5 0.6 1.3767e-06 1
WIT1 Newton 0.9 2.5 1.03 0.62

Quasi-Newton 0.9 2.5 0.98 0.62
BBDMO 0.75 4 0.0023 0.69

Algorithm 1 0.6 0.9 4.88189e-05 1

WIT2 Newton 0.93 2.3 12.5 0.132
Quasi-Newton 0.93 2.3 12.45 0.16

BBDMO 1.8 3.1 0.043 1

Algorithm 1 0.44 0.02 0.03 1
WIT3 Newton 0.85 1.8 16.7 0.24

Quasi-Newton 0.84 1.8 16.6 0.25
BBDMO 0.82 3.6 4.53 1

Algorithm 1 0.44 0.14 1.5748e-05 1
WIT4 Newton 0.7 2.4 0.25 0.3

Quasi-Newton 0.7 2.4 0.25 0.313

BBDMO 0.7 1.5 0.004 1

Algorithm 1 0.4 0.07 0.00063 1
WIT5 Newton 0.7 2.3 2.6 0.3333

Quasi-Newton 0.7 2.3 2.56 0.3401

BBDMO 0.73 5.7 0.011 1

Algorithm 1 0.4 0.44 1.63236e-06 1

WIT6 Newton 0.5 2.4 0.09 0.72
Quasi-Newton 0.5 2.4 0.09 0.73

BBDMO 0.5 2.3 0.0012 0.65

Example 5. This test problem has been studied in [13, 47] and is formulated as follows:

DTLZ2 : min (f1(x), f2(x), f3(x))

where f1(x) = (1 + (x3 − 0.5)2) cos(
x1π

2
) cos(

x2π

2
),

f2(x) = (1 + (x3 − 0.5)2) cos(
x1π

2
) sin(

x2π

2
),

f3(x) = (1 + (x3 − 0.5)2) sin(
x1π

2
),

0 ≤ xi ≤ 1, i = 1, 2, 3.

(4.5)

Here, we suppose that the number of repetitions equals N = 8 for Algorithms 1 and set the
number of iterations to implement existing algorithm 400. In Figure 14, we display the non-
dominated points obtained from Algorithms 1, Newton, quasi-Newton using BFGS method,
and BBDMO with max-type nonmonotone line search in the decision space. Furthermore,
we have presented the results of comparing the algorithms in Tables 6.

Table 6. Numerical results of Example 5

Problem Algorithm CPU time (s) EX EV PM

Algorithm 1 0.31 0.000304 1.82927e-05 1
DTLZ2 Newton 0.03 0.0025 0.0002 0.965

Quasi-Newton 1.23 0.0025 0.00016 0.96
BBDMO 1.11 0.0024 0.00015 0.9729
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 14. Example 5: Comparison of the existing algorithms

Example 6. This problem is called the comet problem. This implies that the Pareto
front’s shape begins from a broadly dispersed area and progressively narrows down to a
thinner region [13]. This problem has a non-convex Pareto front and is formulated as follows:

COMET : min (f1(x), f2(x), f3(x))

where f1(x) = (1 + x3)(x31x
2
2 − 10x1 − 4x2),

f2(x) = (1 + x3)(x31x
2
2 − 10x1 + 4x2),

f3(x) = 3(1 + x3)x21,

1 ≤ x1 ≤ 3.5,

−2 ≤ x2 ≤ 2,

0 ≤ x3 ≤ 1.

(4.6)

Here, we run Algorithm 1 with k = 8, and run the other algorithms with N = 300 starting
points with uniform distribution. In Figure 15, we display the nondominated points obtained
from algorithms 1, Newton, quasi-Newton using BFGS method, and BBDMO with max-type
nonmonotone line search in the decision space. Furthermore, we have presented the results
of comparing the algorithms in Table 7. According to Figure 15, Algorithm 1 approximates
the Pareto frontier very well compared with the other algorithms.
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(a)Algorithm 1 (b)BBDMO [8]

(c)Newton algorithm [18] (d)Quasi-Newton algorithm [44]

Figure 15. Example 6: Comparison of the existing algorithms

Table 7. Numerical results of Example 6

Problem Algorithm CPU time (s) EX EV PM

Algorithm 1 0.28 0.0003 0.0015 1

COMET Newton 0.22 0.003 0.02 0.49
Quasi-Newton 0.5 0.0033 0.016 0.737

BBDMO 0.2 0.0033 0.017 1

The results of CPU time (s), EV, EX and PM of Algorithm 1, quasi-Newton al-

gorithm using the BFGS method, Newton algorithm and BBDMO with max-type

nonmonotone line search for each test problem mentioned in this section of the paper

are listed in Tables 2-7. The numerical results obtained from the considered criteria

for comparing the algorithms prove that Algorithm 1 outperforms BBDMO, Newton

algorithm and quasi-Newton algorithm. As seen in Tables 2-7, the purity metric of

Algorithm 1 in all of the examples is equal to 1, and this indicates that the mentioned

algorithm includes a higher percentage of the nondominated boundary of each test

problem. The results of the indices EV and EX of the mentioned algorithms show

that the approximation of the nondominated boundary for each test problem with

Algorithm 1 follows an almost uniform distribution. As it can be seen in the fourth
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row of Table 2, BBDMO with max-type nonmonotone line search does not work well

in this example and we are not able to obtain the indices EX and EV. Especially,

according to the results obtained for problem KW2 with the help of Algorithm 1, it

is concluded that this algorithm performs better than other ones.

5. Conclusions

In this paper, we proposed a new algorithm to obtain a uniform approximation of

convex or nonconvex Pareto frontier. In this algorithm, by applying the CHINs we

provided a new method for generating the initial points for the quasi-Newton method

suing BFGS formula. Then, by comparing the algorithms in [8, 18, 44] and the

suggested algorithm, we concluded that the Pareto frontiers produced by the new

algorithm are better constructed than those obtained by other ones. To achieve

this comparison, we used several well-known test problems. In addition, to show

the performance efficiency of the proposed algorithm, we used three commonly used

indicators. The results of Tables 2-7 show that the algorithms are very encouraging.

In view of the performance of Algorithm 1 on various test problems, we can mention

the advantage of the new algorithm as follows:

(i) Generating initial points close to the Pareto frontier by applying CHIMs.

(ii) Exponential growth of Pareto points generated in a small number of iterations

of the new process.

(iii) Approximation of the Pareto frontier of MOPs with uniform distribution.

(iv) Covering all parts of the Pareto frontier.

However, the suggested algorithm can be implemented for other gradient-based

methods such as the Newton method and the quasi-Newton methods, including

self-scaling BFGS (SS-BFGS), and the Huang BFGS (H-BFGS).
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[44] Ž. Povalej, Quasi-Newton’s method for multiobjective optimization, J. Comput.

Appl. Math. 255 (2014), 765–777.

https://doi.org/10.1016/j.cam.2013.06.045.

[45] M. Preuss, B. Naujoks, and G. Rudolph, Pareto set and EMOA behavior for

simple multimodal multiobjective functions, Parallel Problem Solving from Nature

- PPSN IX (Berlin, Heidelberg) (T.P. Runarsson, H.G. Beyer, E. Burke, J.J.

Merelo-Guervós, L.D. Whitley, and X. Yao, eds.), Springer Berlin Heidelberg,

2006, pp. 513–522.

[46] S. Qu, M. Goh, and F.T.S. Chan, Quasi-Newton methods for solving multiobjec-

tive optimization, Oper. Res. Lett. 39 (2011), no. 5, 397–399.

https://doi.org/10.1016/j.orl.2011.07.008.

[47] M.M. Rizvi, New optimality conditions for non-linear multiobjective optimization

problems and new scalarization techniques for constructing pathological pareto

fronts, Ph.D. thesis, University of South Australia, 2013.
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