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Abstract: Let η1 ≥ η2 ≥ · · · ≥ ηn be the eigenvalues of ABS matrix. In this

paper, we characterize connected graphs with ABS eigenvalue ηn > −1. As a result,

we determine all connected graphs with exactly two distinct ABS eigenvalues. We
show that a connected bipartite graph has three distinct ABS eigenvalues if and only

if it is a complete bipartite graph. Furthermore, we present some bounds for the ABS
spectral radius (resp. ABS energy) and characterize extremal graphs. Also, we obtain

a relation between ABC energy and ABS energy. Finally, the chemical importance of

ABS energy is investigated and it shown that the ABS energy is useful in predicting
certain properties of molecules.
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1. Introduction

Throughout this article, we assume that G is a graph with vertex set V (G) and edge

set E(G), where V (G) = {v1, v2, . . . , vn} and |E(G)| = m. If two vertices vi and vj
are adjacent, then we write it as vi ∼ vj . We denote the degree of the vertex vi by

d(vi) (di for short). As usual, the complete graph, path graph and complete bipartite

graph on n vertices are denoted by Kn, Pn and Kn1,n2 (n1 + n2 = n), respectively.

Adjacency matrix of G is one of the well-studied graph matrix, denoted by A(G) and

defined as A(G) = [aij ]n×n, where aij = 1 if and only if vi ∼ vj or 0, otherwise.

∗ Corresponding Author



2 On the ABS spectrum and energy of graphs

If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A(G), then the sum

n∑
i=1

|λi| is called

the energy of graph G and is denoted by E(G). The concept of graph energy, intro-

duced by Gutman in 1978, slowly attracted mathematicians and chemists. In recent

years, extensive research on graph energy has been carried out. For recent research

on graph energy, see [1, 2, 9, 13, 14, 26] and refer to the book ”Graph Energy” by

Li, Shi, and Gutman [19]. The study of graph energy is extended to various graph

matrices, including (signless) Laplacian matrix, distance matrix, degree-based graph

matrices and distance-based graph matrices. More than 50 graph energies have been

defined so far. See [17] for more details.

A topological index is a numerical quantity derived from the graph’s structure. In

literature, plenty of topological indices are defined and used as molecular descriptors

(see [3, 12, 15, 16] ). Most of the degree-based topological indices can be repre-

sented as TI(G) =
∑
vi∼vj F(di, dj), where F(di, dj) = F(dj , di). As examples, we

have first Zagreb index F(di, dj) = di + dj , second Zagreb index F(di, dj) = didj ,

Randić index (R(G)) F(di, dj) =
1√
didj

, harmonic index (H(G)) F(di, dj) =
2

di + dj
,

sum-connectivity index (χ(G)) F(di, dj) =
1√

di + dj
, atom-bond connectivity index

(ABC(G)) F(di, dj) =

√
di + dj − 2

didj
, atom-bond sum-connectivity index (ABS(G))

F(di, dj) =

√
di + dj − 2

di + dj
, etc. For a topological index TI(G), Das et al. [10] defined

a general extended adjacency matrix as T = (tij)n×n, where tij = F(di, dj) if vi ∼ vj
or 0, otherwise. The sum of absolute values of all the eigenvalues of the matrix T
is called the energy of the general extended adjacency matrix T . In [10], Das et al.

obtained several lower and upper bounds for the energy of the matrix T , and deduced

several known results about degree-based energies of graphs.

The ABS index was introduced recently by Ali et al. in [4]. It combines both sum-

connectivity index and atom-bond sum connectivity index. Bounds on ABS index

for the classes of (molecular) trees and general graphs are obtained in [4] and also

extremal graphs are classified. Chemical applicability of ABS-index is demonstrated

in [6, 25]. For more details about ABS index we refer to the survey article [5] by

Ali et al. The ABS matrix of G is defined to be the matrix ABS(G) = (wij)n×n,

where wij =

√
di + dj − 2

di + dj
if vi ∼ vj and 0, otherwise. We denote the eigenvalues of

ABS(G) by η1 ≥ η2 ≥ · · · ≥ ηn. The sum
∑n
i=1 |ηi| is called the ABS energy of G

and is denoted by EABS(G). The study of properties of ABS matrix began recently.

In [21], it is proved that the ABS Estrada index (
∑n
i=1 e

ηi) of trees is maximum from

the star graph and it is minimum for the path graph. Also, in [20], the authors proved

that ABS spectral radius of a tree is maximum for star graph and it is minimum for

the path graph. The chemical importance of the ABS Estrada index and the ABS
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spectral radius are investigated separately in [20, 21], and it is shown that the ABS
Estrada index and ABS spectral radius can be useful in predicting certain properties

of molecules.

Motivated by this, in Section 2 of the paper, we characterize connected graphs with

ABS eigenvalue ηn > −1. As a result, we determine all connected graphs with exactly

two distinct ABS eigenvalues. Further, we show that a connected bipartite graph has

three distinct ABS eigenvalues if and only if it is a complete bipartite graph. In

Sections 3 and 4, we present some bounds for the ABS spectral radius (resp. ABS
energy) and characterize extremal graphs. Also, we obtain a relation between ABC
energy and ABS energy. In Section 5, the chemical importance of ABS energy is

investigated and it shown that the ABS energy is useful to predict the boiling point

and pi-electron energy of benzenoid hydrocarbons.

2. Properties of ABS eigenvalues

The following proposition is one of the basic properties of ABS eigenvalues. We omit

its proof as it is straightforward.

Proposition 1. Let G be a graph on n vertices. Let η1 ≥ η2 ≥ · · · ≥ ηn be its ABS-

eigenvalues. Then
n∑
i=1

ηi = 0,
n∑
i=1

η2
i = 2(m−H(G)) and

∑
1≤i<j≤n

ηiηj = H(G)−m.

Let M be a Hermitian matrix of order n. We denote the eigenvalues of M by θ1(M) ≥
θ2(M) ≥ · · · ≥ θn(M). The following lemma is the well-known Cauchy’s interlacing

theorem.

Lemma 1. [18] Let M be a symmetric matrix of order n and let Mk be its leading
principal k × k submatrix. Then θn−k+i(M) ≤ θi(Mk) ≤ θi(M) for i = 1, 2, . . . , k.

Theorem 1. Let G be a graph on n vertices. Then the ABS eigenvalues of G are all
equal if and only if G ∼= pK2 ∪ qK1, where 2p+ q = n.

Proof. Suppose that the ABS eigenvalues of G are all equal. Then by Proposition 1,
n∑
i

ηi = 0, and so the ABS eigenvalues of G are zeros. Let H be a component of G.

If |V (H)| ≥ 3, then there exists a vertex x in H of degree at least two. Let y be a

vertex of H adjacent to x. Then the principal minor of ABS(G) corresponding to

the vertices x and y is non-zero. Thus, by Cauchy’s interlacing theorem (see Lemma

1), the least eigenvalue of ABS(G) is non-zero, a contradiction. Hence, |V (H)| ≤ 2.

Therefore, G ∼= pK2 ∪ qK1, where 2p+ q = n. Conversely, if G ∼= pK2 ∪ qK1, then all

the entries of ABS(G) are zeros. Thus, η1 = η2 = · · · = ηn = 0.
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The diameter of a graph G is the maximum distance between any pair of vertices in

G and it is denoted by diam(G). In the following theorem, we characterize connected

graphs with ηn(G) > −1.

Theorem 2. Let G be connected graph on n vertices. Then ηn(G) > −1 if and only if
G ∼= Kn or P3.

Proof. Assume that diam(G) ≥ 2 and G � P3. Let x− y− z be an induced path in

G. Then either d(y) ≥ 3, d(x) ≥ 2 or d(z) ≥ 2. Let ABS[p, q, r] denote the principal

submatrix of ABS(G) corresponding to the vertices p, q and r, where p− q − r is an

induced path in G. Let θ1[p− q− r] ≥ θ2[p− q− r] ≥ θ3[p− q− r] be the eigenvalues

of ABS[p, q, r]. Then

θ1[p− q − r] =
√

2

√
1− 1

d(q) + d(r)
− 1

d(q) + d(p)
;

θ2[p− q − r] = 0;

θ3[p− q − r] = −
√

2

√
1− 1

d(q) + d(r)
− 1

d(q) + d(p)
.

Also, by Cauchy’s interlacing theorem (see Lemma 1), ηn(G) ≤ θ3[p− q − r].
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Figure 1. Graphs considered in the proof of Theorem 2.

Case 1: Let d(y) ≥ 3, d(x) ≥ 1 and d(z) ≥ 1 (see Fig. 1(b)). Then

2

(
1− 1

d(y) + d(z)
− 1

d(y) + d(x)

)
≥ 1. Thus, ηn(G) ≤ θ3[x− y − z] ≤ −1.

Case 2: Let d(y) = 2, d(x) ≥ 2 and d(z) ≥ 1. If d(z) ≥ 2, then

2

(
1− 1

d(y) + d(z)
− 1

d(y) + d(x)

)
≥ 1. So, ηn(G) ≤ θ3[x− y − z] ≤ −1. Otherwise,

d(z) = 1. Let s be a vertex adjacent with the vertex x in G (see Fig. 1(c)). If G ∼= P4,

then ηn(G) = −1.0306 < −1. Suppose G � P4, then either d(x) ≥ 3 or d(s) ≥ 2.

Subcase 2.1: Let d(x) ≥ 2 and d(s) ≥ 2 (see Fig. 1(d)). Then
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2

(
1− 1

d(s) + d(x)
− 1

d(y) + d(x)

)
≥ 1. Thus, ηn(G) ≤ θ3[s− x− y] ≤ −1.

Subcase 2.2: Let d(x) ≥ 3 and d(s) = 1. Then there exists a vertex r adjacent with

the vertex x in G (see Fig. 1(e)).Therefore, 2

(
1− 1

d(s) + d(x)
− 1

d(r) + d(x)

)
≥ 1.

Thus, ηn(G) ≤ θ3[s− x− r] ≤ −1.

Thus for a connected graph G � P3 with diam(G) ≥ 2, ηn(G) ≤ −1. Hence G ∼= Kn

or P3. Conversely, ηn(Kn) = −
√
n− 2

n− 1
> −1 and η3(P3) = −0.81649 > −1. This

completes the proof of the theorem.

Corollary 1. Let G be a connected graph of order n ≥ 2. Then ηn = −
√
n− 2

n− 1
if and

only if G ∼= Kn.

Proof. Suppose ηn = −
√
n− 2

n− 1
. Then by Theorem 2, G ∼= Kn or P3. Since

n3(P3) = −
√

2

3

(
6= −

√
1

2

)
, G ∼= Kn. The converse part is direct.

Let B1 and B2 be two real matrices of same order, we write B1 � B2 if every entry

in B1 does not exceed the counterpart in B2. The following lemma is useful to prove

our next result.

Lemma 2. [18] Let B1, B2 be non-negative matrices of order n. If B1 � B2, then
ρ(B1) ≤ ρ(B2). Further, if B1 is irreducible and B1 6= B2, then ρ(B1) < ρ(B2).

Theorem 3. Let G be a connected graph of order n > 2. Then ABS(G) has exactly two
distinct eigenvalues if and only if G ∼= Kn.

Proof. Suppose G has exactly two distinct eigenvalues. Since G is a connected

graph of order n > 2, the matrix ABS(G) is irreducible, and thus by Perron-

Frobenius theory its largest eigenvalue, i.e., η1(G) is a simple eigenvalue of G. So,

η1(G) and ηn(G) are the two distinct eigenvalues of G, and η2(G) = η3(G) =

· · · = ηn(G). Let B =

√
n− 2

n− 1
A(Kn). Then the eigenvalues of B are (n −

1)

√
n− 2

n− 1
,−
√
n− 2

n− 1
, . . . ,−

√
n− 2

n− 1︸ ︷︷ ︸
n−1

. Since ABS(G) � B, η1(G) ≤ (n−1)

√
n− 2

n− 1
by

Lemma 2. Therefore, −(n−1)ηn(G) ≤ (n−1)

√
n− 2

n− 1
. That is, ηn(G) ≥ −

√
n− 2

n− 1
>

−1. Hence by Theorem 2, G ∼= Kn or P3. So, G ∼= Kn because P3 has three distinct

eigenvalues. The converse part is straightforward.
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The following lemma is important to prove our next result.

Lemma 3. [18] Let C ∈ Mn,m, q = min {n,m}, σ1 ≥ σ2 ≥ · · · ≥ σq be the ordered

singular values of C, and define the Hermitian matrix H =

[
0 C
C∗ 0

]
. The ordered eigenvalues

of H are −σ1 ≤ · · · ≤ −σq ≤ 0 = · · · = 0 ≤ σq ≤ · · · ≤ σ1.

Theorem 4. Let G be a graph of order n. Let M = (mij)n×n be a non-negative symmetric
matrix of order n, where mij is positive if and only if vi ∼ vj. Then the graph G is bipartite
if and only if the eigenvalues of the matrix M are symmetric about origin.

Proof. Suppose G is a bipartite graph. Then the matrix M can be written as

M =

[
0 C

CT 0

]
, where C is a rectangular matrix with non-negative entries. Therefore,

by Lemma 3, the eigenvalues of M are symmetric about the origin.

Conversely, suppose the eigenvalues of M are symmetric about the origin. Then

trace(Mk) = 0 for all odd integer k > 0. By the definition of the matrix M , one can

easily check that trace(Mk(G)) > 0 if and only if trace(Ak(G)) > 0. Now, assume

that G contains an odd cycle of length k. Then trace(Ak(G)) > 0 (see [7, Proposition

1.3.1]). So, trace(Mk) > 0, a contradiction. Thus, G must be a bipartite graph.

The following corollary is immediate from the above theorem.

Corollary 2. A graph G is bipartite if and only if the eigenvalues of ABS(G) are
symmetric about origin.

Theorem 5. A connected bipartite graph G of order n > 2 has three distinct ABS
eigenvalues if and only if G is a complete bipartite graph.

Proof. From Perron Frobenius theorem and by Corollary 2, η1(G) > 0 and ηn(G)

are simple ABS eigenvalues of G. Suppose G has a non-zero ABS eigenvalue other

than η1(G) and ηn(G). Then by Corollary 2, G must have at least four distinct ABS
eigenvalues. Thus, 0 is an ABS eigenvalue of G with multiplicity n − 2. Hence,

rank(ABS(G)) = 2. Let U and W be the vertex partition sets of G. Let u ∈ U

and w ∈ W . Since G is a connected bipartite graph, the rows corresponding to the

vertices u and w are linearly independent. Further, since rank(ABS(G)) = 2 and G

is bipartite, the rows corresponding to the vertices belonging to U(respectively, W )

are in the linear span of the row vector corresponding to the vertex u (respectively,

w). Thus, the vertices in U (respectively, W ) share the same vertex neighborhood

set. Assume that w ∈W and w /∈ N(u). Then w is not adjacent with any vertices of

U . Therefore, w is an isolated vertex of G, a contradiction because G is a connected

graph of order at least 3. Thus, N(u) = W and N(w) = U . Therefore, G is a com-

plete bipartite graph.

Conversely, if G is the complete bipartite graph Kn1,n2
of order n = n1 + n2(≥ 3),



S. Shetty, et al. 7

then ABS(G) =

√
1− 2

n1 + n2
A(G). Therefore the ABS eigenvalues of G are√

n1n2

(
1− 2

n1 + n2

)
, 0, 0, . . . , 0︸ ︷︷ ︸

n−2

,−

√
n1n2

(
1− 2

n1 + n2

)
. Thus, G has exactly

three distinct ABS eigenvalues.

3. Bounds for the ABS spectral radius

In this section, we give some bounds for the largest ABS eigenvalue η1(G).

Lemma 4. Let G be graph of order n with maximum degree ∆ and minimum degree δ.
Then the row sums of ABS(G) are equal if and only if G is a regular graph.

Proof. Suppose the row sums of ABS(G) are equal . Let u, v ∈ V (G) such that

d(u) = δ and d(v) = ∆. Then

∑
vi:u∼vi

√
1− 2

δ + di
=

∑
vj :v∼vj

√
1− 2

∆ + dj
. (3.1)

If δ 6= ∆, then
∑

vj :v∼vj

√
1− 2

∆ + dj
≥ ∆

√
1− 2

∆ + δ
>

∑
vi:u∼vi

√
1− 2

δ + di
, a con-

tradiction to the equation (3.1). Thus, δ = ∆. i.e., G is a regular graph. The converse

part is straightforward.

The following theorem gives a lower bound for η1(G) in terms of order and the atom-

bond sum connectivity index of graph G.

Theorem 6. Let G be a graph of order n, minimum degree δ and maximum degree ∆.

Then η1(G) ≥ 2ABS(G)

n
. Further, equality holds if and only if G is a regular graph.

Proof. Let x = (x1, x2, . . . , xn)T be a vector in Rn. Then

xTABS(G)x = 2
∑

vivj∈E(G)

√
di + dj − 2

di + dj
xixj .

Set x = (1, 1, . . . , 1)T . Then by Rayleigh’s inequality, η1(G) ≥ xTABS(G)x

xTx
=

2ABS(G)

n
, and the equality holds if and only if x = (1, 1, . . . , 1)T is an eigenvec-

tor of ABS(G) corresponding to the eigenvalue η1(G). Suppose η1(G) =
2ABS(G)

n
.

Then the row sums of ABS(G) are equal. Therefore, by Lemma 4, G is a regular

graph.
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Next, we provide a lower and upper bound for η1(G) in terms of order, size and the

harmonic index of graph G.

Theorem 7. Let G be a graph of order n and size m with no isolated vertices. Then

√
2 (m−H(G))

n
≤ η1(G) ≤

√
2(n− 1)

n
(m−H(G)) (3.2)

with equality holds if and only if n is even and G ∼=
n

2
K2.

Proof. By Proposition 1,

nη2
1 ≥

n∑
i=1

η2
i = 2(m−H(G)). (3.3)

Since
n∑
i=1

ηi = 0, η2
1 =

(
n∑
i=2

ηi

)2

. Therefore by Cauchy-Schwarz inequality, η2
1 ≤

(n− 1)
n∑
i=2

η2
i and the equality holds if and only if η2 = η3 = · · · = ηn. So,

nη2
1 ≤ 2(n− 1) (m−H(G)) . (3.4)

Thus from equations (3.3) and (3.4) we get the desired inequality. Suppose n is even

and G ∼=
n

2
K2. Then ABS(G) is the null matrix, and so η1 = η2 = · · · = ηn = 0 and

H(G) = m. Thus the equalities in (3.2) holds. Conversely, suppose the right equality

holds. Then from equation (3.3), η2
1 = η2

2 = · · · = η2
n. This implies that G has at

most two distinct ABS eigenvalue. Therefore, by Theorems 1 and 3, either G ∼= Kn

(n > 2) or n is even and G ∼=
n

2
K2. If G ∼= Kn, then η2

1 6= η2
2 , a contradiction.

Thus, G ∼=
n

2
K2 for an even integer n. Similarly, the left equality holds if and only if

G ∼=
n

2
K2 for an even integer n.

Theorem 8. Let G be a graph of order n with minimum degree δ and maximum degree
∆. Then

√
δ(δ − 1) ≤ η1(G) ≤

√
∆(∆− 1). Further, equality holds if and only if G is a

regular graph.

Proof. From [18, Theorem 8.1.22], min
1≤i≤n

{Ri} ≤ η1(G) ≤ max
1≤i≤n

{Ri}, where Ri is

the row sum of the ith row of ABS(G). Moreover, the equality on both sides holds if

and only if all the row sums of ABS(G) are equal. Now,

max
1≤i≤n

{Ri} = max
1≤i≤n

∑
vi:vi∼vj

√
1− 2

di + dj
≤
√

∆(∆− 1),
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where the equality holds if and only if one of the components of G is a ∆-regular

graph, and

min
1≤i≤n

{Ri} = min
1≤i≤n

∑
vi:vi∼vj

√
1− 2

di + dj
≥
√
δ(δ − 1),

where the equality holds if and only if one of the components of G is a δ-regular

graph. Now, by Lemma 4, the row sums of ABS(G) is a constant if and only if G

is regular. Thus,
√
δ(δ − 1) ≤ η1(G) ≤

√
∆(∆− 1) and the equality on both sides

holds if and only if G is a regular graph.

The sum connectivity matrix of a graph G is a general extended adjacency matrix

with F(di, dj) =
1√

di + dj
. It is denoted by S(G). In the following theorem, we give

a relation between the spectral radius of S(G) (ρ(S(G))) and η1(G).

Theorem 9. If G is a connected graph of order n ≥ 2 , then

ρ(S(G)) min
vivj∈E(G)

√
di + dj − 2 ≤ η1(G) ≤ ρ(S(G)) max

vivj∈E(G)

√
di + dj − 2.

Further, equality on both sides holds if and only if G is a regular graph or semiregular graph.

Proof. The matrices ABS(G) and S(G) are non-negative and irreducible. Moreover,

S(G) min
vivj∈E(G)

√
di + dj − 2 � ABS(G) � S(G) max

vivj∈E(G)

√
di + dj − 2.

Thus, by Lemma 2,

ρ(S(G)) min
vivj∈E(G)

√
di + dj − 2 ≤ η1(G) ≤ ρ(S(G)) max

vivj∈E(G)

√
di + dj − 2.

Now we consider the equality case. Suppose η1(G) = ρ(S(G)) max
vivj∈E(G)

√
di + dj − 2.

Then by Lemma 2, ABS(G) = S(G) max
vivj∈E(G)

√
di + dj − 2. This implies that, for

every edge vivj in G,
√
di + dj − 2 = max

vivj∈E(G)

√
di + dj − 2. Therefore, di + dj is

constant for any edge vivj of G. Let u (resp. v) be a vertex in G with maximum

degree ∆ (resp. minimum degree δ). Let u ∼ u1 and v ∼ v1. Then d(u) + d(u1) ≥
∆ + δ ≥ d(v) + d(v1). Hence, di + dj = δ + ∆, for all vivj ∈ E(G). Now, suppose

there exists a vertex w in G such that d(w) ∈ (δ, ∆). Then G has a component

whose vertex degrees are either d(w) or ∆ + δ − d(w). Therefore, G is disconnected,

a contradiction. Thus, G is ∆-regular or (δ, ∆)-semiregular graph. Similarly, if

η1(G) = ρ(S(G)) min
vivj∈E(G)

√
di + dj − 2, then G is ∆-regular or (δ, ∆)-semiregular

graph. The converse part is straightforward.
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Theorem 10. If G is a connected graph with maximum degree ∆ and minimum degree

δ, then
2χ(G)

n

√
2δ − 2 ≤ η1(G) ≤

√
2(∆− 1)(n− 1)

n
R(G), where the equality on the left

side holds only if G is regular and the equality on the right side holds only if G is a complete
graph.

Proof. From [28, Corollary 1], we have

2χ(G)

n
≤ ρ(S(G)) ≤

√
n− 1

n
R(G), (3.5)

where the left side equality holds only if S(G) has equal row sums, and the right

equality holds only if G is a complete graph. Therefore by Theorem 8, we get the

desired result.

4. Properties of Atom-bond sum-connectivity energy

In this section, we present some bounds on EABS(G).

Theorem 11. Let G be a graph with n ≥ 2 vertices and m edges. Then

(i) EABS(G) ≥ 2
√
m−H(G). Equality holds if and only if G ∼= pKn1,n2 ∪ qK2 ∪ rK1,

where n1 + n2 > 2, p = 0 or 1 and p(n1 + n2) + 2q + r = n.

(ii) EABS(G) ≤
√

2n(m−H(G)). Equality holds if and only if G ∼= pK2 ∪ qk1, where
2p+ q = n.

Proof. (i) From [10, Theorem 4], we have EABS(G) ≥
√

2trace(ABS2(G)) and the

equality holds if and only if η1 = −ηn and η2 = η3 = · · · = ηn−1 = 0. Since

trace(ABS2(G)) = 2m−H(G), we get EABS(G) ≥ 2
√
m−H(G). Suppose η1 = −ηn

and η2 = η3 = · · · = ηn−1 = 0. Then G is bipartite (see, Corollary 2). Also, if H

is a component of G, then ABS(H) has either two or three distinct eigenvalues, or

all its eigenvalues are equal to 0. Thus, from Theorems 5, we get H ∼= Kn1,n2
with

n1+n2 > 2, K2 or K1. Furthermore, if Kn1,n2 (n1+n2 > 2) is a component of G, then

all other components of G are either K2 or K1. Otherwise η2 > 0, a contradiction.

(ii) From[10, Corollary 2], we have EABS(G) ≤
√
n trace(ABS2(G)) and the equality

holds if and only of |η1| = |η2| = · · · = |ηn|. Therefore, EABS(G) ≤
√

2n (m−H(G)).

Suppose |η1| = |η2| = · · · = |ηn|. Then the eigenvalues of ABS(G) are all equal or it

has exactly two distinct eigenvalues. So, by Theorems 1 and 3, each component of G

is Kn1 for some positive integer n1. Furthermore, n1 = 1 or 2. Otherwise η1 > η2.

This completes the proof.

To prove our next upper bound on EABS(G), we need the following lemma.
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Lemma 5. [8] A regular connected graph G is strongly regular if and only if it has three
distinct eigenvalues.

Theorem 12. Let G be a graph of order n with m edges. If m = H(G) or 2(m−H(G)) ≥

n, then EABS(G) ≤ 2ABS(G)

n
+

√
(n− 1)

(
2m− 2H(G)− 4(ABS(G))2

n2

)
. Further, equality

holds if and only if G ∼= pK2 ∪ qK1, where 2p + q = n, G ∼= Kn or G is a non-complete

strongly k-regular graph with ABS eigenvalues
√
k(k − 1) and ±

√
(n− k)(k − 1)

n− 1
.

Proof. Using Cauchy-Schwarz inequality,

EABS(G) =

n∑
i=1

|ηi| = η1 +

n∑
i=2

|ηi| ≤ η1 +
√

(n− 1)(2m− 2H(G)− η2
1),

where the equality holds if and only if |η2| = |η3| = · · · = |ηn|. Let

g(x) = x +
√

(n− 1)(2m− 2H(G)− x2). Then by first derivative test, the

function g is decreasing for

√
2(m−H(G))

n
≤ x ≤

√
2(m−H(G)). Now,

2ABS(G)

n
=

2

n

∑
vivj∈E(G)

√
di + dj − 2

di + dj
≥ 2

n

∑
vivj∈E(G)

di + dj − 2

di + dj
=

2(m−H(G))

n
≥√

2(m−H(G))

n
(because 2(m−H(G)) ≥ n). That is,

2ABS(G)

n
≥
√

2(m−H(G))

n
.

Upon combining the above inequality with Theorem 6, we get

√
2(m−H(G))

n
≤ 2ABS(G)

n
≤ η1 ≤

√
2(m−H(G)). (4.1)

Therefore,

EABS(G) ≤ g(η1) ≤ g
(

2ABS(G)

n

)
=

2ABS(G)

n
+

√
(n− 1)

(
2m− 2H(G)− 4(ABS(G))2

n2

)
.

(4.2)

Suppose the equality in equation (4.2) holds. Then η1 =
2ABS(G)

n
and |η2| = |η3| =

· · · = |ηn|. Thus, ABS(G) has at most three distinct eigenvalues. If ABS(G) has

at most two distinct eigenvalues, then by Theorems 1 and 3, G ∼= pK2 ∪ qK1, where

p + q = n, or G ∼= Kn. Otherwise, ABS(G) has exactly three distinct eigenvalues.

Now, by Theorem 6, G is k-regular graph for some constant k, and so ABS(G) =√
k − 1

k
A(G). If ABS(G) has exactly three distinct eigenvalues, then G has exactly

three distinct eigenvalues. Therefore by Lemma 5, G must be a non-complete strongly

regular graph. Conversely, if G ∼= pK2 ∪ qK1, where 2p+ q = n, or G ∼= Kn, then one

can easily see that the equality in (4.2) holds. Suppose G is a non-complete strongly
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k-regular graph, then η1 =
√
k(k − 1), |ηj | =

√
(n− k)(k − 1)

n− 1
for j = 2, 3, . . . , n.

Now, one can easily check that equality in (4.2) holds. This completes the proof of

the theorem.

The following lemmas are useful to prove our next result.

Lemma 6. [23] If M = (mij) is a Hermitian n × n matrix, then |θ1(M) − θn(M)| ≥

2 max
j

∑
k:k 6=j

|mjk|2
 1

2

.

Lemma 7. Let G be a connected graph of order n ≥ 2 with maximum degree ∆ and
minimum degree δ. Then

2

√
∆ (∆ + δ − 2)

∆ + δ
≤ η1 + |ηn| ≤ 2

√
m−H(G).

Proof. By Lemma 6,

η1 + |ηn| ≥ 2 max
i

 ∑
vj :vi∼vj

di + dj − 2

di + dj

1/2

≥ 2

√
∆(∆ + δ − 2)

∆ + δ
.

Proving the left inequality. Now, by Cauchy-Schwarz inequality and from Proposition

1,

η1 + |ηn| ≤
√

2(η2
1 + η2

n) ≤
√

4(m−H(G)) = 2
√
m−H(G).

Theorem 13. Let G be (n,m)-graph with maximum degree ∆. If
2 (m−H(G))

n
≤

∆ (∆− 1)

∆ + 1
, EABS(G) ≤ 2

√
∆ (∆− 1)

∆ + 1
+

√
2(n− 2)

(
m−H(G)− ∆ (∆− 1)

∆ + 1

)
. Equality

holds if and only if G ∼= pK1,∆ ∪ qK2 ∪ rK1, where p = 0 or 1 and p(∆ + 1) + 2q + r = n.

Proof. Let η1 ≥ η2 ≥ · · · ≥ ηn be the ABS eigenvalues of G. Using Cauchy-Schwarz

inequality,

EABS(G) = η1 + |ηn|+
n−1∑
i=2

|ηi| ≤ η1 + |ηn|+

√√√√n−1∑
i=2

(n− 2)|ηi|2,

where the equality holds if and only if |η2| = |η3| = · · · = |ηn−1|. Therefore, by

Proposition 1,

EABS(G) ≤ η1 + |ηn|+
√

(n− 2)(2m− 2H(G)− η2
1 − η2

n).
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Further, by A.M.-G.M. inequality, 2
√
η1ηn ≤ η1 + |ηn| and the equality holds if and

only if η1 = |ηn|, Thus

EABS(G) ≤ η1 + |ηn|+

√√√√(n− 2)

(
2m− 2H(G)− (η1 + |ηn|)2

2

)
.

Let f(x) = 2x +
√

(n− 2)(2m− 2H(G)− 2x2). Then f is decreasing for√
2(m−H(G))

n
≤ x ≤

√
m−H(G). By Lemma 7,

√
2(m−H(G))

n
≤
√

∆(∆− 1)

∆ + 1
≤ η1 + |ηn|

2
≤
√
m−H(G).

So,

EABS(G) ≤ f
(
η1 + |ηn|

2

)
≤ f

(√
∆(∆− 1)

∆ + 1

)

= 2

√
∆(∆− 1)

∆ + 1
+

√
(n− 2)

(
2m− 2H(G)− 2

∆(∆− 1)

∆ + 1

)
. (4.3)

Suppose the equality in equation (4.3) holds. Then η1 = |ηn| =

√
∆(∆− 1)

∆ + 1
and

|η2| = |η3| = · · · = |ηn−1|. Thus, by Perron-Frobenius theorem, G is a bipartite

graph. If ∆ = 1, then, G ∼= qK2 ∪ rK1, where 2q + r = n. Otherwise, ∆ > 1,

and so η1 = |ηn| > 0 . Let H be component of G having a vertex of degree ∆.

Since G is bipartite, K1,∆ is an induced subgraph of H. So, by Cauchy’s interlacing

theorem, η1(H) ≥ η1(K1,∆) =

√
∆(∆− 1)

∆ + 1
. Moreover the equality holds if and

only if H ∼= K1,∆. Now, η1 =

√
∆(∆− 1)

∆ + 1
≥ η1(H) because H is a component

of G. Therefore, η1(H) = η1 =
∆(∆− 1)

∆ + 1
and H ∼= K1,∆. Further, 0 is an ABS

eigenvalue of H, and thus ABS eigenvalues of G are η1 = |ηn| =

√
∆(∆− 1)

∆ + 1
and

|η2| = |η3| = · · · = |ηn−1| = 0. Therefore, if H1 � H is a component of G, then all

its ABS eigenvalues are equal to 0. Therefore, by Theorem 1, H1
∼= K2 or K1. Thus

G ∼= pK1,∆ ∪ qK2 ∪ rK1, where p = 0 or 1 and p(∆ + 1) + 2q + r = n. Conversely, if

G ∼= pK1,∆ ∪ qK2 ∪ rK1, where p = 0 or 1 and p(∆ + 1) + 2q + r = n, then one can

easily verify that the equality holds.

Theorem 14. Let ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn be the ABC-eigenvalues and η1 ≥ η2 ≥ · · · ≥ ηn be

the ABS eigenvalues of a graph G without pendent vertices. Then EABS(G) ≥
√

2

n
EABC(G).
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Proof. We have,

(EABS(G))2 =

(
n∑
i=1

|ηi|

)2

=

n∑
i=1

η2
i + 2

∑
i<j

|ηi||ηj |

≥
n∑
i=1

η2
i + 2

∣∣∣∣∣∣
∑
i<j

ηiηj

∣∣∣∣∣∣ (by triangle inequality)

= 2

n∑
i=1

η2
i

because

n∑
i=1

η2
i = −2

∑
i<j

ηiηj


= 4

∑
vivj∈E(G)

di + dj − 2

di + dj

≥ 4
∑

vivj∈E(G)

di + dj − 2

didj

= 2
∑
i=1

ϕ2
i ≥

2

n

(∑
i=1

|ϕi|

)2

(by Cauchy-Schwarz inequality)

=
2

n
(EABC(G))

2
.

Thus, EABS(G) ≥
√

2

n
EABC(G).

5. QSPR analysis of benzenoid hydrocarbon

In this section, we show that the physicochemical properties, namely, the boiling

point (BP) and pi-electron energy (Eπ)of benzenoid hydrocarbons can be modeled

using ABS-energy. The experimental values listed in this section are taken from

[11, 24, 27]. The hydrogen-suppressed molecular graphs are depicted in Figure 2. The

calculated values of ABS energy for benzenoid hydrocarbons are shown in Table 1 .
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BHC 1 BHC 2 BHC 3 BHC 4 BHC 5
BHC 6

BHC 7 BHC 8

BHC9 BHC 10
BHC 11

BHC 12
BHC 13 BHC 14 BHC 15 BHC 16

BHC17

BHC 18
BHC 19

BHC 20
BHC 21

Figure 2. Hydrogen-suppressed molecular graph of benzenoid hydrocarbons

Compound EABS BP Eπ
BHC1 10.089 218 13.6832

BHC2 14.5445 338 19.4483
BHC3 14.4865 340 19.3137
BHC4 18.9799 431 25.1922

BHC5 18.9015 425 25.1012
BHC6 19.0111 429 25.2745

BHC7 18.8744 440 24.9308
BHC8 21.5036 496 28.222
BHC9 21.5786 493 28.3361

BHC10 21.4939 497 28.2453
BHC11 24.0287 547 31.253

Compound EABS BP Eπ
BHC12 23.5972 542 31.4251

BHC13 23.4346 535 30.9418
BHC14 23.4184 536 30.8805
BHC15 23.3769 531 30.8795

BHC16 23.4463 519 30.9432
BHC17 26.7119 590 34.5718

BHC18 25.9835 592 34.0646
BHC19 25.915 596 33.1892
BHC20 25.9357 594 33.9542

BHC21 25.9565 595 34.0307
- - - -

Table 1. Experimental physicochemical properties and theoretical ABS energy of benzenoid hydrocar-
bons.

Consider the following model:

Y = A(±Se)EABS +B(±Se), (5.1)

where Y,A, Se and B denote the property, slope, standard error of coefficients and

intercept, respectively. We denote the correlation coefficient, standard error of the
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model, the F -test value and the significance by r, SE, F and SF , respectively.

For benzenoid hydrocarbons, it is found that the ABS energy has a strong correlation

with the boiling point and pi-electron energy. In fact, we get the following regression

equations for benzenoid hydrocarbons using model (5.1).

BP = 22.684(±0.4013)EABS + 2.25(±8.7952), (5.2)

r2 = 0.9941, SE = 7.8838, F = 3194.002, SF = 1.23× 10−22.

Figure 3. Linear relation of ABS energy with BP, experimental and predicted BP and residual plot.

Eπ = −1.2668(±0.01235)EABS + 1.0586(±0.2706), (5.3)

r2 = 0.9982, SE = 0.2425, F = 10522.29, SF = 1.54× 10−27.

Figure 4. Linear relation of ABS energy with pi-electron energy, experimental and predicted pi-electron
energy and residual plot.

The data variance for BP and pi-electron energy is around 99%. The standard errors

are very low, particularly in model (5.3), where they are significantly small. This low

standard error enhances the model’s consistency and increases the F-value, especially

for pi-electron energy. The SF values are significantly below 0.05. The predicted

properties from model (5.1) are compared with the experimental properties using bar

diagrams, where series 1 is related to experimental value and series 2 is related to

predicted value. These figures show that the experimental and predicted data align
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well. Additionally, the residuals are randomly scattered around the zero line, indicat-

ing that the model is consistent.

In [11, 22, 24, 25, 27] the QSPR analysis of benzenoid hydrocarbons is done using

the second-degree based entropy, ve-degree irregularity index, Albertson index, first

and second status connectivity indices, first and second eccentric connectivity indices,

Wiener index, Sombor index, reduced Sombor index and ABS index. It is observed

that the |r| value obtained for BP using EABS is better than that of |r| value obtained

from these indices. Further, EABS have high pi-electron energy predictive ability com-

pared to second-degree based entropy and ABS index. With the smaller standard

error and higher F -value of the proposed models, we can conclude that the perfor-

mance of the models is better than that of the models discussed in [25] using ABS

index.

6. Conclusions

In this work, we have determined all connected graphs with ηn > −1. As a result,

graphs with two distinct ABS eigenvalues are classified. Also, bipartite graphs with

three distinct ABS eigenvalues are determined. Further, some bounds on the spectral

radius and energy of the matrix ABS(G) are obtained. Also, the chemical importance

of ABS energy is demonstrated. The problem of characterizing non-bipartite graphs

with three distinct ABS eigenvalues remains open. As a future work, the problem of

obtaining sharp bounds for the spectral radius and energy of the matrix ABS(G) in

terms of graph parameters would be interesting.
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