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Abstract: In this work, we characterize the class of word-representable graphs with

respect to the modular decomposition. Consequently, we determine the representa-

tion number of a word-representable graph in terms of the permutation-representation
numbers of the subgraphs induced by modules and the representation number of the as-

sociated quotient graph. In this context, we also obtain a complete answer to the open

problem posed by Kitaev and Lozin on the word-representability of the lexicographical
product of graphs.
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1. Introduction

The class of word-representable graphs (see Definition 3) is a well-studied graph class

in the literature having importance in algebra and graph theory. The class of word-

representable graphs includes several fundamental classes of graphs such as compa-

rability graphs, circle graphs, parity graphs, and 3-colorable graphs. For a survey on

word-representable graphs and their connections to other contexts, one may refer to

the monograph by Kitaev and Lozin [9]. The class of comparability graphs, i.e., the

graphs which admit transitive orientations, is precisely the class of permutationally

representable graphs [11] and these graphs can be represented by a concatenation of
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2 Word-representability of graphs using modular decomposition

permutations on their vertices. Every comparability graph induces a poset based on

one of its transitive orientations.

A word-representable graph is said to be k-word-representable (for some positive

integer k) if it is represented by a k-uniform word - a word in which every letter

appears exactly k times. It is known that a graph is word-representable if and only

if it is k-word-representable for some k [10]. The representation number of a word-

representable graph is the smallest k such that the graph is k-word-representable.

Similarly, the permutation-representation number (in short, prn) of a comparability

graph is the smallest k such that the comparability graph is represented by a concate-

nation of k permutations on its vertices. Moreover, the prn of a comparability graph

is exactly the dimension of the induced poset [16]. The class of word-representable

graphs with representation number at most two is characterized as the class of circle

graphs [7] and the class of comparability graphs with prn at most two is the class

of permutation graphs (cf. [17]). In general, determining the representation num-

ber of a word-representable graph, and the permutation-representation number of a

comparability graph are computationally hard [7, 20].

For a graph G = (V,E), a set A ⊆ V is said to be a module of G if for any b ∈ V \A,

either no vertex of A is adjacent to b or all vertices of A are adjacent to b. A

modular partition of G is a partition of the vertex set of G into modules. There is

a quotient graph associated to every modular partition of G. A modular partition

of G and its quotient graph constitute a modular decomposition of G. The modular

decomposition has a wide range of applications, including in the theory of posets and

scheduling problems. For detailed information on this topic, one may refer to the

survey papers [6, 15].

The concept of modular decomposition of a graph was first introduced by Gallai

[4] and used to characterize the comparability graphs. Further, in [14], a recogni-

tion algorithm for comparability graphs was obtained using modular decomposition.

Moreover, the modular decomposition was used to characterize a number of graph

classes such as cographs, permutation graphs, and interval graphs (cf. [5]). We now

state the following problem for word-representable graphs.

Problem 1. Characterize word-representable graphs with respect to the modular decom-
position.

In this paper, we address Problem 1 and, we also determine the representation number

of a word-representable graph and the prn of a comparability graph in terms of the

respective modules and the quotient graph. Additionally, we provide a necessary and

sufficient condition under which the lexicographical product of two word-representable

graphs is word-representable, thereby offering a complete answer to the open problem

posed in [9, Chapter 7].
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2. Preliminaries

In this section, we define the concepts that are used in this paper along with the

relevant results.

2.1. Word-Representable Graphs

In this subsection, we provide necessary background material on word-representable

graphs and partially ordered sets. For more details on these topics, one may refer to

[9, 19].

Definition 1. Let X be a finite set (of letters). A word over X is a finite sequence of
letters of X written by juxtaposing them. A subword u of a word w is a subsequence of the
sequence w and it is denoted by u� w.

For example, aacbabca is a word over the set {a, b, c} and acbaca� aacbabca. Let w

be a word over a set X and Y ⊆ X. We write w|Y to denote the subword of w that

is obtained by deleting all the letters belonging to X \ Y from w. For example, if

w = aacbabca, w|{a,b} = aababa. Let w be a word over a set containing the letters a, b.

We say a and b alternate in w if w|{a,b} is in one of the following forms: (ab)k, (ba)k,

a(ba)k or b(ab)k for some positive integer k ≥ 1, where, for a word x, xk denotes the

word xx · · ·x for k times. A word w is called a k-uniform word if every letter appears

exactly k times in w. Note that a 1-uniform word w is a permutation on the set of

letters of w.

Definition 2. A graph G is a pair (V,E), where V is a finite set and E is a set of 2-
element subsets of V . The elements of V and E are called vertices and edges of the graph G,
respectively. If {a, b} ∈ E, then we say a and b are adjacent. The neighborhood of a vertex
a in G, denoted by NG(a), is the set of all vertices adjacent to a.

For A ⊆ V , the subgraph of G induced by A, denoted by G[A], is the graph whose

vertex set is A and the edge set consists of all 2-element subsets of A that are in E.

For a, b ∈ V , we say a is reachable from b (or vice versa) if there is a sequence of

vertices 〈a = a0, a1, . . . , ak = b〉 such that {ai−1, ai} ∈ E for all 1 ≤ i ≤ k. A graph

G is said to be connected if any two distinct vertices are reachable from one another.

In this paper, we consider only connected graphs.

Definition 3. A graph G = (V,E) is said to be a word-representable graph if there exists
a word w over the vertex set V of G such that for all a, b ∈ V , a and b are adjacent in G if
and only if a and b alternate in w. In this case, we say w represents G. A graph G is said to
be k-word-representable if there exists a k-uniform word representing G. The representation
number of a word-representable graph G, denoted by R(G), is the smallest k such that G is
k-word-representable.
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Definition 4. For some positive integer k, let p1, p2, . . . , pk be permutations on the vertex
set of a graph G such that p1p2 · · · pk represents G, then G is said to be a permutationally
k-representable graph, or simply, a permutationally representable graph. The permutation-
representation number (in short, prn) of a permutationally representable graph G, denoted
by Rp(G), is the smallest k such that G is permutationally k-representable.

We now recall the concepts of comparability graphs, posets and their connection to

word-representable graphs.

Definition 5. An orientation of a graph is an assignment of direction to each edge so
that the resultant graph is a directed graph, in which the edges are ordered pairs of vertices.
An orientation is transitive if (a, b) and (b, c) are edges, then (a, c) is also an edge in the
resultant directed graph, for all vertices a, b, c. A graph is said to be a comparability graph
if it admits a transitive orientation.

Definition 6. A partially ordered set (in short, poset) is a pair (P,≺), where P is a
nonempty set and ≺ is a partial order on P , i.e., ≺ is a transitive relation on P such that
a ⊀ a for all a ∈ P . Two elements a, b in a poset are said to be comparable if a ≺ b or b ≺ a;
otherwise, we say they are incomparable.

A poset (P,≺) is often represented by its underlying set P , when the partial order is

clear in a given context. A partial order on a set P is said to be a linear order if any

two elements of P are comparable.

Definition 7. Let (P,≺) be a poset. A realizer of the poset P is a collection of linear
orders {≺1,≺2, . . . ,≺k} (for some positive integer k) on P such that for every a, b ∈ P , a ≺ b
if and only if a ≺i b, for all 1 ≤ i ≤ k. The dimension of a poset P , denoted by dim(P ), is
the smallest positive integer k such that P has a realizer of size k.

Let G = (V,E) be a comparability graph with a transitive orientation D. Then, G

induces a poset, denoted by PG = (V,≺), such that a ≺ b in PG if and only if (a, b)

is an edge in the resultant directed graph with respect to D. The following results

relating comparability graphs with word-representable graphs are useful in this paper.

Theorem 1 ([11]). A graph is a comparability graph if and only if it is a permutationally
representable graph.

Theorem 2 ([10]). If G is a word-representable graph, then the subgraph induced by
NG(a) is a comparability graph, for every vertex a of G.

Theorem 3 ([7, 16]). For a comparability graph G, Rp(G) = dim(PG).
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2.2. Modular Decomposition

In this subsection, we present the preliminaries of modular decomposition. For more

details, one may refer to the surveys [6, 15], while it is worth noting that [4] is the

seminal paper on modular decomposition.

Definition 8. Let G = (V,E) be a graph. A set of vertices A ⊆ V is a module of G if
for any b ∈ V \A, either NG(b)∩A = ∅ or A ⊆ NG(b). A graph is said to be a prime graph
if it contains only trivial modules, viz., the singletons and the whole set V . Otherwise, the
graph is said to be decomposable.

Definition 9. A modular partition of a graph G = (V,E) is a partition of V into modules
of G. For some positive integer k, let P = {A1, A2, . . . , Ak} be a modular partition of G,
i.e., Ai is a module of G for all 1 ≤ i ≤ k. Choose exactly one vertex ai from each Ai and let
V ′ = {a1, a2, . . . , ak}. The quotient graph associated to P of G, denoted by G/P, is the graph
(V ′, E′), where {ai, aj} ∈ E′ if and only if {ai, aj} ∈ E, for all 1 ≤ i, j ≤ k. A modular
partition P of G and its quotient graph G/P constitute a modular decomposition of G.

Remark 1. For some positive integer k, let P = {A1, A2, . . . , Ak} be a modular partition
of a graph G. It is evident that G/P is isomorphic to an induced subgraph of G. Moreover,
the original graph G can be reconstructed from G/P by replacing each vertex of G/P with the
corresponding induced subgraph G[Ai], for 1 ≤ i ≤ k.

A module A is said to be strong if A does not intersect with any other module or

whenever A ∩ A′ 6= ∅ for some module A′ then one is contained in the other. Note

that the whole set V and the singletons are strong modules of G = (V,E). Further,

a module A is called maximal if there is no module A′ of G such that A ⊂ A′ ⊂ V .

It is known that every graph has a unique maximal modular partition (a partition

consisting of only maximal strong modules). All modules of a graph G can be obtained

through the notion called modular decomposition tree of G, whose nodes are the

strong modules of G. The modular decomposition tree of G has V as the root and

the children of a node A in the tree are the parts of the maximal modular partition

of the induced subgraph G[A]. The modular decomposition tree of G and modular

decomposition of G can be computed in O(n + m) time, where n and m are the

number of vertices and the number of edges of G [13]. We now present the structural

characterization of comparability graphs with respect to a modular decomposition of

a graph.

Theorem 4 ([5, 14]). For some positive integer k, let P = {A1, A2, . . . , Ak} be a
modular partition of a decomposable graph G. Then G is a comparability graph if and only
if G/P and each of the induced subgraphs G[Ai] are comparability graphs.
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3. Characterization

In the present context, to study modular decomposition, first we consider the following

operation which replaces a module in place of a vertex in a graph.

Definition 10. Let G = (V ∪ {a}, E), where a /∈ V , and M = (V ′, E′) be two graphs.
The graph Ga[M ] = (V ′′, E′′) is defined by V ′′ = V ∪ V ′ and the edge set E′′ consists of

the edges of G[V ], edges of E′ and
{
{b, c} | b ∈ V ′, c ∈ NG(a)

}
. We say Ga[M ] is obtained

from G by replacing the vertex a of G with the module M .

Remark 2. In Definition 10, note that V ′ is a module in the graph Ga[M ]. For instance,
let b ∈ V ′′ \ V ′ = V . Thus, both a and b are vertices of G, and we have either b /∈ NG(a) or
b ∈ NG(a). Thus, by definition of Ga[M ], either NGa[M ](b) ∩ V ′ = ∅ or V ′ ⊆ NGa[M ](b).

Remark 3. For two word-representable graphs G and M , Ga[M ] is not always a word-
representable graph. For instance, consider the graph obtained by replacing one of the two
vertices of the complete graph K2 with the cycle C5. This graph is nothing but the wheel
graph W5 (see Fig. 1), which is not a word-representable graph (cf. [9, Chapter 3]).

a b

1

2

34

5

1

2

34

5
b

G C5 Ga[C5]

Figure 1. Replacing the vertex a of G with the module C5

In what follows, G and M denote the graphs G = (V ∪ {a}, E) with a 6∈ V and

M = (V ′, E′), unless stated otherwise. The following theorem gives us a sufficient

condition for the word-representability of Ga[M ].

Theorem 5 ([8]). Suppose G is a word-representable graph. If M is a comparability
graph, then Ga[M ] is word-representable.

Further, on the representation number of Ga[M ], it was stated in [8] that if R(G) = k

and R(M) = k′, then R(Ga[M ]) = max{k, k′}. Although it was stated that k′ is

the representation number of the graph M , the concept of prn of M was used in the

proof given in [8]. If k′ = R(M), then the statement does not hold in some cases, as

shown in the following counterexample.
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Example 1. Consider the graph obtained by replacing a vertex, say a, of G = K2 with
the cycle C6. Note that R(G) = 1 and R(C6) = 2 [9, Chapter 3]. But R(Ga[C6]) 6= 2.
In fact, Ga[C6] is the wheel W6 and its representation number is 3 (by [7, Lemma 3]), as
Rp(C6) = 3 (cf. [17]).

In the following, we state the correct version for giving representation number of

Ga[M ].

Theorem 6. Let G be a word-representable graph and M be a comparability graph. If
R(G) = k and Rp(M) = k′, then R(Ga[M ]) = max{k, k′}.

Corollary 1. Suppose a word-representable graph H ′ is obtained from a comparability
graph H by adding an all-adjacent vertex, i.e., a vertex which is adjacent to all vertices of
H. Then, R(H ′) = Rp(H).

Proof. It can be observed that the graph H ′ is obtained from the complete graph

K2 by replacing one of its two vertices with the module H. Since R(K2) = 1, by

Theorem 6, we have R(H ′) = Rp(H).

We now prove that the comparability of M is necessary for Ga[M ] to be a word-

representable graph.

Theorem 7. The graph Ga[M ] is word-representable if and only if G is a word-
representable graph and M is a comparability graph.

Proof. If G is a word-representable graph and M is a comparability graph, then by

Theorem 5, Ga[M ] is a word-representable graph. Conversely, suppose Ga[M ] is a

word-representable graph. Then, G is word-representable as G is isomorphic to an

induced subgraph of Ga[M ]. Since G is connected, there exists a vertex, say b, of G

such that b ∈ NG(a). Then, from the construction of Ga[M ] it is evident that b is

adjacent to all vertices of M . Consider the induced subgraph G1 = (Ga[M ])[V ′∪{b}].
Clearly, G1 is a word-representable graph. Further, note that the subgraph induced

by NG1
(b) in G1 is M . Then, in view of Theorem 2, M is a comparability graph.

In the following theorem, we provide a characterization for Ga[M ] to be a compara-

bility graph. We also present the prn of Ga[M ].

Theorem 8. The graph Ga[M ] is a comparability graph if and only if G and M are com-
parability graphs. Moreover, if Rp(G) = k and Rp(M) = k′, then Rp(Ga[M ]) = max{k, k′}.

Proof. Suppose Ga[M ] is a comparability graph. Since G and M are isomorphic to

certain induced subgraphs of Ga[M ], G and M are comparability graphs. Conversely,

suppose G and M are comparability graphs. Let the words p1p2 · · · pk and p′1p
′
2 · · · p′k′
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S

Figure 2. A tree with prn 3.

represent the graphs G and M respectively, where each pi (1 ≤ i ≤ k) is a permutation

on the vertices of G and each p′i (1 ≤ i ≤ k′) is a permutation on the vertices of M .

Suppose max{k, k′} = t. If k′ < k, then set p′j = p′k′ for all k′ + 1 ≤ j ≤ t and note

that p′1p
′
2 · · · p′t represents M . Similarly, if k < k′, then set pj = pk for all k+1 ≤ j ≤ t

and note that p1p2 · · · pt represents G. In any case, the words w = p1p2 · · · pt and

w′ = p′1p
′
2 · · · p′t represent the graphs G and M , respectively. For 1 ≤ i ≤ t, let

pi = riasi so that pi|V = risi.

Let vi = rip
′
isi, for all 1 ≤ i ≤ t. Note that each vi is a permutation on the vertices

of Ga[M ]. We show that the word v = v1v2 · · · vt represents the graph Ga[M ].

Note that G[V ] and M are induced subgraphs of Ga[M ]. Further, since v|V =

p1|V p2|V · · · pt|V = w|V and v|V ′ = w′, the subwords v|V and v|V ′ of v represent

the graphs G[V ] and M , respectively. Thus, any two vertices of G[V ] (or any two

vertices of M) are adjacent if and only if they alternate in the word v.

Let b, b′ be two vertices of Ga[M ] such that b ∈ V and b′ ∈ V ′. Then b and b′ are

adjacent in Ga[M ] if and only if b ∈ NG(a). Further, note that each vi is constructed

from pi by replacing a with p′i. Then, it is easy to see that for every b′ ∈ V ′, b′

alternates with b ∈ V in v if and only if b alternates with a in w. Thus, for every

b′ ∈ V ′ and b ∈ V , b′ alternates with b in v if and only if b ∈ NG(a). Hence, v

represents the graph Ga[M ] permutationally.

Therefore, we have Rp(Ga[M ]) ≤ t = max{k, k′}. Further, note that G and M are

isomorphic to certain induced subgraphs of Ga[M ] so that Rp(Ga[M ]) ≥ t. Hence,

Rp(Ga[M ]) = max{k, k′}.

A graph G = (V,E) is called a 3-leaf power if there is a tree T with V as its leaves such

that for all a, b ∈ V , {a, b} ∈ E if and only if their distance in T is at most three. These

graphs were introduced in [18], and a forbidden induced subgraph characterization

for this class of graphs was obtained in [3]. Further, in [1], it was proved that a

connected graph G is a 3-leaf power if and only if it is obtained from a suitable tree

(called an associated tree of G), say TG, by replacing each vertex of TG with cliques.

Moreover, this characterization leads to linear-time (i.e., O(n + m) time, where n is

the number of vertices and m is the number of edges of G) recognition of the class of

3-leaf power graphs. Since both trees and cliques are comparability graphs, in view

of Theorem 8, it is evident that 3-leaf power graphs are comparability graphs, and

hence they are word-representable. Furthermore, we have the following theorem on

the representation number as well as on the prn of a 3-leaf power graph.



T. Dwary, K.V. Krishna 9

Theorem 9. If G is a 3-leaf power graph, then R(G) ≤ 2 and Rp(G) ≤ 3. Moreover,
Rp(G) = 3 if and only if the graph S (depicted in Fig. 2) is isomorphic to an induced
subgraph of G.

Proof. Note that a 3-leaf power graph G is obtained from an associated tree TG by

replacing iteratively each vertex of TG with cliques. Let a1, a2, . . . , an be the vertices

of TG and M1,M2, . . . ,Mn be the cliques replacing a1, a2, . . . , an, respectively, to

obtain G. Recall that Rp(Mi) = 1, for all 1 ≤ i ≤ n (cf. [17]). Hence, in view of

Theorem 6, we have

R(G) = max{R(TG),Rp(M1),Rp(M2), . . . ,Rp(Mn)} = R(TG).

Similarly, in view Theorem 8, we have Rp(G) = Rp(TG). It is known that the

representation number and the prn of trees are at most 2 and 3, respectively (cf.

[9, Section 3.1] and [17, Theorem 4]). Hence, R(TG) ≤ 2 and Rp(TG) ≤ 3 so that

R(G) ≤ 2 and Rp(G) ≤ 3.

Suppose Rp(G) = 3 so that we have Rp(TG) = 3. Hence, in view of [17, Theorem

4], the graph S is isomorphic to an induced subgraph of TG. Further, since TG is an

induced subgraph of G, we have S is isomorphic to an induced subgraph of G. The

converse part holds as Rp(S) = 3 (cf. [17, Section 4]).

As a consequence of the above results, we now study the word-representability of the

lexicographical product of any two graphs.

Definition 11. Let G = (V,E) and G′ = (V ′, E′) be two graphs. The lexicographical
product of G and G′, denoted by G ◦G′, defined by G ◦G′ = (V ′′, E′′), where the vertex set

V ′′ = V × V ′ and the edge set E′′ =
{
{(a, a′), (b, b′)}

∣∣∣ {a, b} ∈ E or (a = b, {a′, b′} ∈ E′)
}

.

The word-representability of lexicographical product of graphs is an open problem

posed in [9, Chapter 7]. In connection to this problem, it was shown in [2, Section

6] that the class of word-representable graphs is not closed under the lexicographical

product by constructing an explicit example. First, we observe the relation between

lexicographical product and the operation of module replacing a vertex as per the

following remark.

Remark 4. The lexicographical product G ◦G′ is nothing but replacing each vertex of G
by the module G′. Hence, both G and G′ are induced subgraphs of G ◦G′.

Accordingly, in the following theorem, we provide a necessary and sufficient condition

for G ◦ G′ to be a word-representable graph. Thus, we settle the above-mentioned

open problem.
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Theorem 10. Let G and G′ be two graphs. The lexicographical product G ◦ G′ is
word-representable if and only if G is word-representable and G′ is a comparability graph.
Moreover, if R(G) = k and Rp(G′) = k′, then R(G ◦G′) = max{k, k′}.

Proof. The proof follows from Remark 4, Theorem 6 and Theorem 7.

We further state a characteristic property for G ◦G′ to be a comparability graph.

Theorem 11. Let G and G′ be two graphs. The lexicographical product G ◦ G′ is a
comparability graph if and only if G and G′ are comparability graphs. Moreover, if Rp(G) = k
and Rp(G′) = k′, then Rp(G ◦G′) = max{k, k′}.

We are now ready to present the main result of the paper on characterization of

word-representable graphs with respect to the modular decomposition, through the

following lemma.

Lemma 1. Let G be a word-representable graph and A be any non-trivial module of G.
Then the induced subgraph G[A] is a comparability graph.

Proof. Consider the graph G′ which is obtained from G by replacing the module

A by a new vertex, say a. Thus, G′ is word-representable as it is isomorphic to an

induced subgraph of G. Note that G can be reconstructed from G′ by replacing the

vertex a with the module G[A]. Hence, by Theorem 7, we have G[A] is a comparability

graph.

Theorem 12. Let G be a decomposable graph and P = {A1, A2, . . . , Ak} be a modular
partition of G, for some positive integer k. Then, we have the following:

1. G is word-representable if and only if for each 1 ≤ i ≤ k, G[Ai] is a comparability
graph and G/P is a word-representable graph.

2. If G is word-representable, then

R(G) = max{R(G/P),Rp(G[A1]), . . . ,Rp(G[Ak])}.

3. If G is a comparability graph, then

Rp(G) = max{Rp(G/P),Rp(G[A1]), . . . ,Rp(G[Ak])}.

Proof. 1. Suppose G is a word-representable graph. As G/P is an induced subgraph

of G, it is a word-representable graph. Further, from Lemma 1, we have G[Ai] is a

comparability graph, for each 1 ≤ i ≤ k. Note that the converse is evident from

Remark 1 and Theorem 7.

2. If G is a word-representable graph, then from part (1) we have each G[Ai] is a

comparability graph and G/P is a word-representable graph. Hence, the result follows

from Remark 1 and Theorem 6.

3. The result is evident from Remark 1, Theorem 4 and Theorem 8.



T. Dwary, K.V. Krishna 11

4. Concluding Remarks

In this work, we characterized word-representable graphs with respect to the modular

decomposition. Furthermore, we have established the word-representability of 3-leaf

power graphs and lexicographical product of graphs and obtained their representation

numbers and also their prn. It is interesting to find further special classes of word-

representable graphs using modular decomposition.

While recognizing word-representability of graphs is NP-complete [7], it is interesting

to study methods to prove the non-word-representability of a graph. To explore more

in this direction, one may refer to [12]. In [13], it was shown that the recognition of

comparability graphs as well as the computation of modular decomposition of a graph

can be done in O(n + m) time, where n and m are the number of vertices and the

number of edges of the graph, respectively. Hence, in view of Theorem 12, we have

a polynomial (in m + n) time test for non-word-representability of a graph G: Find

the maximal modular partition of G in O(m+n) time. Note that there are at most n

modules in the partition. Then check the subgraph induced by each of these modules

in O(m + n) time whether they are comparability graphs. If a non-comparability

module is found, G is not a word-representable graph. However, if all modules are

comparability graphs, then the test gives no information. In that case, the problem

is reduced to the problem of recognizing the word-representability of the associated

quotient graph.
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