
تعداد نشریات | 5 |
تعداد شمارهها | 117 |
تعداد مقالات | 1,391 |
تعداد مشاهده مقاله | 1,409,083 |
تعداد دریافت فایل اصل مقاله | 1,376,093 |
Algebraic structures of Fibonacci matrices over ring | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 27 شهریور 1404 | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30256.2387 | ||
نویسنده | ||
Hrishikesh Mahato* | ||
Department of Mathematics, Central University of Jharkhand, Ranchi, India | ||
چکیده | ||
In this paper we have developed some algebraic structures for the set Fibonacci matrices over initial value spaces ring and field and shown that set of all Fibonacci matrices forms a ring or field (coined as Fibonacci Ring or Fibonacci Field) in either cases. We also investigated those structures over Z; Q; R and C and found that over Q it forms a Fibonacci Field but over Z; R and C it is a Fibonacci Ring. Finally we have introduced a new concept of f-inverse initial value along with that of f-congruent equivalence class and demonstrated graphically which leads a wide scope of future work. | ||
کلیدواژهها | ||
Algebraic Structure؛ Field Theory؛ Fibonacci Sequence؛ Fibonacci Matrix | ||
آمار تعداد مشاهده مقاله: 9 |