
تعداد نشریات | 5 |
تعداد شمارهها | 113 |
تعداد مقالات | 1,289 |
تعداد مشاهده مقاله | 1,262,084 |
تعداد دریافت فایل اصل مقاله | 1,115,252 |
Sombor index of product of graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 11 بهمن 1403 اصل مقاله (365.9 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30209.2360 | ||
نویسنده | ||
Mohammad Reza Oboudi* | ||
Department of Mathematics, College of Science, Shiraz University, Shiraz, Iran | ||
چکیده | ||
Recently a new vertex-degree based molecular structure descriptor was defined as Sombor index. For a simple graph $G$, the Sombor index of $G$, denoted by $SO(G)$, is defined as $\sum_{uv\in E(G)}\sqrt{d_u^2+d_v^2},$ where $d_v$ is the degree of $v$. In this paper we study the Sombor index of many kinds of product of graphs, such as join of graphs, Cartesian product of graphs, tensor product of graphs, and lexicographic product of graphs. We obtain some formulas for the Sombor index of these product of graphs. | ||
کلیدواژهها | ||
sombor index؛ product of graphs؛ regular graphs | ||
مراجع | ||
[1] R. Cruz, I. Gutman, and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021), Article ID: 126018. https://doi.org/10.1016/j.amc.2021.126018 [2] K.C. Das, A.S. C¸evik, I.N. Cangul, and Y. Shang, On Sombor index, Symmetry 13 (2021), no. 1, Article ID: 140. https://doi.org/10.3390/sym13010140
[3] K.C. Das and I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412 (2022), Article ID: 126575. https://doi.org/10.1016/j.amc.2021.126575
[4] T. Došlić, T. Réti, and A. Ali, On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7 (2021), 1–4. https://doi.org/10.47443/dml.2021.0012 [5] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem 86 (2021), no. 1, 11–16.
[6] I. Gutman, TEMO theorem for Sombor index, Open J. Discrete Appl. Math. 5 (2022), no. 1, 25–28. https://doi.org/10.30538/psrp–odam2022.0067
[7] H. Liu, I. Gutman, L. You, and Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem. 60 (2022), no. 5, 771–798. https://doi.org/10.1007/s10910-022-01333-y
[8] M.R. Oboudi, Non-semiregular bipartite graphs with integer Sombor index, Discrete Math. Lett 8 (2022), 38–40. https://doi.org/10.47443/dml.2021.0107
[9] M.R. Oboudi, The mean value of Sombor index of graphs, MATCH Commun. Math. Comput. Chem 89 (2023), no. 3, 733–740.
[10] M.R. Oboudi, On graphs with integer Sombor index, J. Appl. Math. Comput. 69 (2023), no. 1, 941–952. https://doi.org/10.1007/s12190-022-01778-z
[11] M.R. Oboudi, Sombor index of a graph and of its subgraphs, MATCH Commun. Math. Comput. Chem 92 (2024), no. 3, 697–702.
[12] M.R. Oboudi and A. Jahanbani, Bounds on Sombor energy of graphs, Iran J. Sci. 48 (2024), no. 2, 437–442. https://doi.org/10.1007/s40995-024-01604-0
[13] S. Oğuz Ünal, Nirmala and Banhatti-Sombor index over tensor and Cartesian product of special class of semigroup graphs, J. Math. 2022 (2022), no. 1, Article ID: 5770509. https://doi.org/10.1155/2022/5770509
[14] N.J.M.M. Raja and A. Anuradha, On Sombor indices of generalized tensor product of graph families, Results Control Optim. 14 (2024), Article ID: 100375. https://doi.org/10.1016/j.rico.2024.100375
[15] T. Réti, T. Došlić, and A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006
[16] I. Rezaee Abdolhosseinzadeh, F. Rahbarnia, and M. Tavakoli, Sombor index under some graph products, J. Interdiscip. Math. 7 (2022), no. 4, 331–342. https://doi.org/10.22052/mir.2022.246533.1362
[17] I. Sarkar, M. Nanjappa, and I. Gutman, Bounds of Sombor index for corona products on R-graphs, Commun. Comb. Optim. 9 (2024), no. 1, 101–117. https://doi.org/10.22049/cco.2022.27904.1391
[18] Z. Wang, Y. Mao, Y. Li, and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022), no. 1, 1–17. https://doi.org/10.1007/s12190-021-01516-x | ||
آمار تعداد مشاهده مقاله: 22 تعداد دریافت فایل اصل مقاله: 70 |