| تعداد نشریات | 6 |
| تعداد شمارهها | 121 |
| تعداد مقالات | 1,448 |
| تعداد مشاهده مقاله | 1,555,689 |
| تعداد دریافت فایل اصل مقاله | 1,459,768 |
Algebraic structures of Fibonacci matrices over ring | ||
| Communications in Combinatorics and Optimization | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 27 شهریور 1404 اصل مقاله (416.02 K) | ||
| نوع مقاله: Original paper | ||
| شناسه دیجیتال (DOI): 10.22049/cco.2025.30256.2387 | ||
| نویسنده | ||
| Hrishikesh Mahato* | ||
| Department of Mathematics, Central University of Jharkhand, Ranchi, India | ||
| چکیده | ||
| In this paper we have developed some algebraic structures for the set Fibonacci matrices over initial value spaces ring and field and shown that set of all Fibonacci matrices forms a ring or field (coined as Fibonacci Ring or Fibonacci Field) in either cases. We also investigated those structures over Z; Q; R and C and found that over Q it forms a Fibonacci Field but over Z; R and C it is a Fibonacci Ring. Finally we have introduced a new concept of f-inverse initial value along with that of f-congruent equivalence class and demonstrated graphically which leads a wide scope of future work. | ||
| کلیدواژهها | ||
| Algebraic Structure؛ Field Theory؛ Fibonacci Sequence؛ Fibonacci Matrix | ||
| مراجع | ||
|
[1] F.M. Dannan and Q. Doha, Fibonacci Q-type matrices and properties of a class of numbers related to the Fibonacci, Lucas and pell numbers, Commun. Appl. Anal. 9 (2005), no. 2, 247–262.
[2] F. Eugeni and R. Mascella, A note on generalized Fibonacci numbers, J. Discrete Math. Sci. Cryptogr. 4 (2001), no. 1, 33–45. https://doi.org/10.1080/09720529.2001.10697917
[3] H.W. Gould, A history of the Fibonacci Q-matrix and a higher-dimensional problem, Fibonacci Quart. 19 (1981), no. 3, 250–257. https://doi.org/10.1080/00150517.1981.12430088
[4] R.C. Johnson, Fibonacci Numbers and Matrices, Durham University, 2009.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 2, vol. 2, John Wiley & Sons, 2019.
[6] K. Prasad and H. Mahato, Cryptography using generalized Fibonacci matrices with Affine-Hill cipher, J. Discrete Math. Sci. Cryptogr. 25 (2022), no. 8, 2341–2352. https://doi.org/10.1080/09720529.2020.1838744
[7] S.Q. Shen, J.M. Cen, and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput. 217 (2011), no. 23, 9790–9797. https://doi.org/10.1016/j.amc.2011.04.072
[8] S.Q. Shen and J.J. He, Moore–Penrose inverse of generalized Fibonacci matrix and its applications, Int. J. Comput. Math. 93 (2016), no. 10, 1756–1770. https://doi.org/10.1080/00207160.2015.1074189
[9] J.Y. Sia and C.K. Ho, Algebraic properties of generalized Fibonacci sequence via matrix methods, J. Eng. Appl. Sci. 11 (2016), no. 11, 2396–2401.
[10] R.B. Taher and M. Rachidi, Linear recurrence relations in the algebra of matrices and applications, Linear Algebra Appl. 330 (2001), no. 1-3, 15–24. https://doi.org/10.1016/S0024-3795(01)00259-2 | ||
|
آمار تعداد مشاهده مقاله: 143 تعداد دریافت فایل اصل مقاله: 106 |
||