| تعداد نشریات | 6 |
| تعداد شمارهها | 121 |
| تعداد مقالات | 1,448 |
| تعداد مشاهده مقاله | 1,555,853 |
| تعداد دریافت فایل اصل مقاله | 1,459,870 |
Join standard graph of a lattice | ||
| Communications in Combinatorics and Optimization | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 مهر 1404 اصل مقاله (603.43 K) | ||
| نوع مقاله: Original paper | ||
| شناسه دیجیتال (DOI): 10.22049/cco.2025.30680.2577 | ||
| نویسندگان | ||
| N Aishwarya Nayak1؛ Pallavi P2؛ Syam Prasad Kuncham1؛ Tapatee S2؛ Harikrishnan P K* 1 | ||
| 1Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India | ||
| 2Department of Mathematics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India | ||
| چکیده | ||
| In this paper, we introduce and investigate the join standard graph $G_S(L)$ of a finite lattice $L$. We explore structural properties of the graph such as connectedness, girth, and provide necessary and sufficient conditions for the existence of universal and isolated vertices. We show that a lattice homomorphism $\varphi$ from $L_1$ to $L_2$ induces a graph homomorphism between $G_S(L_1)$ and $G_S(L_2)$. We further analyze the relationship between the graph of a lattice product and the product of graphs of its constituent lattices. Subsequently, we establish a condition under which the graph becomes hypertriangulated. We prove that the graph $G_S(L)$ is complemented if and only if the underlying lattice has cardinality at most two. Finally, we provide a criterion under which the subgraph $G_S(L)-1$ becomes disconnected. | ||
| کلیدواژهها | ||
| standard element؛ lattice؛ cartesian product؛ totally disconnected | ||
| مراجع | ||
|
[1] M. Alizadeh, A.K. Das, H.R. Maimani, M.R. Pournaki, and S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math. 160 (2012), no. 9, 1319–1324. https://doi.org/10.1016/j.dam.2012.01.011
[2] F. Azarpanah and M. Motamedi, Zero-divisor graph of c (x), Acta Math. Hungar. 108 (2005), no. 1, 25–36. https://doi.org/10.1007/s10474-005-0205-z
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. https://doi.org/10.1016/0021-8693(88)90202-5
[4] G. Calugareanu, Lattice Concepts of Module Theory, vol. 22, Springer Science & Business Media, 2013.
[5] G. Grätzer and E. Schmidt, Standard ideals in lattices, Acta Math. Hungar. 12 (1961), no. 1-2, 17–86. https://doi.org/10.1007/bf02066675
[6] G.A. Gratzer, Lattice Theory: Foundation, vol. 2, Springer, 2011.
[7] R. Halaš and M. Jukl, On Beck’s coloring of posets, Discrete Math. 309 (2009), no. 13, 4584–4589. https://doi.org/10.1016/j.disc.2009.02.024
[8] R. Halaš and H. Länger, The zerodivisor graph of a qoset, Order 27 (2010), no. 3, 343–351.
[9] R.H. Hammack, W. Imrich, S. Klavžar, W. Imrich, and S. Klavˇzar, Handbook of Product Graphs, vol. 2, CRC press Boca Raton, 2011.
[10] F. Harary, Graph Theory (on demand printing of 02787), CRC Press, 2018.
[11] V. Joshi, B.N. Waphare, and H.Y. Pourali, Zero divisor graphs of lattices and primal ideals, Asian-Eur. J. Math. 5 (2012), no. 3, 1250037. https://doi.org/10.1142/S1793557112500374
[12] A. Khiste and V. Joshi, Zero-divisor graphs of matrices over lattices, Discrete Math. Algorithms Appl. 8 (2016), no. 04, 1650060. https://doi.org/10.1142/S1793830916500609
[13] U. Knauer and K. Knauer, Algebraic Graph Theory: Morphisms, Monoids and Matrices, vol. 41, Walter de Gruyter GmbH & Co KG, 2019.
[14] T. Leinster, Basic Category Theory, vol. 143, Cambridge University Press, 2014.
[15] S.K. Nimbhokar, M.P. Wasadikar, and L. DeMeyer, Coloring of meet-semilattices, Ars Combin. 84 (2007), 97–104.
[16] T. Sahoo, H. Panackal, K.B. Srinivas, and S.P. Kuncham, Graph with respect to superfluous elements in a lattice, Miskolc Math. Notes 23 (2022), no. 2, 929–945. https://doi.org/10.18514/MMN.2022.3620
[17] A. Ülker, On the essential element graph of a lattice, Turk. J. Math. Comput. Sci. 14 (2022), no. 2, 248–255. https://doi.org/10.47000/tjmcs.885881 [18] D.B. West, Introduction to Graph Theory, vol. 2, Prentice hall Upper Saddle River, 2001. | ||
|
آمار تعداد مشاهده مقاله: 68 تعداد دریافت فایل اصل مقاله: 94 |
||