| تعداد نشریات | 6 |
| تعداد شمارهها | 121 |
| تعداد مقالات | 1,448 |
| تعداد مشاهده مقاله | 1,555,673 |
| تعداد دریافت فایل اصل مقاله | 1,459,758 |
A Study of Cyclic and Constacyclic Codes over $\mathbb{Z}_{4}+u_{2}\mathbb{Z}_{4}+u_{3}\mathbb{Z}_{4}+\ldots+u_{t}\mathbb{Z}_{4}$ | ||
| Communications in Combinatorics and Optimization | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 آبان 1404 اصل مقاله (459.88 K) | ||
| نوع مقاله: Original paper | ||
| شناسه دیجیتال (DOI): 10.22049/cco.2025.30480.2499 | ||
| نویسندگان | ||
| Bhagyashri Sangameshwar Patil* 1؛ Arunkumar R. Patil2؛ Suryakant M. Jogdand3 | ||
| 1School of Mathematical Sciences, SRTM University, Nanded, India | ||
| 2Department of Mathematics, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India | ||
| 3Shri Sant Gadge Maharaj Mahavidyalaya, Loha, Nanded, India | ||
| چکیده | ||
| Constacyclic codes constitute a significant class of linear codes in coding theory and play a crucial role in the construction of optimal codes. Several optimal linear codes have been derived from constacyclic codes. In 2015, Ashraf and Mohammad investigated $(1+2u)$-constacyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}$ with $u^{2}=0$. More recently, G. Karthick studied $(1+2u+2v)$-constacyclic codes over the semi-local ring $\mathbb{Z}_{4}+u\mathbb{Z}_{4}+v\mathbb{Z}_{4}$ under the conditions $u^{2}=3u$, $v^{2}=3v$, and $uv=vu=0$. In this paper, we generalize their results by examining $(1+2u_{2}+2u_{3}+\dots+2u_{t})$-constacyclic codes over the semi-local ring $\mathcal{S} = \mathbb{Z}_{4} + u_{2} \mathbb{Z}_{4} + u_{3} \mathbb{Z}_{4} + \dots + u_{t} \mathbb{Z}_{4}$, where $u_{i}^{2} = k u_{i}$ and $u_{i} u_{j} = u_{j} u_{i} = 0$ for $2 \leq i \leq t$, $i \neq j$, with $u_{1}=1$ and $k \in \mathbb{Z}_{4}$. We focus on $(1+2u_{2}+2u_{3}+\dots+2u_{t})$-constacyclic codes over $\mathcal{S}$ and establish their structural properties. By introducing new Gray maps, we demonstrate that these constacyclic codes can be transformed into cyclic and quasi-cyclic codes over $\mathbb{Z}_{4}$. Furthermore, we characterize a generating set for these codes when the code length is odd. %nand provide explicit examples illustrating their construction. Our findings contribute to the database of $mathbb{Z}_{4}$ codes and enhance the understanding of constacyclic codes over extended non-chain rings. | ||
| کلیدواژهها | ||
| Linear code؛ Constacyclic code؛ Gray map؛ Quasi-cyclic code | ||
| مراجع | ||
|
[1] T. Abualrub and R. Oehmke, Cyclic codes of length $2^e$ over $\mathbb{Z}_{4}$, Discrete Appl. Math. 128 (2003), no. 1, 3–9. https://doi.org/10.1016/S0166-218X(02)00432-8
[2] T. Abualrub and I. Siap, Cyclic codes over the rings $\mathbb{Z}_{2} + u \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} + u \mathbb{Z}_{2} + u^{2} \mathbb{Z}_{2}$, Des. Codes Cryptogr. 42 (2007), no. 3, 273–287. https://doi.org/10.1007/s10623-006-9034-5
[3] T. Abualrub and I. Siap, Reversible cyclic codes over $\mathbb{Z}_{4}$, Australas. J. Combin. 38 (2007), 195–205.
[4] M. Ashraf and G. Mohammad, $(1 + 2u)$-constacyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}$, arXivpreprint arXiv:1504.03445, https://doi.org/10.48550/arXiv.1504.03445
[5] R.K. Bandi and M. Bhaintwal, A note on cyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}$, Discrete Math. Algorithms Appl. 8 (2016), no. 1, 1650017. https://doi.org/10.1142/S1793830916500178
[6] T. Blackford, Cyclic codes over Z4 of oddly even length, Discrete Appl. Math. 128 (2003), no. 1, 27–46. https://doi.org/10.1016/S0166-218X(02)00434-1
[7] A.R. Calderbank, A.R. Hammons Jr, P.V. Kumar, N.J.A. Sloane, and P. Solé, The $\mathbb{Z}_{4}$-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inf. Theory 40 (1994), no. 2, 301–319.
[8] Y. Cao and Q. Li, Cyclic codes of odd length over $\mathbb{Z}_{4}[u] / \langle u^{k} \rangle$, Cryptogr. Commun. 9 (2017), no. 5, 599–624. https://doi.org/10.1007/s12095-016-0204-7
[9] S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb Z_4$ of even length, Des. Codes Cryptogr. 39 (2006), no. 2, 127–153. https://doi.org/10.1007/s10623-005-2773-x
[10] H. Islam and O. Prakash, A study of cyclic and constacyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, Int. J. Inf. Coding Theory 5 (2018), no. 2, 155–168. https://doi.org/10.1504/IJICOT.2018.095017
[11] G. Karthick, A study on structure of codes over $\mathbb Z_4+ u\mathbb Z_4+ v\mathbb Z_4$, Commun. Comb. Optim. 9 (2024), no. 3, 567–578. https://doi.org/10.22049/cco.2023.28011.1503
[12] M. Özen, N.T. Özzaim, and N. Aydin, Cyclic codes over $\mathbb {Z} _ {4}+ u\mathbb {Z} _ {4}+ u^{2}\mathbb {Z} _ {4} $, Turkish J. Math. 41 (2017), no. 5, P1235. https://doi.org/10.3906/mat-1602-35
[13] M. Ōzen, F.Z. Uzekmek, N. Aydin, and N.T. Ōzzaim, Cyclic and some constacyclic codes over the ring $\mathbb{Z}_{4}[u]/ \langle u^{2}-1 \rangle$, Finite Fields Appl. 38 (2016), 27–39. https://doi.org/10.1016/j.ffa.2015.12.003
[14] V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_{4}$, IEEE Trans. Inf. Theory 42 (1996), no. 5, 1594–1600. https://doi.org/10.1109/18.532906
[15] B. Yildiz and N. Aydin, On cyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}$ and their $\mathbb{Z}_{4}$–images, Int. J. Inf. Coding Theory 2 (2014), no. 4, 226–237. https://doi.org/10.1504/IJICOT.2014.066107 | ||
|
آمار تعداد مشاهده مقاله: 36 تعداد دریافت فایل اصل مقاله: 88 |
||