تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,247 |
تعداد مشاهده مقاله | 1,199,562 |
تعداد دریافت فایل اصل مقاله | 1,060,275 |
Vector valued switching in the products of signed graphs | ||
Communications in Combinatorics and Optimization | ||
مقاله 10، دوره 9، شماره 4، اسفند 2024، صفحه 759-771 اصل مقاله (433.37 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2023.28758.1703 | ||
نویسندگان | ||
Albin Mathew* ؛ K.A, Germina | ||
Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerala, India | ||
چکیده | ||
A signed graph is a graph whose edges are labeled either as positive or negative. The concepts of vector valued switching and balancing dimension of signed graphs were introduced by S. Hameed et al. In this paper, we deal with the balancing dimension of various products of signed graphs, namely the Cartesian product, the lexicographic product, the tensor product, and the strong product. | ||
کلیدواژهها | ||
Signed graph؛ vector valued switching؛ balancing dimension؛ product of signed graphs | ||
مراجع | ||
[1] M. Brunetti, M. Cavaleri, and A. Donno, Erratum to the article’a lexicographic product for signed graphs’., Australas. J. Combin. 75 (2019), 256–258.
[2] M. Brunetti, M. Cavaleri, and A. Donno, A lexicographic product for signed graphs., Australas. J. Combin. 74 (2019), 332–343. [3] K.A. Germina, T. Zaslavsky, and S.K. Hameed, On products and line graphs of signed graphs, their eigenvalues and energy, Linear Algebra Appl. 435 (2011), no. 10, 2432–2450. https://doi.org/10.1016/j.laa.2010.10.026
[4] S.K. Hameed and K.A. Germina, On composition of signed graphs, Discuss. Math. Graph Theory 32 (2012), no. 3, 507–516. http://doi.org/10.7151/dmgt.1615
[5] S.K. Hameed, A. Mathew, K.A. Germina, and T. Zaslavsky, Vector valued switching in signed graphs, Commun. Comb. Optim., (In press) https://doi.org/10.22049/cco.2023.28591.1624
[6] F. Harary, Graph Theory, Addison Wesley, Reading, Mass., 1969.
[7] D. Lajou, On Cartesian products of signed graphs, Discrete Appl. Math. 319 (2022), 533–555. https://doi.org/10.1016/j.dam.2021.03.023
[8] V. Mishra, Graphs associated with (0, 1) and (0, 1, −1) matrices, Phd thesis, IIT Bombay, 1974.
[9] D. Sinha and P. Garg, Balance and antibalance of the tensor product of two signed graphs, Thai J. Math. 12 (2013), no. 2, 303–311.
[10] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), no. 1, 47-74. https://doi.org/10.1016/0166-18X(82)90033-6
[11] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electron. J. Comb. (2018), Article ID: DS8. https://doi.org/10.37236/29 | ||
آمار تعداد مشاهده مقاله: 205 تعداد دریافت فایل اصل مقاله: 800 |