تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,247 |
تعداد مشاهده مقاله | 1,199,882 |
تعداد دریافت فایل اصل مقاله | 1,060,653 |
Nonlinear inclusion for thermo-electro-elastic: existence, dependence and optimal control | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 اسفند 1402 اصل مقاله (484.22 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2024.29374.1961 | ||
نویسندگان | ||
Faiz Zakaria* 1؛ Hicham Benaissa1؛ Othmane Baiz2 | ||
1Department of Mathematics, Faculty of Polydisciplinary, KhouribgaSultan Moulay Slimane University, Morocco | ||
2bn Zohr University, Polydisciplinary Faculty of Ouarzazate, Morocco | ||
چکیده | ||
The objective of this paper is to examine a model of a thermo-electro-elastic body situated on a semi-insulator foundation. Friction is characterized by Tresca's friction law, and the contact is bilateral. The primary contribution is to derive the weak variational formulation of the model, constituting a system that couples three inclusions where the unknowns are the strain field, the electric field, and the temperature field. Subsequently, we demonstrate the unique solvability of the system, along with the continuous dependence of its solution under consideration. The secondary contribution involves the investigation of an associated optimal control problem, for which we establish the existence and convergence results. The proofs rely on arguments related to monotonicity, compactness, convex analysis, and lower semicontinuity. | ||
کلیدواژهها | ||
Thermo-electro-elastic materials؛ variational inequalities؛ stationary inclusion؛ continuous dependence؛ optimal control | ||
مراجع | ||
[1] S. Adly and T. Haddad, An implicit sweeping process approach to quasistatic evolution variational inequalities, SIAM J. Math. Anal. 50 (2018), no. 1, 761–778. https://doi.org/10.1137/17M1120658 [2] S. Adly and M. Sofonea, Time-dependent inclusions and sweeping processes in contact mechanics, Z. fur Angew. Math. Phys. 70 (2019), no. 2, Article number: 39 https://doi.org/10.1007/s00033-019-1084-4 [3] O. Baiz, H. Benaissa, R. Bouchantouf, and D. El Moutawakil, Optimization problems for a thermoelastic frictional contact problem, Math. Model. Anal. 26 (2021), no. 3, 444–468. https://doi.org/10.3846/mma.2021.12803 [4] O. Baiz, H. Benaissa, D. El Moutawakil, and R. Fakhar, Variational and numerical analysis of a quasistatic thermo-electro-visco-elastic frictional contact problem, ZAMM. J. Appl. Math. Mech. 99 (2019), no. 3, Article ID: e201800138. https://doi.org/10.1002/zamm.201800138 [5] O. Baiz, H. Benaissa, Z. Faiz, and D. El Moutawakil, Variational-hemivariational inverse problem for electro-elastic unilateral frictional contact problem, J. Inverse Ill-Posed Probl. 29 (2021), no. 6, 917–934. https://doi.org/10.1515/jiip-2020-0051 [6] H. Benaissa, El-H. Essoufi, and R. Fakhar, Existence results for unilateral contact problem with friction of thermoelectro-elasticity, Appl. Math. Mech. 36 (2015), no. 7, 911—-926. https://doi.org/10.1007/s10483-015-1957-9 [7] H. Benaissa, El-H. Essoufi, and R. Fakhar, Variational analysis of a thermo-piezoelectric contact problem with friction, Jour. Adv. Res. Appl. Math. 7 (2015), no. 2, 52–75.
[8] R. Bouchantouf, O. Baiz, D. El Moutawakil, and H. Benaissa, Optimal control of a frictional thermo-piezoelectric contact problem, Int. J. Dynam. Control 11 (2023), no. 2, 821–834. https://doi.org/10.1007/s40435-022-01019-y [9] A. Capatina, Optimal control of a signorini contact problem, Numer. Funct. Anal. Optim. 21 (2000), no. 7-8, 817–828. https://doi.org/10.1080/01630560008816987 [10] T. Chen, R. Hu, and M. Sofonea, Analysis and control of an electro-elastic contact problem, Math. Mech. Solids 27 (2022), no. 5, 813–827. https://doi.org/10.1177/10812865211044181 [11] Z. Denkowski, S. Migórski, and A. Ochal, Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007), no. 3, 611–632.
[12] Z. Faiz, O. Baiz, H. Benaissa, and D. El Moutawakil, Analysis and approximation of hemivariational inequality for a frictional thermo-electro-visco-elastic contact problem with damage, Taiwanese J. Math. 27 (2023), no. 1, 81–111. https://doi.org/10.11650/tjm/220704 [13] A. Matei and S. Micu, Boundary optimal control for nonlinear antiplane problems, Nonlinear Anal. Theory Methods Appl. 74 (2011), no. 5, 1641–1652. https://doi.org/10.1016/j.na.2010.10.034 [14] A. Matei and S. Micu, Boundary optimal control for a frictional contact problem with normal compliance, Appl. Math. Optim. 78 (2018), no. 2, 379–401. https://doi.org/10.1007/s00245-017-9410-8 [15] S. Migórski, A. Ochal, and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, vol. 26, Springer Science & Business Media, New York, 2012.
[16] S. Migórski and P. Szafraniec, A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermoviscoelasticity, Non-linear Anal. Real World Appl. 15 (2014), 158–171. https://doi.org/10.1016/j.nonrwa.2013.07.002 [17] F. Nacry and M. Sofonea, A class of nonlinear inclusions and sweeping processes in solid mechanics, Acta Appl. Math. 171 (2021), no. 1, Article number: 16 https://doi.org/10.1007/s10440-020-00380-4 [18] F. Nacry and M. Sofonea, History-dependent operators and prox-regular sweeping processes, Fixed Point Theory Algorithms Sci. Eng. 2022 (2022), no. 1, Article number: 5 https://doi.org/10.1186/s13663-022-00715-w [19] F. Nacry and M. Sofonea, A history-dependent sweeping processes in contact mechanics, J. Convex Anal. 29 (2022), no. 1, 77–100.
[20] M. Sofonea, Optimal control of a class of variational–hemivariational inequalities in reflexive banach spaces, Appl. Math. Optim. 79 (2019), no. 3, 621–646. https://doi.org/10.1007/s00245-017-9450-0 [21] M. Sofonea, Analysis and control of stationary inclusions in contact mechanics, Non-linear Anal. Real World Appl. 61 (2021), Article ID: 103335. https://doi.org/10.1016/j.nonrwa.2021.103335 [22] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, vol. 398, Cambridge University Press., 2012.
[23] M. Sofonea and S. Migorski, Variational-Hemivariational Inequalities with Applications, CRC Press, New York, 2017.
[24] P. Szafraniec, Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity, Math. Mech. Solids 21 (2016), no. 5, 525–538. https://doi.org/10.1177/1081286514527860 [25] P. Szafraniec, Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects, Acta Math. Sci. 37 (2017), no. 4, 1048–1060. https://doi.org/10.1016/S0252-9602(17)30057-7 | ||
آمار تعداد مشاهده مقاله: 139 تعداد دریافت فایل اصل مقاله: 591 |