تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,247 |
تعداد مشاهده مقاله | 1,199,878 |
تعداد دریافت فایل اصل مقاله | 1,060,651 |
New bounds on distance Estrada index of graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 21 خرداد 1403 اصل مقاله (386.18 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2024.29488.2022 | ||
نویسنده | ||
Mohammad Reza Oboudi* | ||
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran | ||
چکیده | ||
For a connected graph $G$ with vertex set $\{v_1,\ldots,v_n\}$, the distance matrix of $G$, denoted by $D(G)$, is an $n\times n$ matrix with zero main diagonal, such that its $(i,j)$-entry is $d(v_i,v_j)$, where $i\neq j$ and $d(v_i,v_j)$ is the distance between $v_i$ and $v_j$. Let $\theta_1,\ldots,\theta_n$ be the eigenvalues of $D(G)$. The distance Estrada index of $G$ is defined as $DEE(G)=\sum_{i=1}^ne^{\theta_i}$. In this paper we find some new sharp bounds for the distance Estrada index of graphs. Our results improve the previous bounds on the distance Estrada index of graphs. | ||
کلیدواژهها | ||
Distance؛ Estrada index؛ Bounds | ||
مراجع | ||
[1] Ş.B. Bozkurt, C. Adiga, and D. Bozkurt, Bounds on the distance energy and the distance estrada index of strongly quotient graphs, J. Appl. Math. 2013 (2013), Article ID: 681019. http://doi.org/10.1155/2013/681019 [2] D.M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Application, Academic Press, New York, 1980.
[3] E. Estrada, Characterization of 3D molecular structure, Chemical Physics Letters 319 (2000), no. 5-6, 713–718. https://doi.org/10.1016/S0009-2614(00)00158-5 [4] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002), no. 5, 697–704. https://doi.org/10.1093/bioinformatics/18.5.697 [5] E. Estrada, Topological structural classes of complex networks, Phys. Rev. E 75 (2007), no. 1, Article ID: 016103. https://doi.org/10.1103/PhysRevE.75.016103 [6] E. Estrada, The many facets of the Estrada indices of graphs and networks, SeMA Journal 79 (2022), no. 1, 57–125. https://doi.org/10.1007/s40324-021-00275-w [7] E. Estrada and J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E 71 (2005), no. 5, Article ID: 056103. https://doi.org/10.1103/PhysRevE.71.056103 [8] A.D. Güngör and Ş.B. Bozkurt, On the distance Estrada index of graphs, Hacet. J. Math. Stat. 38 (2009), no. 3, 277–283.
[9] M.R. Oboudi, Distance spectral radius of complete multipartite graphs and majorization, Linear Algebra Appl. 583 (2019), 134–145. https://doi.org/10.1016/j.laa.2019.08.021 [10] M.R. Oboudi, A new lower bound for the energy of graphs, Linear Algebra Appl. 580 (2019), 384–395. https://doi.org/10.1016/j.laa.2019.06.026 [11] M.R. Oboudi, A relation between the signless Laplacian spectral radius of complete multipartite graphs and majorization, Linear Algebra Appl. 565 (2019), 225–238. https://doi.org/10.1016/j.laa.2018.12.012 [12] M.R. Oboudi, On the Seidel Estrada index of graphs, Linear Multilinear Algebra (2023), In press. https://doi.org/10.1080/03081087.2023.2192459 [13] M.R. Oboudi, Reverse Wiener spectral radius of trees, Linear Multilinear Algebra 71 (2023), no. 2, 256–264. https://doi.org/10.1080/03081087.2021.2025199 [14] Y. Shang, Estimating the distance Estrada index, Kuwait J. Sci. 43 (2016), no. 3, 14–19. | ||
آمار تعداد مشاهده مقاله: 158 تعداد دریافت فایل اصل مقاله: 424 |