تعداد نشریات | 5 |
تعداد شمارهها | 112 |
تعداد مقالات | 1,271 |
تعداد مشاهده مقاله | 1,239,106 |
تعداد دریافت فایل اصل مقاله | 1,098,453 |
Geometric-arithmetic index-energy predicting the physical properties of alkanes | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 دی 1403 اصل مقاله (588.59 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2024.28999.1807 | ||
نویسندگان | ||
Bilal Ahmad Rather* 1؛ M. Aouchiche2؛ M. Imran3؛ S. Mondal4 | ||
1Department of Mathematics, Samarkand International University of Technology, Samarkand 140100, Uzbekistan | ||
2Polytechnique Montreal, Montreal, QC, Canada | ||
3Department of Mathematical and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia | ||
4RISE, MASEP Group, University of Sharjah, Sharjah 27272, UAE | ||
چکیده | ||
The topological indices play a crucial role in generating the weighted adjacency matrix, which exhibits significant diversity from both theoretical and application perspectives compared to the ordinary adjacency matrix. One such notable weighted matrix is the geometric-arithmetic matrix, generated from the well-known $GA$ (geometric-arithmetic) index. Here, we focus on a comparative study of the $GA$ index and the geometric-arithmetic energy $\mathcal{GAE}$. We establish several tight bounds on $\mathcal{GAE}$ involving various graph invariants and identify the corresponding extremal graphs. Additionally, we compare the correlation of the molecular property Bp (boiling point) with $GA$ and $\mathcal{GAE}$. Our findings reveal that the Bp shows good correlation with $\mathcal{GAE}$ than with $GA$ index. Furthermore, we examine the role of $\mathcal{GAE}$ in explaining different properties of drugs associated with kidney disease. | ||
کلیدواژهها | ||
Geometric-arithmetic index؛ geometric-arithmetic matrix؛ energy؛ boiling point, correlation | ||
مراجع | ||
[1] A. Ali, A.A. Bhatti, and Z. Raza, Further inequalities between vertex-degree-based topological indices, Int. J. Appl. Comput. Math. 3 (2017), no. 3, 1921–1930. https://doi.org/10.1007/s40819-016-0213-4
[2] M. Aouchiche, I. El Hallaoui, and P. Hansen, Geometric-arithmetic index and minimum degree of connected graphs, MATCH Commun. Math. Comput. Chem. 83 (2020), no. 1, 179–188.
[3] M. Aouchiche and V. Ganesan, Adjusting geometric-arithmetic index to estimate boiling point, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 483–497.
[4] M. Aouchiche and P. Hansen, The normalized revised Szeged index, MATCH Commun. Math. Comput. Chem. 67 (2012), no. 2, 369–381.
[5] M. Aouchiche and P. Hansen, Comparing the geometric-arithmetic index and the spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 473–482.
[6] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Science & Business Media, 2010.
[7] G. Caporossi, Variable neighborhood search for extremal vertices: The AutoGraphiX-III system, Comput. Oper. Res. 78 (2017), 431–438. https://doi.org/10.1016/j.cor.2015.12.009
[8] K.C. Das, I. Gutman, and B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), no. 3, 595–644.
[9] T. Divnić, M. Milivojević, and L. Pavlović, Extremal graphs for the geometric–arithmetic index with given minimum degree, Discrete Appl. Math. 162 (2014), 386–390. https://doi.org/10.1016/j.dam.2013.08.001
[10] I. Gutman, The energy of a graph, Ber. Math.–Statist. Sekt. Forsch–ungsz. 103 (1978), 1–22.
[11] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N.Y. 27 (1994), no. 9, 9–15.
[12] I. Gutman and B. Furtula, Geometric-arithmetic indices, Novel Molecular Structure Descriptors—Theory and Applications (I. Gutman and B. Furtula, eds.), Univ. Kragujevac, Kragujevac, 2010, pp. 137–172.
[13] I. Gutman and B. Furtula, Survey of graph energies, Math. Interdisc. Res. 2 (2017), no. 2, 85–129. https://doi.org/10.22052/mir.2017.81507.1057
[14] I. Gutman and B. Furula, Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[15] I. Gutman and B. Furula, Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.
[16] I. Gutman and B. Furula, Novel Molecular Structure Descriptors - Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010.
[17] Y. Hong and X.D. Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, Discrete Math. 296 (2005), no. 2-3, 187–197. https://doi.org/10.1016/j.disc.2005.04.001
[18] S.M. Hosamani, B.B. Kulkarni, R.G. Boli, and V.M. Gadag, QSPR analysis of certain graph theocratical matrices and their corresponding energy, Appl. Math. Nonlinear Sci. 2 (2017), no. 1, 131–150. https://doi.org/10.21042/AMNS.2017.1.00011
[19] H. Hosoya, Topological index. a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971), no. 9, 2332–2339.
[20] L.B. Keir and L.H. Hall, Molecular Connectivity in Structural-Activity Analysis, Research study, Letchworth, England, 1986.
[21] L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, 1976.
[22] X. Li, I. Gutman, and M. Randić, Mathematical Aspects of Randić-type Molecular Structure Descriptors, University, Faculty of Science, 2006.
[23] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), no. 1, 127–156.
[24] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer Science & Business Media, 2012.
[25] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra Appl. 506 (2016), 82–138. https://doi.org/10.1016/j.laa.2016.05.011
[26] S. Pirzada, B.A. Rather, and M. Aouchiche, On eigenvalues and energy of geometric–arithmetic matrix of graphs, Medit. J. Math. 19 (2022), no. 3, Article number: 115. https://doi.org/10.1007/s00009-022-02035-0
[27] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), no. 23, 6609–6615. https://doi.org/10.1021/ja00856a001
[28] M. Randić, Topological indices, Encyclopedia of Computational Chemistry (P.V.R. Schleye, ed.), Wiley, London, 1998, pp. 3018–3032.
[29] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49 (2002), no. 3, 483–496.
[30] B.A. Rather, M. Aouchiche, M. Imran, and S. Pirzada, On arithmetic–geometric eigenvalues of graphs, Main Group Metal Chem. 45 (2022), no. 1, 111–123. https://doi.org/10.1515/mgmc-2022-0013
[31] B.A. Rather, M. Aouchiche, and S. Pirzada, Spread of geometric-arithmetic matrix of graphs, AKCE Int. J. Graphs Comb. 19 (2022), no. 2, 146–153. https://doi.org/10.1080/09728600.2022.2088315
[32] J.M. Rodríguez and J.M. Sigarreta, Spectral study of the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 74 (2015), no. 1, 121–135.
[33] J.M. Rodríguez and J.M. Sigarreta, Spectral properties of geometric–arithmetic index, Appl. Math. Comp. 277 (2016), 142–153. https://doi.org/10.1016/j.amc.2015.12.046
[34] G. Rücker and C. Rücker, On topological indices, boiling points, and cycloalkanes, J. Chem. Inf. Comput. Sci. 39 (1999), no. 5, 788–802. https://doi.org/10.1021/ci9900175
[35] Y. Shao and Y. Gao, The maximal geometric-arithmetic energy of trees with at most two branched vertices, Appl. Math. Comp. 362 (2019), 124528. https://doi.org/10.1016/j.amc.2019.06.042
[36] M. Sohrabi-Haghighat and M. Rostami, Using linear programming to find the extremal graphs with minimum degree 1 with respect to geometric-arithmetic index, Appl. math. Eng. Manag. Tec. 3 (2015), no. 1, 534–539.
[37] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[38] S. Vujošević, G. Popivoda, Ž.K. Vukićević, B. Furtula, and R. Škrekovski, Arithmetic–geometric index and its relations with geometric–arithmetic index, Appl. Math. Comp. 391 (2021), 125706. https://doi.org/10.1016/j.amc.2020.125706
[39] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), no. 4, 1369–1376. https://doi.org/10.1007/s10910-009-9520-x
[40] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), no. 1, 17–20. https://doi.org/10.1021/ja01193a005
[41] Y. Yuan, B. Zhou, and N. Trinajstić, On geometric-arithmetic index, J. Math. Chem. 47 (2010), no. 2, 833–841. https://doi.org/10.1007/s10910-009-9603-8
[42] X. Zhao, Y. Shao, and Y. Gao, The maximal geometric-arithmetic energy of trees, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 363–367. | ||
آمار تعداد مشاهده مقاله: 101 تعداد دریافت فایل اصل مقاله: 133 |