
تعداد نشریات | 5 |
تعداد شمارهها | 117 |
تعداد مقالات | 1,391 |
تعداد مشاهده مقاله | 1,409,321 |
تعداد دریافت فایل اصل مقاله | 1,376,391 |
A neutrosophic approach to solving constrained optimization problems using Karush-Kuhn-Tucker conditions | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 26 تیر 1404 اصل مقاله (552.73 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30167.2363 | ||
نویسندگان | ||
G. Vanaja؛ K. Ganesan* | ||
Department of Mathematics, College of Engineering and Technology, SRM Institute of science and Technology, Kattankulathur - 603 203, Tamil Nadu, India | ||
چکیده | ||
In this article, we investigate the solution of constrained optimization problems using the Karush Kuhn Tucker (KKT) condition with single-valued neutrosophic triangular number coefficients. Our approach introduces new neutrosophic arithmetic operations applied to the parametric representations of neutrosophic numbers, along with the neutrosophic ranking of the parametric forms of Triangular Neutrosophic Numbers. The primary objective of this study is to develop a robust framework for solving constrained Single-Valued Neutrosophic Nonlinear Programming Problems using the KKT condition, effectively managing uncertainty and imprecision in optimization. We present and prove an important theorem for the KKT condition under neutrosophic environments, contributing to the theoretical foundation of this method. Furthermore, a detailed numerical example illustrates the practical application of the proposed approach. The results are compared with those of existing methods, demonstrating the effectiveness and advantages of the neutrosophic-based solution. | ||
کلیدواژهها | ||
constrained optimization؛ single-valued neutrosophic number؛ neutrosophic programming؛ uncertainty management | ||
مراجع | ||
[1] F. Ahmad, A.Y. Adhami, and F. Smarandache, Single Valued Neutrosophic Hesitant Fuzzy Computational Algorithm for Multiobjective Nonlinear Optimization Problem, Infinite Study, 2018.
[2] G.M. Al-Naemi, The convergent properties of a new parameter for unconstrained optimization, Eur. J. Pure Appl. Math. 15 (2022), no. 4, 1683–1693. https://doi.org/10.29020/nybg.ejpam.v15i4.4538
[3] D. Anuradha and V.E. Sobana, Solving intuitionistic fuzzy multi-objective non-linear programming problem, IOP Conf. Ser. Mater. Sci. Eng. 263 (2017), no. 4, Article ID: 042104. https://doi.org/10.1088/1757-899X/263/4/042104
[4] A. Chakraborty, S.P. Mondal, A. Mahata, and S. Alam, Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing prob- lem, RAIRO Oper. Res. 55 (2021), S97–S118. https://doi.org/10.1051/ro/2019090 [5] O.E. Emam, A Abdo, and A.M. Youssef, Solving bi-level multi-objective quadratic programming problem with neutrosophic parameters in objective functions and constraints using fuzzy approach, J. Stat. Appl. Probab. Int. J. 11 (2022), no. 2, 581–590. http://dx.doi.org/10.18576/jsap/110217
[6] K.P. Ghadle and T.S. Pawar, New approach for Wolfe’s modified simplex method to solve quadratic programming problems, Int. J. Res. Eng. Technol. 4 (2015), no. 1, 371–376. http://doi.org/10.15623/ijret.2015.0401055
[7] V. Govindhasamy and G. Kandasamy, An interior penalty function method for solving fuzzy nonlinear programming problems, Bull. Electr. Eng. Inform. 13 (2024), no. 3, 2320–2330. https://doi.org/10.11591/eei.v13i4.7047
[8] S.B. Hanachi, B. Sellami, and M. Belloufi, New iterative conjugate gradient method for nonlinear unconstrained optimization, RAIRO Oper. Res. 56 (2022), no. 4, 2315–2327. https://doi.org/10.1051/ro/2022109
[9] S. Iqbal, N. Yaqoob, and M. Gulistan, An investigation of linear diophantine fuzzy nonlinear fractional programming problems, Mathematics 11 (2023), no. 15, Article ID: 3383. https://doi.org/10.3390/math11153383
[10] S. Iqbal, N. Yaqoob, and M. Gulistan, Multi-objective non-linear programming problems in linear diophantine fuzzy environment, Axioms 12 (2023), no. 11, Article ID: 1048. https://doi.org/10.3390/axioms12111048 [11] H.R. Irene and N. Sudha, Neutrosophic fuzzy quadratic programming problem as a linear c complementarity problem using taylor series approach, Adv. Appl. Math. 21 (2022), no. 4, 1869–1881.
[12] M. Jdid and F. Smarandache, The use of neutrosophic methods of operation research in the management of corporate work, Neutrosophic Systems with Applications 3 (2023), no. 2, Article 1. https://doi.org/10.61356/j.nswa.2023.11
[13] M. Jdid and F. Smarandache, The use of neutrosophic methods of operation research in the management of corporate work, Neutrosophic Systems with Applications 6 (2023), no. 1, Article 4. https://doi.org/10.61356/j.nswa.2023.35
[14] P. Kaliyaperumal and P. Muralikrishna, An optimization model for fuzzy nonlinear programming with Beale’s conditions using trapezoidal membership functions, Proyecciones 43 (2024), no. 2, 425–446. https://doi.org/10.22199/issn.0717-6279-5468
[15] H.A.E.W. Khalifa and P. Kumar, A fuzzy programming approach to neutrosophic complex nonlinear programming problem of real functions in complex variables via lexicographic order, Opsearch 59 (2022), no. 4, 1396–1412. https://doi.org/10.1007/s12597-022-00584-2
[16] K. Lachhwani, Solving non-linear neutrosophic linear programming problems, Neutrosophic Sets Syst. 60 (2023), 6–20.
[17] G. Lavezzi, K. Guye, and M. Ciarcià, Nonlinear programming solvers for unconstrained and constrained optimization problems: a benchmark analysis, arXiv preprint arXiv:2204.05297 (2022).
[18] M. Ma, M. Friedman, and A. Kandel, A new fuzzy arithmetic, Fuzzy sets and systems 108 (1999), no. 1, 83–90. https://doi.org/10.1016/S0165-0114(97)00310-2
[19] S. Mishra, R. Ranjan Ota, and S. Nayak, Nonlinear fuzzy fractional signomial programming problem: A fuzzy geometric programming solution approach, RAIRO Oper. Res. 57 (2023), no. 3, 1579–1597. https://doi.org/10.1051/ro/2023063
[20] S.M. Othman and M.B. Abdulrazzaq, Fuzzy logic system for drug storage based on the internet of things: a survey, Indones. J. Electr. Eng. Comput. Sci. 29 (2023), no. 3, 1382–1392. https://doi.org/10.11591/ijeecs.v29.i3
[21] R. Purnima Raj, Fuzzy non-linear programming problems with linear inequality constraints and its solutions, Mathematical Statistician and Engineering Applications 70 (2021), no. 2, 297–308.
[22] N.V.S. Raju, Optimization Methods for Engineers, PHI Learning Pvt. Ltd., 2014.
[23] J. Reig-Mullor and F. Salas-Molina, Non-linear neutrosophic numbers and its application to multiple criteria performance assessment, Int. J. Fuzzy Syst. 24 (2022), no. 6, 2889–2904. https://doi.org/10.1007/s40815-022-01295-y
[24] M. Sarkar, T.K. Roy, and F. Smarandache, Neutrosophic Optimization and Its Application on Structural Designs, Infinite Study, 2018.
[25] M.R. Seikh and S. Dutta, A nonlinear programming model to solve matrix games with pay-offs of single-valued neutrosophic numbers, Neutrosophic Sets Syst. 47 (2021), no. 1, 366–383.
[26] K. Sharma, V.P. Singh, B. Poojara, A. Ebrahimnejad, and D. Chakraborty, An optimization method to solve a fully intuitionistic fuzzy non-linear separable programming problem, RAIRO Oper. Res. 57 (2023), no. 6, 3117–3139. https://doi.org/10.1051/ro/2023152
[27] N. Sudha and R.I. Hepzibah, Fuzzy neutrosophic quadratic programming problem as a linear complementarity problem, Int. J. Aquat. Sci. 12 (2021), no. 2, 91–97.
[28] P. Umamaheswari and K. Ganesan, A new approach for the solution of unconstrained fuzzy optimization problems, AIP Conf. Proc. 2112 (2019), no. Article ID: 020004. https://doi.org/10.1063/1.5112189
[29] G. Vanaja, K. Ganesan, and L. Rathour, Solving fuzzy nonlinear programming problems with exterior penalty fuzzy valued functions, Adv. Math. Models Appl. 9 (2024), no. 1, 130–146. https://doi.org/10.62476/amma9130 | ||
آمار تعداد مشاهده مقاله: 55 تعداد دریافت فایل اصل مقاله: 85 |