
تعداد نشریات | 5 |
تعداد شمارهها | 117 |
تعداد مقالات | 1,391 |
تعداد مشاهده مقاله | 1,409,103 |
تعداد دریافت فایل اصل مقاله | 1,376,132 |
Interconnections between the different energies of the complements of regular graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 مرداد 1404 اصل مقاله (399.8 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.29910.2219 | ||
نویسندگان | ||
B. Parvathalu* 1؛ Keerthi G. Mirajkar1؛ Roopa S. Naikar1؛ Ismail N. Cangul2 | ||
1Department of Mathematics, Karnatak University’s Karnatak Arts/Science College Dharwad 580001, Karnataka, India | ||
2Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Gorukle Campus-16059, Bursa, Turkey | ||
چکیده | ||
The energy of a graph G is determined by the absolute sum of its eigenvalues. Similar to this concept, the distance energy, Harary Energy, Seidel energy, complementary distance energy and reciprocal complementary distance energy are all defined based on the eigenvalues of their respective matrices. In this paper, we study these energies on the complement of a regular graph G in terms of the energy of G. We explore exact relationships among these energies. Recent studies have explored equienergetic graphs concerning the adjacency and distance matrices. In this paper, we provide graphs illustrating the equienergetic properties with respect to six matrices. The results obtained extend some of the existing findings. | ||
کلیدواژهها | ||
Energy؛ Distance energy؛ Harary energy؛ Complementary distance energy؛ Reciprocal complementary distance energy | ||
مراجع | ||
[1] Z. Cui and B. Liu, On Harary matrix, Harary index and Harary energy, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 3, 815–823.
[2] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge university press Cambridge, 2010.
[3] R.J. Elzinga, D.A. Gregory, and K.N. Vander Meulen, Addressing the Petersen graph, Discrete Math. 286 (2004), no. 3, 241–244. https://doi.org/10.1016/j.disc.2004.06.006
[4] A.D. Gūngör and A.S. Cevik, On the Harary energy and Harary Estrada index of a graph, MATCH Commun. Math. Comput. Chem. 64 (2010), no. 1, 281–296.
[5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz. 103 (1978), 1–22.
[6] W.H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 3, 653–659.
[7] A. Ilic, M. Bašic, and I. Gutman, Triply equienergetic graphs, MATCH Commun. Math. Comput. Chem. 64 (2010), no. 1, 189–200.
[8] G. Indulal, D-spectrum and D-energy of complements of iterated line graphs of regular graphs, Algebr. Struct. Appl. 4 (2017), no. 1, 53–58. https://doi.org/10.29252/asta.4.1.51
[9] G. Indulal, Distance equienergetic graphs, International Conference on Graph Connections (ICGC) (Kottayam, Kerala), Bishop Chulaparambil Memorial College and Mahatma Gandhi University, August 2020.
[10] G. Indulal, Distance equienergetic graphs, Weekly e-seminar on Graphs, Matrices and Applications, IIT Kharagpur, 2020.
[11] G. Indulal, I. Gutman, and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), no. 2, 461–472.
[12] O. Ivanciuc, T.S. Balaban, and A.T. Balaban, Chemical graphs with degenerate topological indices based on information on distances, J. Math. Chem. 14 (1993), no. 1, 21–33. https://doi.org/10.1007/BF01164642
[13] O. Ivanciuc, T. Ivanciuc, and A.T. Balaban, The complementary distance matrix, a new molecular graph metric, ACH-Models Chem. 137 (2000), no. 1, 57–82.
[14] D. Janežič, A. Miličević, S. Nikolić, and N. Trinajstić, Graph-Theoretical Matrices in Chemistry, Univ. Kragujevac, Kragujevac, 2007.
[15] B. Parvathalu and H.S. Ramane, On diameter and distance energy of complement of regular graphs, https://doi.org/10.2139/ssrn.4726841
[16] D. Plavšić, S. Nikolić, N. Trinajstić, and Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993), no. 1, 235–250. https://doi.org/10.1007/BF01164638
[17] H.S. Ramane and K. Ashoka, Harary energy of complement of line graphs of regular graphs, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69 (2020), no. 2, 1215–1220. https://doi.org/10.31801/cfsuasmas.630087
[18] H.S. Ramane and M.M. Gundloor, On the complementary distance energy of join of certain graphs, Discrete Math. Lett. 2 (2019), 57–64.
[19] H.S. Ramane, I. Gutman, and M. Gundloor, Seidel energy of iterated line graphs of regular graphs, Kragujevac J. Math. 39 (2015), no. 1, 7–12.
[20] H.S. Ramane and R.B. Jummannaver, Harary spectra and Harary energy of line graphs of regular graphs, Gulf J. Math. 4 (2016), no. 1, 39–46. https://doi.org/10.56947/gjom.v4i1.55
[21] H.S. Ramane and K.C. Nandeesh, Complementary distance spectra and complementary distance energy of line graphs of regular graphs, J. Indones. Math. Soc. 22 (2016), no. 1, 27–35. https://doi.org/10.22342/jims.22.1.205.27-35
[22] H.S. Ramane and B. Parvathalu, Reciprocal complementary distance energy of complement of line graphs of regular graphs, Mat. Sci. Appl. E-Notes. 9 (2021), no. 1, 36–41. https://doi.org/10.36753/mathenot.641660
[23] H.S. Ramane, B. Parvathalu, and K. Ashoka, An upper bound for difference of energies of a graph and its complement, Examples and Counterexamples 3 (2023), 100100. https://doi.org/10.1016/j.exco.2023.100100
[24] H.S. Ramane, B. Parvathalu, K. Ashoka, and S. Pirzada, On families of graphs which are both adjacency equienergetic and distance equienergetic, Indian J. Pure Appl. Math. 55 (2024), no. 1, 198–209. https://doi.org/10.1007/s13226-022-00355-1
[25] H.S. Ramane, B. Parvathalu, D. Patil, and K. Ashoka, Iterated line graphs with only negative eigenvalues −2, their complements and energy, 2024.
[26] H.S. Ramane and D. Patil, Complementary distance energy of complement of line graphs of regular graphs, International J. Math. Combin. 2 (2020), 68–73.
[27] H.S. Ramane, D. Patil, K. Ashoka, and B. Parvathalu, Equienergetic graphs using Cartesian product and generalized composition, Sarajevo J. Math. 17 (2021), no. 1, 7–21. http://doi.org/10.5644/SJM.17.01.02
[28] H.S. Ramane and A.S. Yalnaik, Reciprocal complementary distance spectra and reciprocal complementary distance energy of line graphs of regular graphs, Electron. J. Graph Theory Appl. 3 (2015), no. 2, 228–236. http://doi.org/10.5614/ejgta.2015.3.2.10
[29] H. Tabassum, P. Kaemawichanurat, and N.W. Adeela, Relationship between ordinary, Laplacian, Randic, incidence, and Sombor energies of trees, MATCH Commun. Math. Comput. Chem. 90 (2023), 743–763. https://doi.org/10.46793/match.90-3.743T | ||
آمار تعداد مشاهده مقاله: 78 تعداد دریافت فایل اصل مقاله: 91 |