
تعداد نشریات | 5 |
تعداد شمارهها | 117 |
تعداد مقالات | 1,391 |
تعداد مشاهده مقاله | 1,409,382 |
تعداد دریافت فایل اصل مقاله | 1,376,488 |
Eccentric adjacency index of graph operations and its applications | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 27 مرداد 1404 اصل مقاله (849.72 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30525.2515 | ||
نویسندگان | ||
Shehnaz Akhter1؛ Sourve Mondal2؛ Zahid Raza* 3 | ||
1School of Natural Sciences, National University of Sciences and Technology, Islamabad-44000, Pakistan | ||
2Research Institute of Sciences and Engineering (RISE), MASEP Research Group, University of Sharjah, Sharjah 27272, United Arab Emirates | ||
3Department of Mathematics, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates | ||
چکیده | ||
The study of topological descriptors is very beneficial in determining the underlying topologies of graphs and networks. An extensive collection of graph-associated numerical descriptors has been used to examine the whole structure of networks. In this analysis, eccentricity-based topological indices have secured a significant place in theoretical chemistry and nanotechnology. Also, graph products conveniently play an essential role in many combinatorial applications, graph decompositions, pure mathematics, and applied mathematics. In this article, we derive the precise results for the eccentric adjacency index of some graph products such as composition, Indu-Bala, Cartesian, disjunction, and symmetric difference products. Furthermore, we implement these outcomes to deduce the eccentric adjacency index for certain significant classes of chemical structures in the factors of graph products. The chemical significance of the index is also investigated. | ||
کلیدواژهها | ||
Topological indices؛ Eccentric adjacency index؛ graph operations؛ QSPR analysis | ||
مراجع | ||
[1] S. Akhter, R. Farooq, and S. Pirzada, Exact formulae of general sum-connectivity index for some graph operations, Mat. Vesnik 70 (2018), no. 3, 267–282.
[2] S. Akhter and M. Imran, On degree-based topological descriptors of strong product graphs, Can. J. Chem. 94 (2016), no. 6, 559–565. https://doi.org/10.1139/cjc-2015-0562
[3] S. Akhter and M. Imran, The sharp bounds on general sum-connectivity index of four operations on graphs, J. Inequal. Appl. 2016 (2016), no. 1, 241. https://doi.org/10.1186/s13660-016-1186-x
[4] Y. Alizadeh, K. Xu, and S. Klavžar, On the Mostar index of trees and product graphs, Filomat 35 (2021), no. 14, 4637–4643. https://doi.org/10.2298/FIL.2114637A
[5] A.R. Ashrafi, T. Došlić, and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math 158 (2010), no. 15, 1571–1578. https://doi.org/10.1016/j.dam.2010.05.017
[6] A.R. Ashrafi, M. Ghorbani, and M.A. Hossein-Zadeh, The eccentric connectivity polynomial of some graph operations, Serdica J. Comput. 5 (2011), no. 2, 101–116. https://doi.org/10.55630/sjc.2011.5.101-116
[7] M. Azari and A. Iranmanesh, Computing the eccentric-distance sum for graph operations, Discrete Appl. Math 161 (2013), no. 18, 2827–2840. https://doi.org/10.1016/j.dam.2013.06.003
[8] A.T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, Topological indices for structure-activity correlations, Steric Effects in Drug Design (Berlin, Heidelberg), Springer Berlin Heidelberg, 1983, pp. 21–55.
[9] K.C. Das, T. Vetrík, and M. Yong-Cheol, Relations between arithmetic-geometric index and geometric-arithmetic index, Math. Rep. 26 (2024), no. 1, 17–35. http://dx.doi.org/10.59277/mrar.2024.26.76.1.17
[10] N. De, S.M.A. Nayeem, and A. Pal, Total eccentricity index of the generalized hierarchical product of graphs, Int. J. Appl. Comput. Math. 1 (2015), no. 3, 503–511. https://doi.org/10.1007/s40819-014-0016-4
[11] N. De, A. Pal, and S.M.A. Nayeem, On some bounds and exact formulae for connective eccentric indices of graphs under some graph operations, Int. J. Comb. 2014 (2014), no. 1, 579257. https://doi.org/10.1155/2014/579257
[12] N. De, A. Pal, and S.M.A. Nayeem, Total eccentricity index of some composite graphs, Malaya J. Mat. 3 (2015), no. 4, 523–529.
[13] N. De, A. Pal, and S.M.A. Nayeem, Total eccentricity index of some composite graphs, Malaya J. Mat. 3 (2015), no. 4, 523–529.
[14] K. Deng and S. Li, Extremal catacondensed benzenoids with respect to the Mostar index, J. Math. Chem. 58 (2020), no. 7, 1437–1465. https://doi.org/10.1007/s10910-020-01135-0
[15] K. Deng and S. Li, Chemical trees with extremal Mostar index, MATCH Commun. Math. Comput. Chem. 85 (2021), no. 1, 161–180.
[16] K. Deng and S. Li, On the extremal values for the Mostar index of trees with given degree sequence, Appl. Math. Comput. 390 (2021), 125598. https://doi.org/10.1016/j.amc.2020.125598
[17] K. Deng and S. Li, On the extremal Mostar indices of trees with a given segment sequence, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 2, 593–612. https://doi.org/10.1007/s40840-021-01208-6
[18] T. Došlić and M. Saheli, Eccentric connectivity index of composite graphs, Util. Math. 95 (2014), 3–22.
[19] H. Dureja, S. Gupta, and A.K. Madan, Predicting anti-HIV-1 activity of 6 arylbenzonitriles: Computational approach using superaugmented eccentric connectivity topochemical indices, J. Mol. Graph. Model. 26 (2008), no. 6, 1020–1029. https://doi.org/10.1016/j.jmgm.2007.08.008 [20] S. Ediz, On the Ediz eccentric connectivity index of a graph, Optoelectron. Adv. Mat. 5 (2011), no. 11, 1263–1264.
[21] K. Fathalikhani, H. Faramarzi, and H. Yousefi-Azari, Total eccentricity of some graph operations, Electron. Notes Discrete Math. 45 (2014), 125–131. https://doi.org/10.1016/j.endm.2013.11.025
[22] M. Ghorbani, M.A. Hosseinzadeh, M.V. Diudea, and A.R. Ashrafi, Modified eccentric connectivity polynomial of some graph operations, Carpathian J. Math. (2012), 247–256.
[23] S. Gupta, M. Singh, and A.K. Madan, Connective eccentricity index: a novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000), no. 1, 18–25. https://doi.org/10.1016/S1093-3263(00)00027-9
[24] S. Gupta, M. Singh, and A.K. Madan, Predicting anti-HIV activity: computational approach using a novel topo- logical descriptor, J. Comput. Aided Mol. Des. 15 (2001), no. 7, 671–678. https://doi.org/10.1023/A:1011964003474 [25] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538. https://doi.org/10.1016/0009-2614(72)85099-1
[26] F. Hayat and S.J. Xu, A lower bound on the Mostar index of tricyclic graphs, Filomat 38 (2024), no. 17, 6291–6297. https://doi.org/10.2298/FIL2417291H [27] F. Hayat, S.J. Xu, and B. Zhou, Maximum values of the edge Mostar index in tricyclic graphs, Filomat 38 (2024), no. 28, 9967–9981. https://doi.org/10.2298/FIL2428967H
[28] F. Hayat and B. Zhou, On Mostar index of trees with parameters, Filomat 33 (2019), no. 19, 6453–6458. https://doi.org/10.2298/FIL1919453H
[29] Fazal. Hayat and B. Zhou, On cacti with large Mostar index, Filomat 33 (2019), no. 15, 4865–4873. https://doi.org/10.2298/FIL1915865H
[30] B. Hemmateenejad and A. Mohajeri, Application of quantum topological molecular similarity descriptors in QSPR study of the O-methylation of substituted phenols, J. Comput. Chem. 29 (2008), no. 2, 266–274. https://doi.org/10.1002/jcc.20787
[31] S. Huang, S. Li, and M. Zhang, On the extremal Mostar indices of hexagonal chains, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 1, 249–271.
[32] M. Imran and S. Akhter, Degree-based topological indices of double graphs and strong double graphs, Discrete Math. Algorithms Appl. 9 (2017), no. 5, 1750066. https://doi.org/10.1142/S1793830917500665
[33] M.H. Khalifeh, H. Yousefi-Azari, and A.R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009), no. 4, 804–811. https://doi.org/10.1016/j.dam.2008.06.015
[34] M.A. Malik, Two degree-distance based topological descriptors of some product graphs, Discrete Appl. Math. 236 (2018), 315–328. https://doi.org/10.1016/j.dam.2017.11.002
[35] Š. Miklavič, J. Pardey, D. Rautenbach, and F. Werner, Maximizing the Mostar index for bipartite graphs and split graphs, Discrete Optim. 48 (2023), 100768. https://doi.org/10.1016/j.disopt.2023.100768
[36] A. Mohajeri and M.H. Dinpajooh, Structure–toxicity relationship for aliphatic compounds using quantum topological descriptors, J. Mol. Struct. THEOCHEM. 855 (2008), no. 1-3, 1–5. https://doi.org/10.1016/j.theochem.2007.12.037
[37] A. Mohajeri, P. Manshour, and M. Mousaee, A novel topological descriptor based on the expanded Wiener index: applications to QSPR/QSAR studies, Iran. J. Math. Chem. 8 (2017), no. 2, 107–135. https://doi.org/10.22052/ijmc.2017.27307.1101
[38] S. Mondal, N. De, and A. Pal, On neighborhood Zagreb index of product of graphs, Journal of Molecular Structure 1221 (2023), 129210. https://doi.org/10.1016/j.molstruc.2020.129210
[39] M. Randić and N. Trinajstić, In search for graph invariants of chemical interes, J. Mol. Struct. 300 (1993), 551–571. https://doi.org/10.1016/0022-2860(93)87047-D [40] V. Sharma, R. Goswami, and A.K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure- property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997), no. 2, 273–282. https://doi.org/10.1021/ci960049h [41] H. Yang, M. Imran, S. Akhter, Z. Iqbal, and M.K. Siddiqui, On distance-based topological descriptors of subdivision vertex-edge join of three graphs, IEEE Access 7 (2019), 143381–143391. https://doi.org/10.1109/ACCESS.2019.2944860 | ||
آمار تعداد مشاهده مقاله: 67 تعداد دریافت فایل اصل مقاله: 109 |